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Abstract 

We extend the polaron variational treatment previously developed for the propagator to the case 
where one nucleon and n external mesons are present. Using the particle representation of the 
scalar Wick-Cutkosky model this is done in lowest order of an expansion of the exact action 
around a retarded quadratic trial action. In particular, we evaluate the form factor for scattering 
of mesons from the scalar nucleon and determine the radius of the dressed particle. After analytic 
continuation to Minkowski space we study elastic meson-nucleon scattering both analytically and 
numerically near threshold and show that it is essential to incorporate the correct behaviour of the 
retardation function at large proper times. Only if this is done the optical theorem is approximately 
fulfilled over a range of energies and coupling constants. 



1 Introduction 

T his is the third paper in a series which explores the use of variational principles in the particle 
representation of field theory. Following Feynman's treatment of the polaron [1] we have applied 
similar techniques [2, 3] to the simplest scalar field theory which involves a Yukawa interaction of 
heavy particles ('nucleons') with light mesons. This is the Wick-Cutkosky model [4, 5] described by 
the following Lagrangian in euclidean space time 

1 21221 2122 2
£ = 2" (8Jl<p) + 2M o<P +"2 (8Jl<p) + 2m <P - g<P <p (1) 

Here Mo is the bare mass of the heavy particle <P, m is the mass of the light particle <p and 9 is 
the (dimensionfull) coupling constant of the Yukawa interaction between the two particles. In the 
p resent work we will concentrate on the Green function for one nucleon interacting with an arbitrary 
number of mesons. After integrating out the mesons (which is possible if the nucleons are quenched) 
we obtained III (I, II) the following generating functional for the corresponding (connected) Green 
functions 

100 ({3)=x(f3) lX 

Z [j , x] == const. df3 exp --M6 Vx(r) exp (-Seff [x(r)] - S2[x(r),j] ) (2) 
o 2 x(O)=O 

Here the effective action for the nucleon is given by 

(3) 

and the meson source terms are contained in 

(4) 

Eqs. (2 - 4) define the "particle representation" of the Wick-Cutkosky model in the 'proper-time gauge' 
[7] for the sector of the theory which we consider here: they are formulated in terms of trajectories 
x(r) of the nucleon which are parametrized by the proper time r and obey the boundary conditions 
x(O) = 0 and x(,B) = x. To obtain the Green functions for one nucleon (propagating from 0 to x) 
a nd n external mesons one has to do the usual differentiation with respect to the meson sources j (y), 
perform the remaining path integral over all trajectories of the nucleon and finally integrate over 
f3 from zero to infinity with the weight exp(-f3Mg /2). It is, of course, impossible to perform this 
path integral exactly. In (I, II) we have therefore approximated it variationally on the pole of the 2
point function by a retarded quadratic two-time action. Various parameterizations for the retardation 
function which enters this trial action have been investigated and for the most general case we have 
solved the variational equations numerically. This was possible for values of the dimensionless coupling 
constant 

g2 
a = 47rM2 ~ 0.815, (5) 

where M is the physical mass of the nucleon. For a greater t han the critical value Q'c = 0.815 no 
real solutions could be obtained. The emergence of a critical coupling constant in our variational 
calculation points to the well-known instability present in the Wick-Cutkosky model [6J. 

It is the purpose of the present paper to extend the treatment given in (I, II) for the 2-point 
function to processes which involve n external mesons. We will do this in 'zeroth' order in the 
difference between t he exact effective action (3) and the trial action 

(6) 
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i.e. we will utilize the trial action St which has been determined previously for the 2-point function 
to evaluate the (2 + n)-point function. We will demonstrate that already this lowest order gives 
reasonable and non-trivial results. In particular, we will study in detail meson-nucleon scattering in 
this model which requires an analytic continuation of our results to Minkowski space. Remarkably 
this was already anticipated by K. Mano [8] who first pioneered the use of polaron variational methods 
in the Wick-Cutkosky model. 

This paper is organized as follows: in Section 2 we recall some elements of the polaron variational 
approach which we will need in the present paper. In Section 3 we consider the case where there are n 
external mesons and derive the lowest order approximation to the corresponding (2 + n )-functions in 
an expansion of the exact effective action around the trial action.· Section 4 discusses the special case 
of G 2 ,2, the 'Compton' amplitude, the analytic continuation and the correct form of the trial action. 
In Section 5 we present our numerical results for differential and total cross sections near threshold. 
The main results of this work are summarized in the last Section, whereas some technical details are 
relegated to the Appendix. 

Polaron Variational Approach 

Following Feynman's treatment of the polaron problem we have performed in (I) a variational calcu
lation of the 2-point function with the quadratic trial action 

f3 
St[X] = r dr ~X2 + rf3 dr1 r 

Tl 

dr2 f(r1 - r2) [x(r1) _ x(r2)]2 . (7)Jo 2 Jo Jo 
Here f (r1 - r2) is an undetermined 'retardation function' which takes into account the (proper) time 
lapse occurring when mesons are emitted and absorbed on the nucleon. In actual calculations it is 
more convenient to use the Fourier space form 

00 

St[b] = 2: Ak bZ , (8) 
k=O 

where the bk are the Fourier components of the path x(r) and the Fourier coefficients Ak are either 
parametrized or considered as variational parameters. Eq. (8) contains as a special case the free 
action for which all Ak equal unity. Near the nucleon pole the 2-point function should behave like 1 

2) Z (9)G2,o (p ----7 p2 + M2 

where 0 < Z < 1 is the residue. As was shown in (I) this requires the proper time {3 to tend to 
infinity. For (3 ---T 00 all discrete sums over Fourier modes Ak turn into integrals over the 'profile 
function' A(E = k7r/(3). Mathematically this is achieved by using Poisson's summation formula [9] 
which, for an even function F(k7r/{3) , reads 

00 ( k7r) {31°O 1 2{3 
00 

002: F -(3 = - dE F(E) - - F(O) + - 2: 1 dE F(E) cos(2n{3E) . (10) 
k=1 IT 0 2 IT n=1 0 

For (3 ---T 00 the terms in the last sum are exponentially suppressed. 
The profile function A(E) is linked to the retardation function f(O') through 

8 roo EO' 
A(E) = 1 + E2 J dO' f(O') sin

2 . (11) 
o 2 

lIn this work all 4-momenta are taken to be euclidean. 
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In Refs. (I, II) we have studied the 'Feynman' parametrization given by 

which leads to 

(12) 


Ap(E) (13) 

and an 'improved' parametrization 

f/(a) (14) 

which gives 

[arctan E_~ In (1 + E2) ] (15)
w2W 2E 

In both cases v, ware parameters whose values have to be determined by minimizing the variational 
functional given in Eq. (27) of (II). As the bare mass Mo requires renormalization and the physical 
mass M = 939 MeV is fixed by the pole position of the propagator, the minimum does not have a 
physical meaning but only tells us how good the variational ansatz is. The numerical calculations in 
(II) have shown that the 'improved' parametrization is significantly better than Feynman's because it 
includes the correct short-time behaviour. Note also that the singularity structure of the corresponding 
profile functions in the complex E -plane is quite different: whereas Ap (E) exhibits poles at E = ±iw, 
t he profile function of the 'improved' parametrization has branch points at E = ±iw. 

Within the gaussian ansatz the best approximation is obtained by not imposing any specific form 
for the retardation function but determining it from varying the variational functional with respect 
to the profile function A(E). As shown in (I) this gives the following expression for the 'variational' 
retardation function 

(16) 

Here 0 < A < 1 is a variational parameter determined by solving the coupled system of variational 
equations. In addit ion, we have used the abbreviations 

a2 1 - u b2
)

e(a, b,u) = exp ( -"2 -u- - 2" u (17) 

and 
2

2( ) = i rex; dE _1_ sin (Ea /2) (18)J-l a 7r Jo A(E) E2 . 

We call J-l2 (a) the 'pseudotime' because 

(19) 

and 
2 ( ) u-+ex; aJ-l (J' ---r- (20)

Ao 

where Ao == A(O) is the value of the profile function at E = O. It should be noted that this 
variational retardat ion function has the same 1/(J'2-behaviour for small relative times as the 'improved' 
parametrizat ion (14). 
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3 Green Functions with n External Mesons 

In the previous work we have been considering the propagator of the nucleon dressed by (virtual) 
mesons and have used this Green function to fix the variational parameters appearing in the trial 
action. It is of course possible to apply the same procedure for any other Green function as well. 
Alternatively, one can estimate other Green functions by evaluating them with the variational pa
rameters determined from the nucleon propagator. We shall follow this procedure for the general 
Green function with two external nucleon and n meson legs which we shall call the (2 + n)-point 
function. With the help of the reduction formulas these Green functions describe the matrix elements 
for processes like meson absorption on a nucleon, meson-nucleon scattering or nucleon-antinucleon 
annihilation in our simplified scalar model. Nonperturbative production of multiboson states has 
attracted a lot of theoretical interest recently (see e.g. [10]), in a different context. 

For simplicity we will work to zeroth order in (!:l.S) and within the framework of the 'coordinate 
averaging' described in (I). The general expression for the (2 + n )-point function in coordinate space 
may be obtained from the generating functional for connected Green functions (Eq. (2)) by repeated 
differentiation with respect to the source j (y). After Fourier transformation we may write 

G2,n(P, p'; {q}) = const. 10= d,8 exp [-%M5] j d4 xe- ip '.x 

·lX
({3)=x VX(T) IT [91{3 dTieiQ;OX(T;)] e-SeWX(T)] , (21) 

x(O)=O i=l ° 
where the external meson propagators as well as an overall momentum conserving delta function have 
been removed, while the truncation of the external nucleon propagators still remains to be performed. 
Our convention is that nucleon lines are ingoing with momenta p and p' whereas mesons are outgoing 
with momenta qj. The effective action Seff for the nucleon is given in Eq. (3). We shall determine 
the normalization of Eq. (21) later. The proper time Tj appearing in Eq. (21) may be interpreted 
as the time at which the meson with momentum qj couples to the nucleon, the latter being at the 
space-time point x (Ti). 

To zeroth order in (!:l.S) , G2 ,n(P,P'; {q}) is given by Eq. (21), with Seff replaced by St. Using the 
definition for St in Eq. (8) one may do the integral over the endpoint 

4 , 2 n 211"{3 1 n ,. x. Tj ] 2 
) 2]j dxexp 

[ 
-zp .x-Ao-+zL-qi·X [-] exp -- LqiTj - P (3 (22)[(2{3 i=l {3 Ao 2Ao{3 i=l 

as well as the path integral 

l
X

({3)=x [ 00 ] const. [oo,vZ] 00 1 
(23)X(O)=O VX(T) exp {; (iA~ . bk - AkbD = (211"{3)2 exp {; 4Ak IT A~ 

where 
, 2.j-p ~. k11"Ti 

Ak = -k- ~sln -{3qi • (24) 
11" i=l 

One may perform the sum appearing on the right hand side of Eq. (23) using the summation formula 
(10). One obtains, up to exponentially small terms in {3, 

(25) 
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Tn -1 Tn 
t 

-+- a1 ---+-1-- a2 ---+- .......- an ---+-.......-an~ 


F igure 1: The definition of the relative times and momenta. Note that TO = 0, Tn+l = /3, PI = -P and 
P n + l = p'. 

Note that the first term, which is quadratic in the proper times T and therefore potentially troublesome, 
will cancel against the identical term appearing in Eq. (22). 

The expression (21) for the n-point function involves an integral over all possible orderings of the 
times {Ti}' Equivalently, we may relabel the integration variables such that they correspond to the 
particular ordering 0 ~ T1 ~ T2 ... ~ Tn ~ {3 and sum over all possible permutations of the momenta 
{qi }' Furthermore, it is more sensible to use relative rather than absolute times, so we shall define 
(see Fig. 1) 

(26) 

an Tn - Tn -1 

a n +l {3 - Tn , 

so t hat 
i n +l 

Ti = L ak and {3 = L Ok (27) 
k=1 k=1 

The Jacobian of this transformation is one, and the product of integrals simplifies to 

1
00 1{3 iTn lT2 n+1 1oodf3 dTn dTn _1 • . . dTl = II dai· (28) 

o 0 0 0 i=1 0 

Wit h this transformation the terms linear in the times appearing in the exponential become 

(29) 

where the momenta Pi are defined in Fig. 1 and we have used the fact that the overall momentum is 
conserved. We are t hus led to the following expression for the (2 + n)-point function: 

G 2 ,n (p, p'; {q} ) = 
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In (>0 dE [1 1 ] (30). exp { -; i~1 qi . qj Jo E2 A(E) - A(O) 

·sin (Etnl) sin (Etnl)}
1=1 l=1 

This expression is valid for all non-negative integers n and, as we shall see, is properly normalized. 
Before treating the case where n =I 0, let us first consider what the result is for the nucleon propagator 
at this order. 

3.1 n = 0 

Applying the Poisson summation formula (10) to the infinite product of Fourier coefficients gives 

00 1 1 [2(31 ]IT -2 = A exp --
00 

dE log A(E) + Ex((3) (31) 
k=O Ak 0 7r 0 

The remainder 
00 1 roo A' (E) 

Ex((3) = 2?; n7r Jo dE A(E) sin (2n(3E) (32) 

is exponentially suppressed for large (3. Hence close to the nucleon pole, i.e. for (3 -+ 00, we obtain 

4A roo ]-1
G2,o(p, p) = p2 + Ao Mo 2 + ~ Jo dE log A(E) (33)[ 

So at zeroth order the residue of the nucleon propagator is one 

z(O) = 1 (34) 

and the physical mass is given by 

M' = Ao [ Mo' + ~ [" dE logA(E) ] (35) 

Note that the singular behaviour of the 'improved' and the 'variational' retardation functions for small 
a leads to an 1/E fall-off of the corresponding profile function for large E. This in turn requires (even 
in zeroth order) an infinite renormalization of the bare mass Mo since the E-integral in Eq. (35) does 
not converge. 

As we have already noted, Eq. (33) is only valid near the pole. It is usually not possible to give a 
closed expression for the infinite product in Eq. (31) or the infinite sum in Eq. (32) which is also valid 
for subasymptotic (3's. One case, however, where this may be carried out exactly is for the Feynman 
parameterization given in Eq. (13), in which case we have 

IT ~ = [ w sinh W {3]2 (36) 
k=O Ak v sinh v{3 

so that the propagator becomes 

2 100 

. w [Sinh W{3]2 [(3 2 2]
G2,o(p, p) = 2 v2 0 d(3 sinh v(3 exp - 2Ao (Pi + AoMo ) (37) 
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F igure 2: Singularity structure and integration contours for the 'improved' profile function in the 
complex E-plane. 

One may even carry out this last integral over (3 to obtain 

W 
G2 ,o(p,p) = 4 [(a+ 2: -1) W(a+ 2:) + (a-1)W(a): 3 

-2 (a+ : -1) W(a+ :)] (38) 

wit h a = W 
2(p2 + M2)j(4v3

). Here W(x) is the digamma function [IIJ, which has simple poles at 
x = 0, -1, -2, .... 

It is clear that this Green function has the unfortunate feature of having not only the pole situated 
at t he nucleon mass , but also an infinite sequence of 'ghost poles' (unless v = w, which corresponds 
t o 9 = 0, in which case all ghost poles cancel). Note that the residues at these ghost poles cancel each 
ot her, which is consistent with Z(O) = 1 noted above. The closest pole is situated at p2+M2 == -4v2jw, 
which numerically turns out to be more than about (2M)2 away from the nucleon pole. Hence, for 
t he purpose of describing low-energy processes, these ghosts seem not to be relevant physically. 

What happens to these ghost poles for a general profile function A(E)? Without a specific 
parametrization it is possible to investigate the nearest singularities of the zeroth order propagator 
by keeping only the n = 1 term in the sum for the remainder (32) and expanding the exponential. 
This gives 

1 8Ao r~o A' (E) 1 
(39)G2,o(p, p) ~ p2 + M2 + ----;- J dE E A(E) (p2 + M2)2 + (4AoE)2 .o 

To make further progress we need some knowledge of the analytic behaviour of A(E) in the complex 
E-plane. It has already been observed that the 'improved' parametrization of the profile function has 
branch cuts on the imaginary axis starting at ±iw. Assuming this structure to hold in general (with 
t he cuts starting at some value ±iEo ) we can, after making use of the fact that the profile function 
is even in E, deform the integration contour as shown in Fig. 2 and obtain 

G ( ) 1 roo dE r(E) (40)2,0 p,p ~ p2 + M2 + JEo p2 + M2 + 4AoE 
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with 
r(E) = ~ 1m A'(iE + E) . (41) 

7r A(iE + E) 

Eq. (40) has the form of a Kallen-Lehmann representation [12J for the euclidean propagator and shows 
that the ghost poles in Feynman parametrization turn into branch points of the off-shell propagator 
- at least for the 'improved' parametrization. It is tempting to identify these branch points with 
the beginning of the meson production cuts which should be present in the exact 2-point function. 
However, the threshold at p2 + M2 = -4AoEo turns out to be too high if the numerical values of 
Ao and Eo = w tabulated in (II) are inserted, and, more seriously, the weight function r(E) is not 
positive definite. The latter deficiency is also obvious from the result 

1 d1,= dE r(E) = -:- 1,= dE dE [lnA(iE + E) -In A(iE - E) J = O. (42) 
Eo 'l7r Eo 

Although this is fully consistent with the general sum rule for the weight function in the Kallen
Lehmann representation [12J and Z(O) = 1 , it means that, in general, we have 'ghost branch points' 
instead of ghost poles. These unwanted properties are not as disastreous as it seems at first sight: 
it should be remembered that we have extrapolated away from the nucleon pole with the variational 
parameters fixed to their on-shell value. As shown in (II) the off-shell variational equations necessarily 
lead to a dependence of the variational parameters on the virtuality p2 + M2 which will cure these 
deficiencies. We will not pursue this in the present work but will keep the variational parameters as 
determined on the pole of the 2-point function. 

3.2 n i= 0 

Having determined the residue of the nucleon propagator at zeroth order, we may now check that the 
Green function (30) is properly normalized by considering the small coupling limit. In order to obtain 
the lowest order contribution in the coupling g, we just need to set the profile function A(E) equal to 
one and Mo to M. One can now do the integrals over the times ai to obtain 

1 n+1 2 9 
G2t,~ee(p,p'; {q}) = - ~ IT (43)

2 9 L..t Pi 2 + M2
P({q}) i=1 

as required. 
Let us now specialize to the case where the nucleon is on-shell. As discussed in (I) this corre

sponds to considering the integration region where the corresponding time differences a1 and a n +1 

go to infinity. Hence, using again the Poisson summation formula, the terms quadratic in the meson 
momenta may be simplified by writing the product of the two sine functions as a sum over two cosines, 
one of which only gives rise to exponentially small (in the variable (1) terms. One obtains 

i ) (11= dE [1 1] ( j) (rnaX(i,j)) (44)
-; 0 E2 A(E) - A(O) sin E~al sin E~al Ql-+) ~ l=rni~j)+1 a, 

where 1 [= dE [1 11 (45)~(r) = 27rJ E2 A(E) - A(O) cos(Er) .o 

Note that the argument of ~ in Eq. (44) is zero if i = j. Furthermore, r does not depend on a1 or 
a n +1 for any values of i and j and so we may now carry out the integrations over these two times, 
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Figure 3: Some diagrams included in the (2 + n)-point function. Each solid line stands for a fully 
dressed nucleon propagator. 

yielding the propagators for the external nucleon legs. The (2 + n )-point Green function for on-shell 
nucleons may therefore be written as 

(46) 

where 

G2~~ (p,pl; {q}) 29 Ao I: IT {9 roo dai exp [-~ (Pi 2 + M2)] } 
P({q})i:2 Jo 2Ao 

n (maX(i,j)) } 
. exp - L qi . qj ~ I: al (47)

{ 
i,j=l l=min(i,j)+l 

and we have used the zeroth order expression Eq. (35) for the physical mass. 
Note that all momenta in Eq. (47) appear quadratically in the exponent. This is due to the fact 

t hat it corresponds to the zeroth order term in a variational calculation with a quadratic trial action. 
Nevertheless, already at this order Eq. (47) contains a remarkable amount of information. To see this, 
it is instructive to examine its behaviour in perturbation theory. It suffices to expand the exponential 
in the qi'S. The leading term corresponds precisely to the tree diagram already encountered before 
(Eq. (43)), with fully dressed nucleon propagators for the internal lines and bare vertices for the 
external pions. An example of this type of term is shown in Fig. 3 a. Next, there is a class of 
diagrams containing only diagonal terms (i = j). These correspond to similar diagrams, however this 
t ime with one or more dressed vertices (e.g. Fig. 3 b). This class of diagrams is reducible on each side 
of each dressed vertex. This is due to the fact that ~(O) is independent of the a's and so the integrals 
over the times may be carried out, yielding a product of propagators and form factors. Furthermore, 
t here is a class of diagrams where off-diagonal terms (i i- j) are also present. Because for these terms 
E contains at least one a, these correspond to diagrams which are not reducible on each internal leg 
(e.g. Fig. 3 c). For example the term in the expansion with i = 1 and j = 2 gives Ql' Q2 ~(a2) and 
t hus corresponds to a diagram with meson exchange across the first and second vertex. Lastly, note 
t hat the exponential gives rise to any combination of the above, to all orders of the coupling. 

The function ~ (r) which we have introduced in Eq. (45) is closely related to the pseudotime p2(r). 
Indeed using Eq. (18) we obtain 

r 1 2 
~(r) ~(O ) + 4A(0) - 4 11 (r) . (48) 
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Figure 4: Third-order graphs for G 2,1 : (a) self-energies, (b) vertex correction. 

Note, in particular, that 

~ = 1 +4e(0) (49)
Ao 

so that all on-shell Green functions are com pletely determined by the function ~ (r). For the Feynman 
parametrization (13) we have the analytical result 

(50) 

which illustrates the fact that ~(T) is an exponentially decaying function of r (see Eq. (A.27)). 
Finally, for convenience we explicitly write down the lowest order Green functions, where all of 

the above points may be illustrated : 

G2~i (p, p'; q) 	 2gAo e-q2 €(O) (51) 

2g2Ao e-(q~+q;) ,(0) 1= d0l2G2~~(P, p'; qll q2) 

exp[- 2~0 (P22+ M2) - 2q, . q2 ~(0I2)1+ (q1 H q2) (52) 

2g3 Ao e-(q~+q~+qi) €(O) L 1= dQ2 dQ3 
P({q}) 0 

Q2 2 2 	 Q3 (2 2)]
exp [- 2Ao (P2 + M ) - 2Ao P3 + M (53) 

exp [-2ql . q2 ~(Q2) - 2q2 . q3 ~(Q3) - 2ql . q3 ~(Q2 + (3)J 

The expression for the (2 + I)-point function in Eq. (52) may be written as 

(54) 

showing that the effective coupling constant for the meson-nucleon vertex is enhanced due to vertex 
corrections : 

geff = 9 Ao > g. (55) 

This is qualitatively (but not quantitatively) similar to what one obtains from expanding the one-loop 
effective potential V(l)(cp,cp) (see II) up to the power of cp2<p. 
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Not surprisingly the elastic meson-nucleon form factor 

(56) 


is gaussian and defines the mean square radius of the dressed particle to be 

00 

(r)2 = 6~(0) = -3 1 dE-1 (1-- - - 1 ) (57) 
IT 0 E2 A(E) A(O) 

For the Feynman parametrization we obtain from Eq. (50) 

3 2 2 

( 2) __ v - w 
r F - , (58) 

2 v3 

which is a well-known result in the polaron literature [13]. Table 1 gives the numerical values obtained 
with the different parametrizations for the profile function. We also have included the perturbative 
result from the vertex correction in Fig. 4 b which reads 

(59) 


Table 1: Root-mean-square radius (in fm) of the dressed particle from Eq. (57). 'Feynman'signifies 
the result in the Feynman parametrization whereas 'improved' refers to the improved parametrization 
from Eq. (15). The radius calculated with the solution of the variational equations is denoted by 
'variational'. For comparison the perturbative result is also shown. 

Of 'Feynman' 'improved' 'variational' perturbative 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

0.014 
0.021 
0.028 
0.034 
0.041 
0.049 
0.060 
0.081 

0.026 
0.038 
0.050 
0.062 
0.073 
0.088 
0.108 
0.149 

0.018 
0.027 
0.034 
0.042 
0.050 
0.060 
0.073 
0.098 

0.047 
0.066 
0.081 
0.094 
0.105 
0.115 
0.124 
0.133 

The values of the root-mean-square radius (Table 1) for the variational calculations differ much 
more from each other, as they do from the perturbative results, than the corresponding results for 
t he residue in (II), even for small coupling. The reason for this difference at small coupling is that 
we have only calculated the (2 + 1)- (and higher) point function at zeroth order in (1::15). So, by 
construction, they are only 'forced' to agree at the tree level in perturbation theory (which they do). 
If one calculates t hem to first order in (.6.S) the agreement for small couplings will be similar to the 
agreement for the residue of the two-point function determined in (II). Still, even at zeroth order the 
root-mean-square radii are quite consistent with each other. It should be noted that the radius is 
extremely sensitive to the behaviour of the profile function at small E, so the differences between the 
radii is a reflection of the differences between the profile functions seen in this region. 
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The radius (57) is due to the recoil of the nucleon when it absorbs the external meson while other 
mesons have been emitted into the meson 'cloud' surrounding the dressed particle. Since there is 
no direct meson-meson interaction the natural length scale for the radius therefore is the Compton 
wavelength 11M = 0.21 fm of the nucleon. The actual values are, of course, dependent on the strength 
of the coupling and, as seen in Table 1 the root-mean-square radius increases with G. In principle for 
some large enough coupling it should become comparable to the empirical charge radius of the proton 
( ::::: 0.8 fm ), were it not for the instability which forces the coupling constant to be less than G c • This 
is probably an unreasonable comparison in any case - we are treating the (bare) nucleon as a point 
particle here, so the root-mean-square radius is only due to effects from the meson cloud. 

4 Meson-Nucleon Elastic Scattering 

We now turn to a more detailed discussion of the 'Compton' amplitude given by Eq. (53). It consists 
of two parts, the direct diagram and the crossed one shown in Figs. 5 a and 5 b where we have 
set q == -ql, q' == q2 for the meson and p' ---r _p' for the outgoing nucleon. In terms of the usual 
Minkowski space Mandelstam variables 

s = - (q + p) 2 , t = _(p _ p') 2 , (60) 

we have for the crossed diagram 

cgossed(s, t) = 2g2 AD e2m' «D) l= d0<2 exp [ - 2~0 (s + t - M2 - 2m2) - (2m2 - t) ';(0<2)] (61) 

and for the direct diagram 

It is worthwhile to point out some similarities and differences of these formulae with the usual skeleton 
expansion of higher Green functions: after the substitution T = G2/(2Ao) in the proper-time integrals 
we indeed can identify the enhancement factor in front of the integrals as G~ 1 (q2 = _m2), i.e. the , 
square of the meson-nucleon vertex function (52). However, the zeroth order propagator G2,o studied 
previously does not appear in Eqs. (61, 62) and consequently, none of its off-shell deficiencies will 
show up. This is because we only consider truncated Green functions which, by definition, are on the 
mass shell with respect to the external particles. The variational principle then yields well-behaved 
expressions even though the internal particles may be off-shell in a diagrammatic expansion. 

When applying Eqs. (61, 62) to meson-nucleon scattering the only question which remains is the 
convergence of the integral representations for the 'Compton' amplitude. Whereas Eq. (61) for the 
crossed diagram converges for s + t > M2 + 2m2 , which includes the physical region, this is not the 
case for the direct diagram. Indeed, Eq. (62) is only defined for s < M2 and must be analytically 
continued for the physical values s 2: (M + m)2. 

4.1 Analytic Continuation 

To perform this analytic continuation we must investigate the analytic properties of the function ~(G2) 
which has been _defined in Eq. (45) as the Fourier cosine transform of the inverse profile function. 
Using the fact that the profile function is even in E and assuming that it has the analytic structure 
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Figure 5: 'Compton' amplitude for meson-nucleon scattering in the zeroth order variational calcula
tion: (a) direct diagram, (b) crossed diagram. 

shown in Fig. 2 we may again deform the integration contour and express ~(G2) by an integral running 
a long both sides of the cut 

(63) 

where 
1 1 

(64)p(E) = 21rE2 1m A(iE + f) 
T he explicit form of the weight function p(E) for the various parametrizations can be found in the 
A ppendix. In deriving Eq. (63) we have tacitly assumed that the profile function A(E) has no zeroes 
in the upper plane which can be verified for the 'improved' parametrization. Of course, if this is not 
t he case one has t o include the contribution from the corresponding poles in the integrand for ~(G2). 

The integral representation (63) can now be used to evaluate the G2-integral for the direct diagram. 
After expanding t he exponential and integrating term by term we obtain 

00 (t G direct (s t) = 29 2A e2m2 €(O) [ 2Ao + 2m2)n 1
dEl···dEn2,2' 0 M2 _ S L , 

00 

n=l n. Eo 

p(E1) ••• p(En) _, (M2 _ ) 1 E E ] .(65) 
2Ao s + 1 + ... n 

Alt hough Eq. (65) has been derived for s < M2 , it now can be used to define the direct amplitude 
for other values as well, in particular on the upper side of the s-cut (s ~ s + if) which corresponds 
to the physical region. The infinite series (65) may then be resummed by means of the representation 

.100 

_1_ _ d -iT(a- it:)
• - 1. re . (66) 

a -'l£ 0 

This gives 

G direct (; t ) 
2,2 , (67) 
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Of course, Eq. (67) could have been derived more easily from Eq. (62) by the simple replacement 

0'2 = iT, (68) 

which amounts to the usual Wick rotation back to Minkowski proper time. However, the derivation 
makes clear the crucial role played by the analytic properties of the profile function A(E) which 
determines the function ~(T). In addition, the expanded version (65) of the direct amplitude is 
very useful to study thresholds and the threshold behaviour of the imaginary part of the scattering 
amplitude. This will be done in the next subsection. 

4.2 Threshold Behaviour and Optical Theorem 

As the zeroth order residue is one, the truncated Green function equals the scattering amplitude 

/(8, t) = G2t~(8, t) . (69)
) 

This may be verified by calculating the Born terms in perturbation theory. Using, for example, the 
conventions for the Feynman rules advocated by Muta [15] 2 one obtains 

(70),Born = (2g)2 [M2 + ~+ q)2 + M2 + (~- Q')2] 

which is identical with Eq. (43). 
The differential cross section in the center-of-mass system can be expressed as (Ref. [14], p. 245) 

du 1 I 2 (71)d0. = 64rr28 /(8, t)! 

and the total cross section by means of the optical theorem as 

1 
Utot(8) = 21plvs 1m /(8, t = 0) . (72) 

Here p is the center-of-mass momentum. The Born amplitude (70) is, of course, purely real thereby 
leading to a vanishing total cross section and a violation of the optical theorem. The direct amplitude 
in our zeroth order variational calculation, however, develops an imaginary part after the analytic 
continuation has been made. Indeed, using the expanded version (65) of the direct amplitude with 
8 -7 8 + if we have (in the physical region) 

dEl ... dEn p(E1) ••• p(En) 

& c:o (M2 - s) + E, + ... En ) (73) 

The b-function may be used to perform, say, the El-integration which gives a nonzero result only 
if the singularity lies within the integration interval. Since all integrations over the Ei's start at Eo 
where the branch point of the profile function is located, we find that the n - th term in Eq. (73) only 
makes a contribution to the imaginary part of the scattering amplitude if 

n = 1,2... (74) 

2These conventions produce the minimal number of i's, do not change the sign of the propagator when a Wick 
rotation is made and directly yield the transition matrix element. Our Lagrangian (1) gives a factor 2g at each vertex. 
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In particular, between the elastic and the first inelastic threshold for meson-nucleon scattering only 
one term in t he sum (73) contributes and we have 

S(l) < s < S(2) (75)thresh - - thresh' 

We see that the cut structure of the profile function A(E) not only determines the threshold position 
(74) for meson-nucleon scattering but also directly the total cross section. 

Let us now discuss qualitatively the effects produced by the different parametrizations which we 
have used in the variational calculation on the pole of the 2-point function. We immediately recognize 
t hat the rather small deviations which these parametrizations have given for the self-energy lead to 
very large ones for the scattering cross section. For example, the Feynman parametrization has no cuts 
a t all but only poles and zeroes in the profile function. Consequently there is only a very pathological 
(and unphysical) scattering cross section when this parametrization is continued to Minkowski space: 
fro m Eq. (A.2) in t he Appendix we see that the total cross section would be a sum of 8-functions ! 

The 'improved ' parametrization fares better at first sight: it has a cut in the upper E-plane 
st a rting at E = iEo = iw. Therefore 

S(l) - M = - /M2 + 2AoEo - M (76)thresh v 

which should be eq ual to the meson mass m. Using Table 2 in (II) the right-hand side of Eq. (76) 
is found to vary between 408 MeV at Q = 0.1 and 275 MeV at Q = 0.8 . Although this is a far cry 
from the correct value 140 MeV it could be easily cured by performing the minimization with the 
constraint that the correct threshold is reproduced. A more serious problem, however, is that near 
t h reshold the weight function p(E) behaves like (see Eqs. (A.5) and (A.10) ) 

p(E) ~ C1 (E - w) (77) 

with a positive constant C1 . In this kinematical region the center-of-mass energy is 

s = (JM2 + p2 + Jm2 + p2)2 p-+? S(l) + p 2 (M + m)2 (78)thresh Mm 

Using the threshold condition (76) we thus find that the weight function in Eq. (75) behaves like 

s - M2 ) P-+O C p2 (M + m)2
p =----7 I -- -'-------'-- (79)( 2Ao 2Ao Mm 

T his has two disastrous consequences: firstly, the imaginary part of the amplitude vanishes like p2 
(Le . not like Ipl) leading to a zero total cross section (72) at threshold and, secondly, away from 
t h reshold atot becomes negative when calculated by means of the optical theorem! 

We will see in the next subsection that both these failures are not due to the zeroth order variational 
a p proximation but are a consequence of an inadequate form of the retardation function. 

4.3 An E xtended Parametrizat ion of the Retardation FUnction 

It is not surprising that many of the parametrizations for the retardation function investigated in 
(1, II) turn out to be inadequate for describing meson nucleon scattering. By means of a simple 
approximation we have found in (I) that the variational principle for the self-energy is sensitive 
mostly to small values of the proper time difference a. On the other hand, a scattering amplitude 
near threshold probes large values of t his variable as can be inferred, for example, from Eq. (67). 
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Figure 6: Retardation functions j(O') versus proper time 0' for various parametrizations: 'Fey' de
notes Feynman's parametrization, 'imp' the 'improved' parametrization and 'var' the solution of the 
variational equations. Note that for large 0' the variational retardation function becomes negative. 

Fortunately the variational principle tells us what the best form for the retardation function is for 
all values of 0', including 0' -+ 00. Indeed, performing an integration by parts in Eq. (16) one obtains 

(80) 

Replacing p2(0')/0' by some average value one sees that the 'improved' parametrization just corre
sponds to the first term in Eq. (80). However, the second term dominates at large 0' and makes the 
retardation function even negative. This is shown in Fig. 6 where the retardation functions investi
gated in (II) are plotted as function of 0' . It can also be demonstrated analytically in the following 
way: recalling the asymptotic limit of the pseudotime given in Eq. (20) we evaluate the u-integral by 
Laplace's method 

271" -E(uo)O'---e . (81) 
0'E"(uo) 

Here Uo is the value which minimizes the function E(u) in the interval between 0 and 1. For the case 
at hand (see Eq. (17) ) 

2 

m (1 )E(u) = - --1 
2Ao u 

so that 
2m) m

E (Uo = Ao),M = )'Mm - 2Ao ' 

Since E(uo) is smaller than the value ),2 M2 Ao/2 which governs the exponential fall-off of the first 
term, we see that the variational retardation function asymptotically behaves like 

0'-+00 g 71" m m E u 0'jvar (0') ---+ - 21WxJ)3- -- e- (0) • . (84)
3271"2 2 )'M 0'3/2 

(82) 

(83) 
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Evidence for a sign change of the variational retardation function for large u can already be found in 
t he 'dip' of Avar{E ) near E = 0 which has been observed in the plots given in (II). As a side remark we 
note that the threshold for meson-nucleon scattering determined from Eqs. (84) and (83) is now much 
closer to the physical value than with the 'improved' parametrization: with Eo = E(uo) and Table 3 
of Ref. (II) the right-hand side of Eq. (76) now varies between 120 MeV at a = 0.1 and 99 MeV at 
a = 0.8 . Far more important than the remaining discrepancies (which may be easily removed by a 
constraint calculation) is the sign of the asymptotic retardation function and the fractional power of 
u which accompanies the exponential decay. This is because a retardation function of the asymptotic 
form 

f3~oo C -Eo(7f( U ) ---t - e (85)
(1"Y 

leads to the following behaviour of the weight function near the branch point Eo 

p(E) ex: (E - Eo r- 1 
, (86) 

t he proportionality constant having the same sign as the constant C in Eq. (85). This is demonstrated 
in the Appendix. T hus the asymptotic behaviour (84) "kills two birds with one stone" : it produces a 
positive total cross section and the correct threshold behaviour of the imaginary part of the scattering 
amplitude to make the total cross section finite at p = O. In addition, it leads to a lower minimum 
of the variational functional thereby showing that such a form is a consequence of the variational 
principle applied to the present model and not an arbitrary parametrization. 

We incorporate the behaviour of the variational retardation function at small and large u by the 
following ansatz for an 'extended' parametrization 

cfE((1) = _1 [e- W1 (7 - c2fo e-W2 (7] , (87)
(J'2 

and require W1 > W 2 and C 2 > 0 . The associated profile function is 

2C1 [ E (E2)AE(E) = 1 + E2 2Earctan - - w1ln 1 +-2 
W1 W 1 

(88) 

having branch point s at E = iEo = iW2 and E = iE~ = iW1. In the Appendix the explicit 
expressions for the discontinuity across the cut and the weight function PE(E) are listed. The value 
of the 'extended' profile function at E = 0 is 

AE (0) = 1 + 2C1 [~ - C2~2]. (89) 
W1 2W2 

We determine the variational parameters C j , Wi, i = 1,2 under the constraint that the elastic threshold 
for meson-nucleon scattering is at s~~resh = (M + m)2 . According to Eq. (74) this requires that the 
relation 

(90) 

wit h Eo = W2 should be fulfilled during variation. 
As the imaginary part of the forward scattering amplitude below the first inelastic threshold is 

fully determined by the weight function ( see Eq. (75) ) we can now derive the total cross section in 
analytic form , in particular at threshold. After some algebra we obtain 

2 e2m22W;;;0 C1C2M 2m .;(0)
Utot (Ipl = 0) = 167r a (91)

27rM m wi R2(W2) 
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where R(W2) is the real part of the profile function at the branch point (see the Appendix). Eq. (91) 
shows that the constant total cross section at threshold is entirely due to the new term C2 in the 
'extended' parametrization. Since we expect the overall strength CI to be of order 92 (see Eq. (80) ) 
the expression (91) actually is of order 9 4 in the perturbative limit, in agreement with the square of the 
Born amplitude (70). This is a necessary condition for fulfilling the optical theorem and maintaining 
unitarity in our variational approach. 

Numerical Results and Discussion 

We first turn to the minimization of the variational functional on the pole of the propagator 

(92) 

for the 'extended' parametrization (87). This minimization is done with respect to the 'velocity' 
parameter A and the variational parameters which enter the profile function A(E). The explicit 
expressions for the quantities n and V, which are functionals of the profile function and the pseudo
time, can be found in (II), where also the numerical procedures are described. Again we have chosen 
M = 939 MeV and m = 140 MeV for the masses. For the present calculation the threshold constraint 
(90) was used to eliminate the parameter C2 via Eq. (89) so that a 4-parameter minimization of Eq. 
(92) had to be performed. 

Table 2 gives the parameters of the 'extended' parametrization obtained in this way as well as some 
quantities of interest derived from them. In view of the expressions (80) and (84) for the variational 
retardation function we write the strength parameters as 

(93) 

(94) 

and list the dimensionless numbers Xl, X2. Whereas Xl stays close to its perturbative value one, the 
strength parameter X2 for the asymptotic term in the retardation function turns out to be much larger 
even at small coupling and changes rapidly when the coupling constant a is increased. 

Comparing the numerical values of the intermediate mass Ml with the ones obtained in (II) we see 
that the 'extended' parametrization is slightly better than the 'improved' one but, of course, inferior 
to the (unconstrained) variational solution. This is more visible in Fig. 7 where 

!:1M2 = M2 _ M21 (95)
I I 1 improved 

is plotted as a function of the coupling constant a. For comparison we also have included the 
perturbative result 

M21 - M2 _ 9
2 r l du In ( 1 + M22 ~) = M2 (1 - 1.0214 a) . (96) 

I pert - 47r2 Jo m 1 - u 

As expected the perturbative result and the minimal value with Feynman's parametrization always lie 
above the value obtained with the 'improved' parametrization. Note that at larger coupling constants 
one has to scale these results by several orders of magnitude in order to display them in the graph. 
In contrast, the gain achieved with the 'extended' parametrization and the variational calculation is 
rather modest. As mentioned before this is due to the sensitivity of the self-energy to small values of 
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Table 2: Variational calculation for the nucleon self-energy in the Wick-Cutkosky model using the 
'extended' parametrization (87) for the retardation function. The parameters Xi, Wi , i = 1,2 obtained 
from minimizing Eq. (92) are given as well as A for different values of the coupling constant a. They are 
constrained such that the correct elastic threshold is obtained. The dimensionless strength parameters 
Xl and X2 are defined in Eqs. (93) and ( 94). The lower part of the table lists the mass M I , the value 
of the profile function at E = 0, the first order residue (see (II)) and the root-mean-square radius (57) 
of the dressed particle. 

a = 0.1 a = 0.2 a= 0.3 a = 0.4 a = 0.5 a = 0.6 a = 0.7 a = 0.8 
X l 1.0093 1.0182 1.0296 1.0426 1.0600 1.0863 1.1266 1.1905 
X 2 2.189 2.564 2.936 3.682 4.803 6.363 7.246 4.550 
Vwl [MeV] 632.7 609.0 584.8 554.0 518.0 476.6 437.5 399.5 
Vw2 [MeV] 373.0 370.0 366.5 362.5 357.8 351.8 343.1 324.8 
A 0.97297 0.94389 0.91223 0.87718 0.83739 0.79033 0.72987 0.62457 
MI [MeV] 890.25 839.78 787.43 732.97 676.20 616.98 555.57 493.45 
A(O) 1.0150 1.0321 1.0518 1.0751 1.1037 1.1415 1.2002 1.3393 
Z(1) 0.96088 0.91919 0.87429 0.82523 0.77042 0.70679 0.62687 0.49289 

(r2
// 

2 
[fmJ 0.017 0.025 0.032 0.038 0.043 0.052 0.076 0.135 

(J so that the completely different asymptotic behaviour of the retardation function which is built into 
t he 'extended' parametrization is not fully reflected in the value of Mr. This is, of course, well known 
from applications of the Ritz variational principle in quantum mechanics : even very refined wave 
functions lower the ground state energy only by a small amount compared to crude ones. However, 
calculation of other observables may lead to very different results. In the present case this phenomenon 
is amplified by the need of an analytic continuation to Minkowski space in which scattering takes place. 

With the variational parameters of the 'extended' calculation fixed we can now calculate the 
imaginary part of the scattering amplitude very easily from Eq. (75). The first column of Table 3 
gives the total cross section (72) at P = 0 obtained from the optical theorem for various coupling 
constants and Fig. 8 displays O"tot(lpl) for two different couplings below the first inelastic threshold. 
It should be noted that the threshold condition (74) associated with the first branch point Eo = W2 

automatically gives the correct higher (inelastic) thresholds. However, there are additional higher 
t hresholds coming from the second branch point Eb = WI in the profile function of the 'extended' 
parametrization. Since WI is decreasing for larger coupling constants (see Table 2) these additional 
t hresholds may even come to lie below the first inelastic threshold ( at Ipi = 214.2 MeV) which is 
seen, e.g., as a cusp in the total cross section for a = 0.6 near Ipi = 180 MeV. It is, of course, possible 
t o fix these additional thresholds at the correct physical values in a similar way as was done for the 
elastic threshold . We will not do this in the present work but concentrate on the kinematical region 
close to the elastic t hreshold. 

It is much more demanding to calculate the real part of the scattering amplitude at threshold in 
a reliable way. Numerical problems do not arise, of course, in the crossed amplitude which has the 
euclidean proper t ime integral representation (61) but in the evaluation of the oscillatory integrals 
of t he direct amplitude (67). The expansion (65) is of no help since all powers of p(E) contribute 
to t he real part in a given interval between thresholds. In addition, one would have to perform high 
dimensional principal value integrals numerically which is not a very promising procedure. Rather, we 
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have employed t he subroutines DQDAWF from the IMSL Mathematical Library and D01ASF from 
the NAG Fortran Library to perform the required sine and cosine transforms (over an infinite range) 
numerically. The latter routine was used to calculate ~ (iT) with high accuracy whereas the former one 
served to evaluate the T-integral in (67) with less accuracy. To obtain a properly convergent integral 
the corresponding Born term first had to be subtracted, i.e. the decomposition 

(97) 


was made in the integrand. While the first term generates the Born term for the direct diagram the 
last one is now amenable to numerical integration as ~(iT) goes to zero for large values of T (see Eq. 
(A.27) ) . We have checked the numerical stability of our program by treating the crossed diagram in 
the same fashion and comparing t he results with the euclidean proper time representation (61). Table 
3 also contains t he values for 

(98) 


at threshold where s = (M + m) 2 and the imaginary part of the scattering amplitude vanishes. For 
comparison we also list the corresponding Born cross section (see Eq. (70) ) 

47ro? 
(1 

Born (Ipl = 0) = = 0.4226 Q2 [fm2 ] . (99) 
el (M + m) 2 (1 - 4~2) 

Table 3: Total and elastic meson-nucleon cross sections at threshold in the 'extended ' parametrization 
for different values of the coupling constant Q. The total cross section (91) has been evaluated 
assuming the optical theorem whereas the elastic cross section has been obtained from the square of 
the scattering amplitude at threshold. For comparison the elastic Born cross section (99) is also given. 
The last column lists the 'unitarity ratio ' between elastic and total cross section. 

O! O"tot [fm2] O"el [fm2] O"~orn [fm2] 0"ellO"tot 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.65 
0.7 
0.75 
0.8 

0.0024 
0.0119 
0.0330 
0.0802 
0.183 
0.409 
0.585 
0.779 
0.929 
0.835 

0.0045 
0.0195 
0.0478 
0.0942 
0.168 
0.288 
0.375 
0.495 
0.665 
0.956 

0.0042 
0.0169 
0.0380 
0.0676 
0.106 
0.152 
0.179 
0.207 
0.238 
0.270 

1.889 
1.634 
1.448 
1.176 
0.916 
0.704 
0.640 
0.636 
0.716 
1.145 

We observe that at larger coupling constant the Born cross section is enhanced by up to a factor 3 
due to final state interactions, vertex corrections and self-energy effects which are all (approximately) 
contained in our result. Most important are the vertex corrections because the enhancement can be 
explained , with an accuracy of better than 10 % , by replacing the coupling constant 9 which enters 
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Eq. (99) by the effective coupling constant geff' More precisely but numerically nearly identical is 
2the replacement 2g -t G2~I(q2 = _m ) (see Eq. (54)) which leads to 

2 
4m2a (Ipl = 0) ~ 4/Ta Aci e {(0) • (100) 

el (M + m) 2 (1 - 4r;2) 

Since the momentum transfer is small compared to the nucleon mass the form factor stays very close 
to one and the main enhancement effect comes from the factor Aci, i.e. the effective coupling constant. 

The 'unitarity ratio' 

(101) 

decreases from 1.9 to 0.6 when the coupling is varied from a = 0.1 to a = 0.7 before rising again. 
These values can be understood semi-quantitatively in the following way: we first rewrite Eq. (91) as 

2 9/2 M2 XIX2 2m2{(0)
(I I) (102) atot p = 0 = /TO' Ao (M + ~)4 R2(W2) e 

where we have used the definitions (93, 94) for the strength parameters. We then assume that the 
elastic cross section can be approximated by Eq. (100) which gives for the ratio 

Vo ~ ~ . (1 -; ~ ) 4 • e2m2{(0) • R2 ( W2) . (103) 
X2 (1+~) (1- 4r;2) Xl$o 

Note that the large enhancement due to fourth power of Ao has cancelled. In addition, the second 
factor is 1 +O(m 2 1M2) , the form factor is practically one and the last factor also turns out to be very 
close to one (except at a = 0.8 where it is 1.17). Thus for nearly all accessible coupling constants 
one has the simple result 

4
Vo ~ (104) 

X2 

From Table 2 we see that the dimensionless parameter X2 grows from 2.2 at small coupling to over 
7 at a = 0.7 before declining again and that the approximation (104) accounts rather well for the 
values a ellatot listed in Table 3. 

The reverse procedure also works satisfactorily as can be seen in Fig. 9 : Here we have plotted 
the unitarity ratio for the 'extended' parametrization together with the results from a variational 
calculation in which X2 has been fixed to the value X2 = 4. (This leads to a minimal value of 
the variational functional which is nearly as good as the one from the unconstrained 'extended' 
parametrization.) Except for coupling constants close to the critical coupling we now observe equality 
of elastic and total cross section to a much better degree. It is clear that a fine tuning of the parameter 
X2 could lead to a completely unitary result, at least at Ipl = 0 . 

However, our aim is not to unitarize the scattering amplitude but to evaluate the imaginary part of 
the amplitude as a prediction of our variational approach. To what extent unitarity is fulfilled 3 thus 
serves as a severe test of our approximation scheme, in particular near threshold. In contrast, imposing 
unitarity, e.g. by considering the Born terms as K-matrix elements [16], is an ad-hoc procedure which 
is applied on top of an approximate calculation which violates unitarity to a much larger extent. 

We also have performed a partial-wave projection of the scattering amplitude. Given the particular 
t-dependence of Eqs. (61) and (67) this can be done analytically. Fig. 10 shows the Argand diagram 
for the s-wave at a = 0.5. We observe that up to Ipi ~ 60 MeV Ic the s-wave amplitude remains on 
the unitarity circle before appreciable deviations occur. . 

3 Of course, here we disregard the instabiltity of the Wick-Cutkosky model and assume that the theory is unitary 
below the critical coupling. 
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F igure 9: Ratio of elastic to total cross section at threshold as a function of the coupling constant a. 
T he full line gives the result using the 'extended' parametrization from Table 2, whereas the dotted 
line follows from a variational calculation in which the strength parameter X2 = 4 has been kept fixed. 
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F igure 10: Argand plot for the s-wave scattering amplitude with the 'extended' parametrization of the 
retardation fun~tion at a = 0.5. The triangles denote the values for different center-of-mass momenta 
from 0 to 140 MeVIc in intervals of 10 MeVIc. 

24 



6 Summary and Conclusion 

We have extended the polaron variational approach in the scalar Wick-Cutkosky model to the scatter
ing or absorption of an arbitrary number of mesons from the dressed nucleon. The retarded quadratic 
trial action whose parameters have been fixed variationally on the pole of the nucleon propagator was 
employed instead of the exact effective action. This constitutes the zeroth order approximation in a 
systematic expansion of the Green functions around the trial action and is similar to a calculation 
in quantum mechanics when the variational wavefunction determined from minimizing the energy is 
used to calculate other observables. 

We have seen that already this lowest order gives sensible results: although only agreement with the 
tree level calculations is assured in the perturbative limit, the variation of the parameters effectively 
sums up parts of higher diagrams up to all orders. A nice example of this is the (2 +n)-point function 
in Section 3. This expression contains pieces which may be identified with Feynman diagrams of 
arbitrary complexity and to any order in the coupling. A look at the explicit expressions also shows 
that the zeroth order variational approximation exponentiates lowest order results in a particular way. 
This is a welcome feature since exponentiation is a frequently used recipe to extend the range of 
validity of perturbation theory. As a caveat one should add, however, that the off-shell behaviour of 
the zeroth order propagator was found to be unsatisfactory if the on-shell variational parameters are 
used to extrapolate away from the nucleon pole. No problems arise if only truncated (on-shell) Green 
functions are considered as done in this work. 

Independent of the (not very realistic) model field theory which we consider here the general 
expressions even may be used in phenomenological applications by parametrizing the functions ~(T) 
or p(E) which fully determine all on-shell Green functions. Once this is done for elastic meson-nucleon 
scattering all other multi-meson processes could be predicted. 

In the present work we first have studied in some detail the vertex function for the absorption 
of a virtual meson on the dressed nucleon. Given that the trial action is quadratic in the nucleon 
trajectories it is not surprising that the corresponding form factor turned out to be gaussian. For the 
radius of the dressed particle we obtained a similar expression as in the polaron case. Since there is no 
tree-level radius the numerical results showed some differences between the various parametrizations 
which enter the trial action. 

We then concentrated on the zeroth order 'Compton' amplitude for meson-nucleon elastic scatter
ing which has a much richer physical content. This required an analytic continuation of the variational 
results obtained in euclidean space back into Minkowski space. We have shown that the key to a suc
cessful description of scattering at threshold is the proper form of the retardation function 1(0') which 
multiplies the quadratic trial action. For example, Feynman's classic parametrization used for the 
polaron, also employed by Mano [8] for the nucleon self-energy, is ruled out as it gives rise to a totally 
inappropriate analytic structure in the complex energy plane. Incidentally Mano himself writes in the 
conclusion of his work: "We also note that this method can be extended, though the accuracy of the 
result may be not very high, to another problem such as the scattering of the meson by the nucleon 
by using the best estimate of the real action." 

We already had found in previous work (I, II) that a good variational calculation of the self
energy requires an 1/0'2-singularity for small 0'. We now find in addition that scattering near the 
elastic threshold demands a specific behaviour of the retardation function for asymptotic val ues of the 
proper time 0'. Remarkably the variational solution for the retardation function which was derived on 
the nucleon pole already contains that information (see Eq. (84) ) and has guided us to the appropriate 
form of the reta~dation function in both limits. We have incorporated the small- and large-O" behaviour 
in an 'extended' parametrization that gives the correct elastic threshold and an imaginary part of the 
scattering amplitude which grows linearly with the center-of-mass momentum away from threshold. 
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Such a momentu m-dependence leads to the expected constant total cross section at threshold. In 
addition, the 'extended' parametrization gives a lower value of the variational functional than the 
previously studied parametrizations (see Fig. 7). As our variational principle is a minimum principle, 
this minimum value is a clear measure of the quality of the corresponding ansatz. 

By means of the optical theorem we have calculated the total cross section and compared it with 
t he integrated elastic cross section. The latter shows a considerable enhancement over the Born cross 
section at larger coupling. This is mainly due to vertex corrections which give rise to a larger effective 
coupling constant. At threshold we found a ratio of elastic to total cross section between 1.9 and 0.6 
depending on the coupling constant. By a simple analytic approximation we were able to show that 
t his ratio is mainly determined by the strength of the asymptotic part of the retardation function 
and t hat a slight readjustement gives nearly unitary results. It is remarkable that threshold position, 
threshold behaviour of the total cross section and unitarity basically can fix all quantities in the 
asymptotic form (85) of the retardation function. 

Although unitarity requires strict equality of elastic and total cross section below the first inelastic 
threshold (if the instability of the model is disregarded), we still consider the numerical result satis
factory in several respects. First, it is a prediction of our zeroth order variational principle without 
invoking any unitarizing procedure. Second, the 'extended' parametrization is still not the optimal 
variational solution as Fig. 7 shows. Given the sensitivity of the analytic continuation procedure to 
small changes in t he retardation function one may expect a further improvement of the unitarity ratio 
when more refined ansatze are used. A solution of the variational equations with the correct elastic 
th reshold as constraint would be the optimal procedure if the analytic continuation into the complex 
plane could subsequently be performed. 

However, a more promising strategy is to extend the variational principle to the (2 + n)-point 
func tion itself. This requires the consistent amputation of the dressed nucleon propagators and auto
matically leads to agreement with first order perturbation theory for small coupling constants. In a 
future publication we will show that such an extension is indeed possible at least for the simple model 
field theory which we have considered up to now. Further corrections in powers of the difference 
between the exact effective action and the trial action can then be calculated in a similar way as for 
the polaron problem [17]. The variational principle in the particle representation of field theory thus 
leads to a systematic sequence of nonperturbative approximations. 

26 




Appendix: Weight function for ~(r) 

Here we give explicit expressions for the weight function p(E) which determines the function ~(T) 
VIa 

~(T) = [(X) dE p(E) e-ET (A.I)
JEo 

for the various parametrizations of the retardation function and derive some general properties of p 

and ~ in terms of the associated retardation function. 
We start with Feynman's profile function. Although it does not have the analytic structure in the 

complex E-plane which we we have assumed it is nevertheless possible to apply Eq. (64). This gives 

(A.2) 

and obviously yields Eq. (50) when substituted into Eq. (A.l). 
For profile functions A(E) which have a cut running along the imaginary E-axis from iEo to 

infinity we introduce 

G(E) =r= 1m A(iE ± €) (A.3) 

R(E) Re A(iE± €) . (AA) 

Then Eq. (64) for the weight function reads 

1 G(E) 
(A.5)p(E) = 27rE2 R2(E) + G2(E) 

and we have to study the functions G(E) and R(E). 
For the 'improved' parametrization we write the profile function (15) as 

and for E > 0 we can read off the following expressions 

2 2 E 
v - W - W 8(E )G/(E) 7r ----w (A.7)

W E2 ' 
2 2 

1 + V : w ~2 [(W + E) In (1+ !) (A.8) 

Note that G / (E) ~ 0 and that near threshold 

v2 w 2 

G/(E) 7r 
_ 

3 (E-w) (A.9)
W 

v2 w 2 
E-+wR/(E) -+ 1 + 2 

-
2 In 2 . (A.IO)

W 

For the 'extended' parametrization we write Eq. (88) as 

2CI [ . (iE) . ( iE)AE(E) = 1 - E2 (WI - 'lE) In 1 - WI + (WI + 'lE) In 1 + WI 

+ 2 C2v;r ( Jwd iE + JW2 - iE - 2JW;) ] , (A.I I) 
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and obtain 

1= 2ITCI [ (E - WI) e(E - WI) - Vi y'E - W2 e(E - W2) , (A.12)GE (E) E2 2C2 

RE (E) 1+ ~I [ (WI + E) In (1+ ~) - (E - WI) In I! -11 

+2C,y7r ( v'w,+ E + v'w, - E EJ(w, - E) - 2y'w;) ] . (A.13) 

In particular , 

GE (E ) (A.14) 

+ (WI - w,) In (1 - ::) 

-2(2 - v'2)C,~hrw2 ] . (A.15) 

Note that G E (E) is negative at least between the first and the second branch point. 
Some general properties of the functions G(E), R(E), A(E) and l(a) are worthwhile to be noticed 

and illustrated by the particular examples we have given above. The real part R(E) is, of course, 
related to G(E) by a dispersion relation 

R(E) = 1 + .!. P 1+00 

dE' ~(E') (A.16)
IT E - E-00 

which can be furt her simplified by noting that G(E') is odd and therefore R(E) is even. The profile 
function itself may be expressed by G(E) as 

E 
A(E) = 1 + ~ foo dE' E'2 ' E2 G(E') . (A.17)

IT l Eo + 
At small E t his becomes 

A (E) ~ 1 + ~ foo dE' ~ G(E') _ E2 ~ foo dE' _1_ G(E') + ... (A.18)
IT lEo E' IT lEo E,3 

If G (E') is negative near threshold (as is the case for the 'extended' parametrization) then the coeffi
cient multiplying the _E2 term may become negative as well. The profile function then will rise at 
small E from the value 2100 

A(O) = 1 + - dE E1 G(E) . (A.19)
IT Eo 

We can also express the inverse of the profile function by the discontinuity of 1/A(iE) across the cut, 
i.e. by peE). In pa rticular, at E = 0 we find 

(A.20) 

assuming that A(E ) has no zeroes in the upper half-plane. This can be checked numerically by 
comparing Eq. (A.20) with either Eq. (A.19) or with the explicit analytic expression, if available. 
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For the 'extended' parametrization we have verified the equality to be better then 1 part in 108 for 
all coupling constants. 

It is also easy to see that the retardation function f(O') is the Laplace transform of E2 G(E). 
Inversion then gives a direct relation between G(E) and the retardation function 

1+00 

lEo1 .G(E) = E2 -00 dO' f( iO' + €) e , E> O. (A.21) 

The large E-behaviour of G(E) is linked to the the small a-behaviour of f(a) and vice versa. For 
example, the 1/0'2-singularity of the realistic retardation functions leads to the asymptotic 1/E
behaviour of G(E) which is observed in Eqs. (A.7) and (A.12). Conversely, Eq. (A.21) may be used 
to show that a retardation function which asymptotically behaves like 

o~oo C -Eoof(O') ---t -e (A.22)
O''Y 

leads to a behaviour near threshold like 

G(E) E~1fo 2rrC (E - E )'Y- 1 8(E - E ) (A.23)E6 r(,) 0 0 • 

With Eq. (A.5) this implies that the corresponding weight function has the threshold behaviour 

E ~Eo C 1 ( ) 'Y - 1 8 ( )( ) (A.24)p E ---t E6 r ( ,) R2 (Eo) E - Eo - E - Eo , 

where R(Eo) is the real part of the profile amplitude at the first branch point. 
Finally we give the asymptotic expansions for ~(T) for T being either small or large. Assuming 

the canonical 0'-2-behaviour of the retardation function at small a one finds in the first case 

(A.25) 

where 

(A.26) 

The logarithmic term is due to the 1/E 3-fall off of p(E) for large E which does not allow a naive 
expansion of the exponential in Eq. (A.1). It produces a cut for ~(T) on the negative real T-axis. The 
linear term in T has been expressed by Ao with the help of Eq. (A.20). This is in agreement with the 
relation (48) between ~(T) and the pseudotime and the small-T-behaviour (19) of the latter. 
For T --+ 00 the threshold behaviour (A.24) of the weight function is relevant and leads to 

(A.27) 


For purely imaginary T (which is needed in the analytic continuation) this results in a relatively slow 
and oscillating decrease at infinity. 
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