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Abstract 

Using a technique which is based on dimensional regularization, loop corrections to 

vertex diagrams of a massless quark moving in a spherical cavity are calculated in 

an arbitrary covariant gauge. Including the finite one-gluon-exchange diagrams, the 

corrections to the magnetic moments, vector and axial vector coupling constants, 

and the various r.m.s. radii of the nucleon are evaluated to order as . The results are 

compared with experimental data and previous calculations. 
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1 . In.troduction 

Over the past two decad;s'; : ~'i~ity QCD [1,2] has been much used to gain a quantita

tive understanding of the properties of the hadrons. Similar to cavity QED which is 

the Abelian counterpart of cavity QCD, the boundary conditions that the fields must 

obey on a static sphere are consistent with the gauge symmetry and the field equa

tions. Cavity QCD, as much as cavity QED, is therefore presumably a well-defined 

and renormalizable relativistic quantum field theory on its own, which could in prin

ciple be calculated perturbatively to arbitrary order. Apart from its non-Abelian 

character, the main feature that distinguishes cavity QCD from cavity QED is that 

the latter can be realized and observed in nature while it is still not clear whether 

perturbative cavity QCD provides a consistent framework for the description of the 

hadronic world. 

One of the reasons for this deficiency is that the boundary conditions on the fields of 

the colour carrying particles are imposed in a somewhat arbitrary and ad hoc fashion, 

in order to mimic confinement, while confinement is generally believed to be a con

sequence of the dynamics of the non-Abelian gauge theory. Secondly, by confining 

particles to a static sphere, one breaks both, translational and Lorentz invariance 

of the underlying gauge theory, and it is difficult to restore these symmetries consis 

tently without explicitly introducing the dynamics of the boundary, which necessarily 

amounts to solving the centre-of-mass problem exactly. Chiral symmetry is also bro

ken, and this may be restored by introducing the coupling to an elementary pion 

field, as is done for instance in the chiral and cloudy bag models [3]. The price one 

has to pay for this remedy though, is that these chiral field theories are in general not 

renormalizable, which makes perturbative calculations dependent on a large number 

of renormalization parameters, with substantial loss of predictive power. Moreover , 

there remains the problem of double counting, as the pion can be treated both, as 

elementary and quark-antiquark degree of freedom. Thirdly, in the framework of 

cavity field theory, it is technically rather difficult to calculate higher-order Feynman 

diagrams [4], especially the diverging ones [5 , 6, 7, 8, 9, 10J , as the singularities have 

to be extracted numerically. While these higher-order corrections may be important, 
\ 
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they have been largely ignored in the past, with a few exceptions [5, 6, 7, 8, 9, 10]. 

Fourthly, it is by no means clear that perturbative cavity QeD will converge any 

better than ordinary free-space QeD. However, the fact that the field operators are 

expanded in cavity modes instead of plane waves helps at least to get rid of the in

frared divergences plaguing free-space QeD. Indeed, a confined quark cannot radiate 

off a gluon as easily as a free quark, as the emitted gluon has a non-zero minimum 

mode energy. 

Despite all of these shortcomings, it is important to investigate the higher-order 

predictions of cavity QeD in more detail , in order to establish whether perturbative 

cavity QeD makes sense as a possible description of the hadronic world. Thus, the 

purpose of this paper is to calculate all the O(as) diagrams, including loop diagrams, 

which contribute to the magnetic moments Jlp and Jln, the vector and axial coupling 

constants 9v and gA' and the root-mean-square radii (r2)t, (r2)! and (r2) i. Assuming 

that the nucleon contains only up and down quarks, we restrict our attention to 

massless quarks. We do not attempt to restore chiral symmetry, translational and 

Lorentz invariance, as this cannot be done in a model-independent way.',. 
Recently, a reliable method for regularizing cavity loop-diagrams has been developed 

and applied to the self-energies of confined quarks [8, 11] and gluons [12], and the 

axial and vector coupling constant of the nucleon [9]. In this method, divergences due 

to the unreflected part of the propagators are extracted from loop integrals by using 

techniques similar to those of dimensional regularization in free space. In the case of 

the quark self-energy, Hansson and Jaffe [13, 14] have shown that the singular part 

of the loop integral is contained entirely in this free or un-reflected part of the quark 

propagator. Due to the Ward-Takahashi identities, this is also true for the vertex 

correction diagram which means that we can use the technique described in [8 , 12] 

to calculate the O(as) vertex correction diagram in an arbitrary covariant gauge. 

The paper is organized as follows: In the next chapter, we briefly review the calcula

tion of the loop-corrections to the vertex diagram in free-space field theory, empha

sizing those details which will be repeated in the analogous cavity calculation. In 

chapter 3,_we use the Gell-Mann and Low theorem to obtain an expression for the 
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fi rst-order corrections to the observables in question. Subsequently, we show in detail 

how to obtain the corrections to the magnetic moments. The results are discussed in 

chapter 4, while the calculational details are contained in the various appendices. 
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2 Vertex diagrams in free-space field theory 

The three loop-diagrams that appear in a calculation of nucleon observables to order 

as (fig. 1) contain ultraviolet divergences which must be regularized before physically 

meaningful quantities can be extracted. After regularizing these diagrams, the sum 

is found to be gauge-independent in free-space field theory. For massless quarks, 

the singulari ties of the self-energy diagrams (fig. 1(b )-(c)) and the vertex diagrams 

(fig. l(a)) cancel exactly. In the case of massive quarks, the self-energy diagrams 

develop an additional divergence which can be absorbed in a mass counter-term. For 

simplicity, we shall restrict ourselves here to massless up and down quarks. 

Before attempting the regularization of these diagrams in cavity field theory, we note 

that the ultraviolet singularities are a high-momentum or short-distance phenomenon, 

and thus should have exactly the same structure for both confined and free particles. 

Additional divergences may arise in the cavity version due to the boundary conditions 

that are imposed at the surface of the cavity, although in the case of the quark self

energy, Hansson and Jaffe [13, 14J have shown that the M.I.T. boundary conditions do 

not introduce any new singularity. As the vertex correction and self-energy diagrams 

are intimately related through the Ward-Takahashi identities, the former is also free 

from boundary-induced divergences. This leads us to expect that the singUlarities 

of the cavity loop-diagrams will cancel, as well, and that the sum will be gauge

independent. 

Let us begin with a brief review of the calculation of the one-loop correction to 

the vertex diagram in free-space field theory. In D dimensions, the vertex function 

AIJ(p', p, q) is given by 

J 
dDk 

- iAIJ(p',p,q) = g2 (27r)D(i'Ya )iS(p' - k)(i,IJ)iS(p- k)(i,{3)iDa{3(k), (1) 

where we have omitted the arbitrary mass parameter, p.4-D, which keeps the coupling 

constant 9 dimensionless. As the divergent part of AIJ(p', p, q) is independent of both 

the quark mass m and the momentum transfer q, m and q will be set to zero at the 

outset, for simplicity. Substituting the quark propagator and the gauge-independent 
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part of the gluon propagator (i.e. the k- 2 term) into eq. (1), one has 

. I' J dDk 1 1 gQ{3 J dDk ,1(,-~hlJ(,-~h" 
-til.. (p,p) = (27r)D'Ya,_~,1J ,_~,{3k2= (27r)D (p-k)2(p-k)2k2' (2) 

As we wish to carryover the method of evaluating this integral from free space to 

cavity field theory, it is convenient to review the details already here. After some 

Dirac algebra, one can rotate k and p to Euclidean space, i.e. kO ~ iko and pO ~ ipo, 

and elevate the denominators into the exponential using 

1 {'X>
(p _ k)2 = 10 dz e-z(p-k)l (3) 

for each factor in the denominator. AI' may then be written as 

J 
dDk {'X> roo to 

- iAIJ(p, p) = -i(2 - D) (27r)D 10 dr 10 ds 10 dt (4 ) 

x [2(,-~)(p- k)IJ+,IJ(,_~)2]e-rkl-(8+t)(k-P)l. 

Two successive shifts of variables can now be made 

k ~ k' + pes + t) k' + p _ ~ (5)
r+s+t r+s+t 

r ~ z(1 - x - y) , s ~ zx t ~ zy, (6) 

after which the exponent of eq. (4) becomes zk'2 +p2z(X +y)(l- x - y). The integral 

over k' is now a standard Gaussian and may be evaluated immediately to yield 

1
0011-% 1 (1) D/2-iAIJ(p, p) = -i(2 - D) 1dx dy dz z2 - (7) 

o 0 0 47rZ 

X [~ (1 - ~) + (1 - x - y)'(2#' - 1'P')1e-·,,(·+,)(·.,-I), 

where the result has been rotated back into Minkowski space. Setting D = 4 - 2f, 

where f is small, and evaluating the remaining integrals, one arrives at 

i 
-iAIJ(p,p) = -167r 2 [,I' (; _,+ 1-ln(-p2/47r )) _ 2:~], (8) 

where'Y is Euler's constant. Using the integral representation of the gamma function, 

the singular part of AI' in 4-dimensional space may be parametrized as 

i,1J roo e-z 

- iA~ = -167r2 10 dz-;-. (9) 



The self-energy of the quark, E(p), which is related to the vertex funct ion through the 

Ward identity, NJ(p,p) = 8E(p)/8PiJ' can be calculated in exactly the same manner, 

yielding 

iE(p) = -jL [~- "( + 1 -In(_pl /411")] (10)
1611"2 E 

for massless quarks. The singular part of the self-energy is 

., 100 -z 
iEs(p) = _~ dz _e- = B" (11 )

1611" 0 z 

where B denotes the divergent constant -ir(E)/1611"l. Calculating the amplitude of 

the self-energy inserts, we encounter a difficulty which will also occur in cavity field 

theory. As the method of resolving this problem is the same in both, free-space and 

cavity field theory, it is convenient to discuss it already here. The Feynman amplitude 

Mb for the self-energy diagram (fig. l(b)) is given by 

Mb = lC u(p') hI' is(p)iE(p) u(p)A~xt(q), (12) 

where C = 4/3 is a colour factor and A~xL(q) is some external potential. Inserting 

the quark propagator and the singular part of E(p) into eq.(12), we arrive at 

M~ = ilCu(p')"(iJ~B,u(P)A~xt(q) (13) 

which is ill-defined, as evident from the fact that the on-shell value of ,/, is of the 

form 0/0. Alternatively, the result of , acting on a free-particle spinor u(p) is zero, 

while if the p's in the numerator and denominator are allowed to cancel before acting 

on the spinor, the result is proportional to u(p) . This difficulty can be resolved by 

adiabatically 'switching-on' the interaction, introducing a function g(t), which tends 

to zero as t -+ ±oo, and is of unit value for t = o. Fourier transforming g(t) into 

energy space, 

g(t) = 1: dEG(E)e iE1 
, (14) 

G(E) turns out to be almost a h"-function, with the normalization g(O) = f dE G(E) = 1. 

Including the Fourier-transformed damping factor in the interaction Hamiltonian, the 

self-energy and quark propagator are replaced by 

1 1
E(p) -+ E(p - s) --+-

, ,-1-1' 
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and the Feynman amplitude (13) becomes 

M~ = ielCu(p') JdE dE' G(E)G(E') "(I' J ~ J,B(,-I) u(p)A~xt(q)· (15 ) 

One way of evaluating the integral is to subtract a factor of ~,u(p) from the numer 

ator, which may be done since }Iu(p) = o. This allows us to make the substitution 

1 1
(,-1) -+ (,- 1) - 2' = 2(' - 21). 

Furthermore, the factor of 21 may be symmetrized by making the replacement 

2/-+ 1+1'. The integral now straight-forwardly yields 

M~ = ilc u(p') "(;B u(p)A:xt(q). (16) 

The factor of tB is particularly important since the same result holds for the diagram 

shown in fig. l(c), hence the sum of these two terms contains a factor of exactly B. 

The Feynman amplitude Ms for the singular part of the vertex correction can be 

found immediately from eq. (9), yielding 

Ms = -ilCu(p') "(iJBu(p)A:xt(q). (17) 

This cancels exactly the singularities arising from the self-energy inserts. 


So far, we have discussed the term proportional to k- l rather than the full gluon


propagator. If the remaining term in the propagator, which depends on gauge param


eter, is now inserted into the Feynman amplitudes for these diagrams, one finds that 


the sum of the three amplitudes vanishes identically, i.e. the sum of these diagrams 


is gauge-independent. 
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3 Vertex diagrams in cavity field theory 

3.1 Perturbation expansion 

Assuming that perturbation theory is valid, cavity QeD can, as its free-space coun

terpart, be expanded as a perturbation series in the strong coupling constant g. Using 

the Cell-Mann and Low theorem, this approach leads to a perturbative expansion of 

the energy shift due to the interaction [15, 23J 

. (Jkl Hint(O)Ul(-oo,O) IJk) c 

t1Ek = hm I ) (18) 
l-O (Jkl Ul( -00,0) Jk c 

The subscript c indicates that only connected diagrams are included, and IJk > is an 

eigenvector of the non-interacting Hamilton operator. The time-evolution operator 

{;(t, to) is defined in terms of the interaction Hamiltonian Hinl(t) and Wick's time

ordered product T by 

00 ( ')n 10 10(;l( -00,0) = L -=;- dt l ••• dtn T [Hinl(tt}··· Hilnt(tn)]. (19) 
n=O n. -00 -00 

Since, to order g2, the three-gluon, four-gluon and ghost-gluon vertices do not con

tribute to the nucleon, the interaction Hamiltonian is simply given by the term de

scribing the quark-gluon vertex, i.e. 

lill JHtnl(t) = _ge- l1tl J ~xil(x) = _ge- d3xJ(x)~a $a(X)~(X), (20) 

where e-lill is the adiabatic damping factor, ~(x) the quark field operator, A~(x) the 

vector field operator describing the gluons, and the >'a's are the Cell-Mann matrices. 

Writing the Cell-Mann and Low theorem in this form, Feynman diagrams may be 

decomposed into time-ordered diagrams, each of which needs to be evaluated sepa

rately. This undesirable feature can be avoided using a more symmetric form of the 

Cell-Mann and Low theorem [16], where the energy shifts are given in terms of the 

dummy variable ~ by 

~Ek = lim ~ a( Jkl Sl,e IJk) c/a~ (21) 
e-I 2l_O (.<Pk ISl,e IJk) c 
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The adiabatic S-matrix Sl,e can be expanded as Sl,e == 1 + 2:::'=1 Sl~;)' 

l11dSl~;) = (-~f)n 1: dt 1 •• ·1: dtn e- ... e-lllni T [Hint(tt}.·· Hinl(t n)]. (22) 

Since the limits in the time integrations appearing in the S-matrix are symmetric, all 

the time-ordered diagrams of a given Feynman dia"gram are equivalent, and there is 

no need to decompose a Feynman diagram into its constituent time-ordered graphs. 

However, the price one pays for this convenience is that the time integrations are 

more difficult to perform. 

The nucleon observables which will be calculated in this work are all given by the 

expectation values of one-body operators. The five operators 0 which we shall discuss 

here are 
r2'0Q charge radius squared 

~ (T X'9)3 Q 

10Q 

magnetic moment 

vector coupling constant (23) 

131ST3 

r2'31ST3 

axial vector coupling constant 

axial vector radius squared, 

where Q is the charge matrix of the flavoured quarks. To 0(g2), the value of the 

observable 0 is given by 0 = 0(0) +0(2), where 

0(0) = J d4 x (NI J(x)6(X)~(X)IN) (24) 

is the zero'th order term. Starting with the symmetric form of the Cell-Mann and 

Low theorem, the second order term 0(2) is found to be 

0(2) = lim l3it(-i)3 Jd 4 X Jd 4 x Jd 4 x e- l (i td+l t2I+1tJ I) X (25)
HO 2 3! I 2 3 

( NI T [ (J(xJ) ~a $a(Xd~(xd) (J(x2)6(X2)~(X2)) (J(x3); $b(X3)~(X3)) ] IN)c' 
where IN)is the appropriate nucleon wavefunction. Using Wick's theorem, the time

ordered product of the fields is contracted in all possible ways to yield the sum of 

normal-ordered products. Of these, some are not connected to IN) and can thus 

be discarded. The remaining terms with the same spatial structure may then be 

collected in groups of 6, represented by the Feynman diagrams shown in fig. 2. 
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3.2 Vertex correct ion 

Let us consider the contribution Jl~2) of the vertex correction graph (fig. 2(a)) to the 

magnetic moment. From eq. (25), we have 

Jl~2) lim l3if (_i)3 1atXI 1atX2 1atX3 e-«(\td+lt~I+lt31) (26) 
(-.0 2 3! 

X(NI (~~a $atP)Xl (~(X2 x 7hQtP)X~ (~~b $btP )xJN), 
I L--J L--J I 

where one of the possible contractions has been indicated. Since the limits of the 

time integrals are symmetric, the 6 possible permutations of the space-time labels 

XI! X2 and X3 are equivalent. We therefore may use the one contraction shown above 

and omit the factor of 1/3!, thus including all the permutations. 

The gluon propagator can be divided into a part independent of the gauge parameter 

(equivalent to the Feynman-gauge propagator), and the remainder, which depends 

explicitly on the gauge parameter. This latter part will be used later to show that 

the result is gauge-independent. Substituting the former into eq. (26), and inserting 

the quark propagator (76) from appendix A, and the cavity mode expansion of the 

fields, the gauge-independent part of Jl~2) becomes 

p['1 =!~ 3~' 9',~ ('~'I"!'l'" (~1 (~lQ "'l.IN) Jd"x, u,(x,)(x, x 1),u,(x,) 

ee', ,'nn' 

gEE 1d3Xl Un'(Xd/~Up(xda:;'~(xd1d3X3 uq(x3hll un(X3)a:;'dx3) 

dw dw' dw" e-«(ltll+lt~ 1+l t31) e itJ (~n'+W-W') eit~(w' - wIll eitJ(wlI-W-~n) 
dt l dt 2 dt3 --- . (27)1 1271" 271" 271" (w' - cp ± iO)(w" - Cq ± iO)(w2 - 0 2 + iO) 

To reduce the proliferation of indices, the energy of the intermediate gluon has been 

written as 0 instead of 0;'. The ±iO prescription will henceforth be assumed in 

the propagators, as will the summation over the labels c'f'n' and cfn (i.e. colour, 

flavour and cavity modes). The expectation value of the colour, charge and cre

ation/annihilation operators is given in appendix E, and will be discarded from the 

formulae until needed. Writing the vertex integrals over the space co-ordinates in the 
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short-hand form introd uced in appendix B, eqs . ( 102) and (114) , the vertex correction 

to the magnetic moment, eq. (27), can be expressed more compactly as 

(2) _ 3if ~ EE ijmE M QmEr 2 (28)Jla - (~ 2 g ~ g n'p pq qn 
pqmE 

00 100 dw dw' dw" e-«(ltd+lt~I+ltJI) eitd~n'+w-w') eit~(w'-w") eitJ(wll-w- ~n) 
dt 1 dt 2 dt3 --- .1-00 -00 271" 271" 271" (w' - cp)(w" - cq)(w2 - 0 2) 

The integrals Jdt l dt 2 dt3 Jdw' dw" can be evaluated immediately to give 

- Jdw 8(cn' Cn') (29)Jl~2) = il L gEE Q~; Mpq Q~E 271" (en' + W _ cp)(cn +W _ Cq)(w2 _ 02)'
pqmE 

where 8(Cn ,cn') is the Kronecker delta implying n = n'. The integral over w is anal

ogous to the free-particle integral over the gluon momentum kO. It can be evaluated 

in two ways: either as a contour integral, producing an energy denominator, or with 

the dimensional regularization techniques used in free-space field theory. The latter 

method enables the cavity vertex correction to be regularized by parametrizing its 

divergence. 

The integral in eq. (29) is easily evaluated by the first method, i.e. as a contour 

integral, yielding 

1mE - 1 (30)'1 dw 
pq =, 271" (cn +W - Cp)(cn +W - c )(w2 - 0 2 )q 

if sgncp = sgncq 

-I 

20(cn - Osgncp - cp)(Cn - O sgncq - Cq ) 


. (31) 


-(20 +<, +<,) if sgncp =f SgllCq
20(cn - Osgncp - Cp)(Cn - Osgncq - Cq)(cp +cq ) 

When this result is inserted into eq. (29), the vertex correction is expressed purely 

as a sum of vertex integrals, weighted by an energy denominator, and it diverges 

logarithmically. This is the form in which cavity diagrams are usually evaluated , 

since it arises naturally when the unsymmetric version of the Cell-Mann and Low 

theorem is used . 

Let us now proceed to evaluate I~E as it would be done in free-space field theory. 

Reducing the ±iO prescription to +iO in the denominator by squaring the quark 
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propagator pieces, Wick-rotating to Euclidean space with the shifts w - iw and 

en - ien, and elevating the denominators into the exponential, I~E becomes 

I;:;E = ~ [ep + i(w + en)] [eq + i(w + en)] XJ 
00 00 001 dr 1 ds 1 dt e- r (w2+02) e-·[(~,,+w)2+~~J e-t[(~,,+w)2+~~J. (32) 

Making shifts of variables comparable to those used in free-space field theory, eqs. (5) 

and (6), i.e. 

r-z(l-x-y) s - zx t -4 zy W-4W- en(x+y), (33) 

we arrive at 

00 t-x

Jdw 1 tI;:;E 211" 0 dzz2 dx 10 dy[ep+ien(1-x- y)+iw] X 
10 

[cq + ien(1 - x - y) + iw] e-z[w2+02(1-x-1I)+~~(x+1I)(1-X-1I)+x~~+1I~~J. (34) 

The w integral is a standard Gaussian, yielding, after rotating back to Minkowski 

space, 

ImE 00 [11 1]pq o dz 0 dX10 dy (ep+e n (1-x-y))(eq+e n(1-x- y))Z-2 X1 t-x 


V4;/z e-z[02(I-X-1I)-~~(X+1I)(1-X-!l)+U~+1I~~J. 
 (35) 

Finally, evaluating the integrals over the x- and y variables, and writing I~E 
0010 dz I~E(z), we obtain 

zo2 
mE() (en + eq)2 - n 2 + 2enep _u2,- (en + ep)2 - n 2 + 2eneq e_u2 e-z= e P ____I 
pq 8e~(e~ - e~h/7rZ 8e~(e~ - €~)Fz 8€~Fz 

(€~ + €~ - n
2 

+ 2€n€p)[(€n + €q)2 - n 
2
J [e-z02nerf (Vi A+) + e-u~nerf (y'z A_)]

+ 16€3(e2 -€2)n q p 

(€~ + €~ - n
2 
+ 2€n€qX(€n + €p)2 - n2J[e-Z02nerf (ViB+) + e-z~~nerf (y'z B_)] , 

16€~(€~ - €~) 

(36) 

where the normalized error function nerf(x) is defined by 

2 2 [X t2 

nerf(x) = fte x 10 e- dt, (37) 
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and the following shorthand has been introduced 

A+ = (e! +n
2 

- e~)/2en A_ = (e! - n 2 +e~) /2cn 

2B+ = (e! + n - e~) /2en B_ = (e! - n 2 +€~)/2en. (38) 

The singularity which appears in eq. (36) for ep = eq can be easily dealt with by 

expanding the exponential and error functions. However, as this special case occurs 

again in the diagrams containing a self-energy insert, it will be presented there. 

The result obtained from the contour integration of I~E could now be recovered 

by integrating over z. However, we want to have a form in which the ultraviolet 

singularity is parametrized, and that results from inserting eq. (36) into (29) and 

first summing over the intermediate quarks and gluons. The divergence then appears 

as precisely the same non-integrable singularity in z as was found in the free-space 

diagram. Hence, pi2) is given by 

pi2
) = l L / II la!'f'n(~a) (~a) Qaefnl N) X (39)

f' fe'e \ e'd de , 
001 dz L gEE (Jr;:pE Mpq Q';nE I~E(z). 

o pqmE 

3.3 Self-energy inserts 

The remaining two divergent diagrams, which each have a self-energy insert on one 

of their external legs, are usually not included in cavity QCD calculations. The stan

dard argument for discarding these diagrams is that the fields, masses, and charges 

appearing in the cavity QCD Lagrangian are renormalized quantities, and as such, 

already include self-energy effects [10J. However, as the order g2 corrections to ob

servables are not gauge-independent without these diagrams, we believe that they 

must be included to obtain a meaningful quantity. Furthermore, the finite parts of 

these diagrams do not vanish (in contrast to free-space field theory) and hence should 

have observable consequences. The result of the calculation of the vector coupling 

constant gv also reassures us in that the self-energy diagrams should be retained, 

since the first-order correction vanishes when they are included, in accordance with 
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eve. Finally, in the vertex diagram, the intermediate zero-energy scalar gluon (see 

Appendix e) has a divergent part which is exactly cancelled by a similar intermediate 

mode in the two diagrams with self-energy inserts. 

Since the contributions to the magnetic moment from the two diagrams are equal, 

only the contribution J.I~2) from fig. 2(b) will be calculated here. As before, the gauge

independent part is given by 

)2) lim g2 3if (_i)3 Jcl'x f d4x Jcl'x e-l(ltd+lt11+lt31) (40)rb l--+O 2 3! 1 2 3 

x(NI(~(il x 7hQv;)XI (~~a $aV;)Xl (~; $bV; )xJN), 
L.--.J I L-.J I 

where the facto~ of 1/3! has been dropped since the 3! permutations of the co-ordinate 

labels are all equivalent. This immediately yields 

1l(2) = lim 3if g2 "" gEE M Q-mE QmE X (41 )rb l--+O 2 L.t nq qp pn 
pqmE 

00 100 dw dw' dw" e-l(i td+ltll+l t3) eitd"l-w') eit1(w'-w"+w) eit3 (w"-W-C1 ) 

dt 1 dt2 dt3 - - .1-00 -00 211" 211" 211" (w' - Cq)(w" - cp)(w2 - f'!2) 

Some care is needed when evaluating the time and W integrals. Recall that, in free

space field theory, the Feynman amplitude for the divergent part of this graph was 

found to be ill-defined because the operator (1/ IJ Pacting on a free-space spinor pro

duces the undefined quantity 0/0. The ambiguity was only resolved by introducting 

adiabatic damping factors which are already included here. 

One way of evaluating these integrals is to transform the damping factors into energy 

space using the Fourier transform 

-lltl -100 
dE iEte - -00 ----e 
211" 

2f ( 42) 
f2 + E2 . 

With this transform, the integral becomes 

3if 100 100 dw dw' dw" e-l(l td+ltll+lt31) eitd"n'-W') e it1 (w'-w"+w) e iI3 (W"-W-"n) 
- dt 1 dt 2dt3 ----------,------,----,------- 
2 -00 -00 211" 211" 211" (w' - Cq)(w" - cp)(w2 - 0 2 ) 
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100 

3if 100 

dE dE' dE" 100 

dw dw' dw"= - --- dt 1 dt 2 dt3 -- 
2 211" 211" 211" 211" 211" 211"-00 -00 -00 

2f eitd~n,+E-w') eit1(w+w'+E'-w") eit3(W"+E"-W-~n)2f 2f 
f2 + E2 f2 +EI2 f2 + E,,2 (W' - cq)(w" - cp)(w2 - 0 2 ) 

I

i Jdw 6(cn ,cn') = KmE if Cq =I Cn 


= 211" (Cn - cq)(w +Cn' - cp)(w2 - 0 2) - pq 
(43) 

l--+O 

_~Jdw 6(cn ,Cn') = ImE if Cq = Cn
2 211" (w +Cn' - cp)2(w2 - f'!2) - pp 

When the first case, cq =I Cn in eq. (43), is inserted into eq. (41), we arrive for massless 

quarks at a finite self-energy contribution to the magnetic moment. The analogous 

result in free-space theory is zero. For massive quarks, this term diverges, and a 

counter-term must be introduced into the cavity Lagrangian to renormalize the mass 

[11]. However, here we shall restrict our attention to massless quarks. The second 

case, Cq = Cn, leads to a logarithmically divergent expression which is identical to 

that found in the free-space theory, eq. (16). This singularity, which in free-space 

field theory is equivalent to the charge renormalization constant, exactly cancels the 

divergence in the vertex correction diagram. 

The remaining W integral may now be evaluated in the standard way by Wick-rotating 

to Euclidean space and elevating the denominators into the exponent. Writing K;;E = 

Jooo dz K~E(z), we arrive at 

K m E 1 (1 01)z e- z"" _ e- z" 
pq ( ) 4cn(c:q - Cn)y!1rZ 

+ (cp ~ cn )2 - 0 
2
[eZB~ -zOl erf (JZB+) + ezB: -u; erf (JZB_)] (44) 

8cn(cq - Cn) 

for the first possibility in eq. (43). The quantities B+ and B_ are defined in eg. (38). 

The other possibility, I;;,E = Jooo dz I;:;,E(z) , is actually a special case of the inte

16 



gral (36) for the vertex correction diagram yielding 

-I;:;,E(z) = ')<)~./ r:-: [(En + Ep +or (En +Ep - 0)\ + 2E~]e-ZO~ 

+ __ ? [((En +Ep)2 - 0 2) (E~ - E~ - 2EnEp +02)Z + 4EpE~Z - 2E~] e-u~ 

2+ 64~~ [(E! - E~ +0 
2

) ((En +Ep)2 - 02)Z - 4E!] ((En +Ep)2 - 0 ) 

X[e-ZO~nerf(JZB+) + e-u~ nerf( JZB_)] . (45) 

Inserting these integrals into eq. (41), we obtain for the vertex diagram containing a 

self-energy insert 

fl~2) =g21°O dz LgEE(MnnCt:;Q;';I;:;,E(z) +L MnqQ;;'EQ';nEK~E(z)). (46) 
o pmE q#n 

3.4 Gauge-dependent terms 

Recall that in free-space field theory, the sum of the three loop-diagrams contributing 

to the anomalous magnetic moment of the quark is gauge- independent, i.e. the terms 

containing the gauge parameter A cancel identically. It will be shown here that this 

is also true in the cavity theory. 

After subtracting the parts which do not depend on the gauge parameter, the re

mainder of the gluon propagator is given by (see appendix A) 

jdw qEqE'. I'll . I-A I' - 11* - iwt,-t
1Dab (X.,X2) = -tbab -A- L amdXtJ amE,(X2) - -4- e ( 1l. ( 47) 

mEE' 271' q 

Substituting eq. (47) into eq. (26), the gauge-dependent part of the vertex correction 

diagram is found to be 

.A I' 3if 1 - A 2 Lfl = 1m ---g Q~;' Mpq Q';:,E qEqE' X (48) 
a (-+0 2 A 

pqmEE' 

00 100 dw dw' dw" e-«l td+lt21+ltJi) eit1 (€n'+W-W') eit~(w'-w") eit3(W"-w-~n) 
dt l dt 2 dt31-00 -00 271' 271' 271' (w' - Ep)(W" - Eq)(W2 - 0 2)2 ' 

where the colour and flavour matrix elements have been omitted. From the definition 

of qE in eq. (99), the sum over gluon polarizations is restricted to the scalar and 
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longitudinal modes only, and since the vertex integrals of these two polarizations are 

related by current conservation, eqs. (94) and (113), the sum over polarizations may 

be written in terms of scalar modes only 

"" Q-mE'QmE E E' (+ )( + )Q-mSQmS~ n'p qn q q = W En - Eq WEn' - Ep n'p qn' ( 49) 
EE' 

Evaluating the time and W integrals as before, and inserting the polarization sum into 

eq. (48), we arrive at 

.A • 21 - A L - 100 dw C(fla = 19 -,-
A 

QmS M QmSqn - En ,En')n'p pq U-:----c--...:... (50) 
pqm -00 271' (w 2 - 0 2)2' 

Finally, the remaining integral may easily be evaluated using standard techniques, 

yielding the gauge-dependent part of the vertex correction diagram 

A 2 1 - A {OO "" -mS mS ~ -zO' 
fla = -g -A- 10 dz ~ Qnp Mpq Qqn 471' e . (51) 

o pqm 

In a similar way, the gauge-dependent part of the Feynman diagram with self-energy 

inserts, fig. 2(b), contributing to the quark's anomalous magnetic ~oment is found 

to be 

.A = _ 2~1°O d ~ _%0' "[!M Q-mS _ ~ M Q-mS (Eq -EP)]Qms
flh 9 A z 4 e 6 2 nn np ~ nq qp pn . 

o 71' pm q#n En - Eq 
. (~) 

The sum fl~ + fl~ + fl~ can be evaluated numerically, and the result turns out to be 

exactly zero, which is what we expected from the free-space result . 

3.5 One-gluon-exchange graphs 

The remaining contributions to the baryon magnetic moments are the one-gluon

exchange diagrams, figs . 2(d)- (e). Only fig. 2(d) will be evaluated, since the two 

graphs have an equal contribution, given by 

fl(2) lim g2 3if (-i)3 j rrx j rrx j rrx e-«(ltd+l tll+lt31) X 
d (-+0 2 3! 1 2 3 

(NI (t/J~a $atP)X1 (t/J~$btP )X2 (t/J(i3X 7hQtP)IN) 
I I~ (53) 
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Inserting the quark and gluon propagators, and reducing the number of indices 

by writing the energy of the external quarks as Cl instead of Cn!, etc, the gauge

independent part of this expression becomes 

r 1 ·t 	 Q
3€" (NI·t (>''') (>.4) IN)A •Ild

(1) 
= (~g "'2 	~ at:' f'n! a d'g'n3 2 2 aefn~ a dgnc 


e' f'cf e'c d'd 


x L gEE Q:~~ Q~; Mpnc JOO dt 1 dt 1 dt3 
~E 	 -00 

x JOO dw dw' e-((\td+lt~I+1131l eitdE!-e2+w) eit~(e3-w-w') e it3 (w'-ec) 
(54) 

-00 211" 211" (w' - cp)(w1 - fP) 

A sum over all colours, flavours and cavity modes is understood in eq.(54). All the 

time and w integrals can simply be evaluated to produce an energy denominator, 

since the one-gluon exchange diagrams are finite and do not need to be regularized. 

Omitting the tedious colour and flavour matrix element, this leads to 

1l~2) = l 	" gEE QrnE QrnE M 8(Cl +C3, C2 +C4) (55)~ nln2 n3P pnc [P~~t (cp - C4) (Cl - C2)2 - 0 2] • 

Since the virtual gluon in fig. 2( d) is coupled to a conserved quark current, labelled 

here by nln2, one expects that this diagram will be independent of the gauge parame

ter. As is well-known from free-space QED, qlJjlJ = 0 for a conserved current jlJ j hence 

the piece depending on the gauge parameter is zero. The relation analogous to this 

in cavity QeD can be written in terms of the polarization vector qE as qEjE = 0, and 

consequently, the one-gluon exchange graphs are automatically gauge-independent in 

the cavity. This result can also be established directly. 

We have used the magnetic moment operator as an example of how the nucleon 

observables can be calculated. The other observables are evaluated in exactly the 

same way, replacing the vertex integral for the magnetic moment operator with the 

appropriate vertex from those defined in appendix B. 
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4 Numerical results and discussion 

We now turn to the evaluation of the expressions for the order 0, corrections to the 

nucleon observables which we have derived in the previous section. The sum over 

the spins of the intermediate quarks and gluon can easily be calculated analytically, 

leaving three infinite sums over the radial modes and two infinite sums over partial 

waves. The remaining partial wave sum is constrained by conservation of angular 

momentum and is thus finite. As these infinite sums are to be evaluated numerically, 

they must be truncated at some point, e.g. by including only cavity modes whose 

energy is less than a certain cut-off value Emu. 

The sum over vertex integrals, without the z-dependent terms, can be checked using 

the sum rules derived in appendix D, and the complete expressions for 0(2), as a 

function of z, can be compared with the free-space divergent terms. As we noted 

previously, the divergent parts of the free-space and cavity results should be the 

same. In order to compare them directly, the singular free-space function A~ given by 

eq. (9) must be transformed from momentum to configuration space,by sandwiching 

it between cavity spinors and integrating over the volume of the cavity. For example, 

the singular part of the anomalous magnetic moment in free space is given by 

1	
00 Z 00 

00 0 e- 2a e-lI~
Ils = a. dz IlS(Z) = ~ Mn!n2 

1
dz - = -' Mn!n2 

1
dy --. (56) 

o 411" 0 Z 411" 0 Y 

It is convenient to shift the variable z ~ y2 here, since fig. 2(b) has a contribution 

from the self-energy which is finite for massless quarks (c.f. with the free-space theory, 

where the finite contribution is actually zero). However, the spectral function IL~2)(z) 

of this piece diverges as Z-1/2, i.e. it has an integrable singularity. Shifting the variable 

in the above manner transforms the divergent integrand 1l~2)(z) into a function J.L~2)(y) 

which is regular at the origin. This does not, of course, affect the other contribution 

from the charge renormalization constant, which is a non-integrable z-l singularity. 

The contribution from the vertex correction diagram is shown in upper frame of fig. 3, 

where the functions lli2)(y) and Ils(y) are plotted together against y on the same axes. 

The initial and final quark are both in the Is! t state, and the value of the energy 

cut-off used is b..EmlU = 140. The colour factor is not included. As expected, the nu
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merical calculation produces a curve which, for small y, lies exactly on the free-space 

divergent term. The lower frame of fig. 3 shows the finite remainder, after subtracting 

the free-space divergence from the cavity expression. In principle, the finite contri

bution of the vertex correction diagram to the anomalous magnetic moment (up to 

a finite renormalization) could be obtained by integrating this remainder. 

Note that the function l-'i2)(y) has not been calculated all the way to zero on the 

y-axis. This is because the error introduced by truncating the infinite sum over 

cavity modes appears in the low y, or high energy region, creating a sharp kink. By 

using different values for the cut-off Emax , one can establish that this point is at 

Ymin ~ 7r IEmu. Apart from bringing the kink closer to the origin, increasing Emax 

has little other effect on the result. The 'missing' piece of l-'i2)(y) in the error region 

has been approximated by extrapolation using Chebychev polynomials. 

Fig. 4 shows twice the contribution from the vertex diagram containing a self-energy 

insert on an external leg (the factor of two arises because there are two diagrams). 

Referring back to eq. (43), we see that this diagram has a finite 'self-energy' part, 

and a divergent charge renormalization part, which are plotted separately here. Also 

shown on the figure is the singular part of the free-space analogue of this diagram. 

Once again, the cavity and free-space functions exhibit precisely the same divergence. 

Clearly, when the vertex correction and self-energy insert diagrams are added, the 

divergences will cancel exactly. 

The divergences from the loop diagrams have cancelled, but we are still confronted 

with the question of what, if any, finite renormalizations need to be applied . First 

of all, note that , apart from infrared problems, there is no finite renormalization of 

these diagrams in free space. This would appear to be the same in the cavity, at least 

for the observables generated by the conserved vector current. 

It is well known that the vector coupling constant 9 ' generated by the vector current,v 

is not renormalized by the strong interaction. In the cavity, the sum of the O(a.) 

corrections from the three loop-diagrams vanishes identically since the operator for 

9 only connects diagonal states. This is easily seen from eqs. (23), (40) and (46). v 

Furthermore, the two-body term also vanishes, leaving only the zero'th order result, 
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which has the required value of 9 v = 1. Hence, no finite renorma.lization should be 

applied to the vector current. 


The situation is less clear for 9A and (r2)A' since the axial vector current generat


ing these observables is not conserved everywhere-it is discontinuous on the cavity 


surface. In view of this difficulty, we do not attempt to apply any ad hoc renormal 


ization procedure, but note that possibility of a finite renorma.lization exists for the 


axial vector current. 


The calculation of the one-gluon exchange diagrams does not present any problems 


since these are finite. The only point to note is that the contributions from the zero


energy scalar and longitudinal gluons must be calculated separately and added to the 


result. Once again, the sum rules provide powerful tests of the numerical algorithms. 


Restoring all factors of nand c and setting the cavity radius R = 1 fm, the results 


are given in table I. As a test, it is interesting to note that zeroth order and one-body 


part of the first order correction still respect the SU(6)FS relation I-'pl J.ln = -~, while 


the two-body part does not, as expected. 


Oth 
order 

1st order corrections Oth + 1st order experiment 

[17]I-body 2-body total o. =0.6 o. = 2.2 

I-'p 1.924 -0.80340. 0.05030. -0.75310. 1.472 0.267 2.793 

I-'n -1.282 0.53560. 0.03080. 0.56640. -0.942 -0.036 -1.913 

(r2)p 0.5314 -0.25980. -0.01470. -0.27450. 0.3667 -0.0725 0.69 

(r2)n 0 0 -0.01250. -0.01250. -0.0075 -0.0275 -0.12 

gA 1.088 0.29270. -0.05010. 0.24260. 1.234 1.622 1.261 

(r2)A 0.4979 0.01040. -0.04410. -0.03370. 0.4777 0.4238 0.7 

TABLE I: 


Nucleon observables to order a. for various values of a•. The magnetic moments are 


in units of the nuclear magneton I-'N = en/2mp and the radii in fm. 


In the recent past, the calculation of the two-body corrections to nucleon observables 

has been presented in several papers [18, 19, 20, 21]. H~gaasen and Myhrer [21] 

clarified earlier calculations by Ushio [19] and Krivoruchenko [20] by evaluating the 
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contribution to 1J(2) due to the transverse magnetic gluon, to 1J~2) = 0 for the proton, 

and 1J~2) = 0.1331JN for the neutron, using a. = 2.2 and R = 5 GeV- 1 
• These numbers 

are confirmed in the present calculation when the contribution from the scalar gluon is 

omitted. (The transverse electric and longitudinal gluons do not contribute anyway.) 

With the same parameters, Ushio finds the contribution from the transverse magnetic 

gluon to 9 to be 0.036, which we again can confirm. In his calculation, Ushio adds 
A 

particular terms arising from the self-energy interaction to the contribution from the 

one-gluoncexchange. This is done to ensure that his Coulomb propagator satisfies the 

correct boundary conditions (see [1] for a discussion), and is not done here since the 

zero-energy scalar gluon mode takes care of that problem. 

In calculating these corrections, Maxwell and Vento [10] use a similar formalism 

to that employed here which includes a rigorous treatment of the divergent vertex 

correction diagram. However, as the authors have not calculated the vertex diagrams 

containing self-energy inserts, their results for the one-body corrections are gauge

dependent, making a comparison with our results for these terms difficult, as these 

are performed in a different gauge. On the other hand, the one-gluon-exchange 

corrections are automatically gauge-independent, and can thus be compared with 

our calculation, shown in Table II. Here we have used a. = 2.2, which is equivalent 

to the a c = 0.55 used by Maxwell and Vento. 

Maxwell and present paper 
Vento [10] 

IJp 

IJn 
(r2)p 

(r2)n 

9A 

(r2 
)A 

-0.11 

0.22 

0.032 

-·0.[I~8 

O.iiJ 

0.124 

0.1107 

0.0678 

-0.0323 

-0.0275 

-0.1102 

-0.0970 

TABLE II: 

Comparison of results for the one-gluon-exchange of ref.[10J and the present paper 

Our results for the one-gluon-exchange contribution agree with those from Maxwell 

and Vento [10] only in the case of the neutron charge squared radius, (r2)n, with 
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differing signs being obtained for IJp and (r2) p. The agreement in the case of (r2)n 

suggests that the discrepancy could lie in the calculation of the zero-energy mode, 

since this is the only case for which the contribution from the zero-energy mode is 

zero. 

In all of the nucleon observables investigated here, the O(a.) corrections have made 

the agreement with experiment worse rather than better. The culprit is easily 

identified-it is those diagrams with self-energy inserts on the external legs, whose 

contributions may be divided into two parts for convenience. Firstly, there is a di 

vergent part, equivalent to the free-space charge renormalization, which cancels the 

divergence from the vertex correction diagram, leaving a small fi llite remainder. Sec

ondly, there is a part which is finite for massless quarks (the free-space analogue is 

zero). For massive quarks, this term also diverges, and would need to be cancelled by 

a mass renormalization counter-term [11]. It is found that the finite part is responsible 

for the' large O(a.) corrections, and it seems to have the 'wrong' sign. As mentioned 

earlier, the self-energy type diagrams are invariably dropped by other authors, but, 

as we have seen, there are compelling reasons for retaining them in the cavity. On the 

other hand, these results might be indicating that the boundary conditions confining 

the fields to the cavity are inadequate-a fact already hinted at by the disconcert

ingly large self-energies of a confined quark [7,8] and gluon [12J , One should perhaps 

determine the boundary conditions in some self-consistent way such that the nucleon 

observables and self-energies have reasonable values, and this exercise may even lead 

to some insight into the mechanism of confinement. Alternatively, the poor fit of 

the calculated observables to the experimental values could be due in part to our 

omission of corrections such as the center-of-mass or effects of the pionic cloud at the 

cavity surface. It is also possible that higher-order diagrams should be included to 

obtain a better fit, and although that would be an extremely un-attractive task, it 

would be useful to know if the perturbative series really is converging. 

We would like to thank Robert Lindebaum for useful comments. Financial support 

by the Foundation of Research Development is gratefully acknowledged. 
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Appendices 

A Cavity modes and propagators 

A.1 Quark cavity modes 

The wave function of a quark with flavour I, mass mf and energy Cn is given by the 

solutions to the time-independent Dirac equation 

(-i1' ~ + mf) un(il = Cn"Y°Un(T) (57) 

subject to the boundary condition of the M.LT. bag model [1] which, for a static, 

spherical cavity, reduces to 

(i1 ' ,: + 1) ~ I = 0, (58)
r=R 

where R is the radius of the cavity. The solutions to the Dirac equation with this 

boundary condition are given by the spinors 

(un(T) = 
9n(r)x~(f)
iIn(r)x~I«f) 

) 
. (59) 

The adjoint spinors are defined as 

un(T) = u~(T)"Y°. (60) 

Here, n = {v, 11:, Jl} labels the radial, Dirac and magnetic quantum numbers of the 

cavity mode, respectively, and X~(f) is the usual two-component spherical spinor. 

The radial functions 9n(r) and In(r) are given by 

.Nn . ( )9n(r) (61)R3/2 Jt Pn r 

In(r) = R~/n2 sgn(lI:) _P_n-it(Pnr), (62)
Cn +mf 

wherejt(x) is the spherical Bessel function. The total and orbital angular momentum 

j and £ are defined in terms of the Dirac quantum number II: by 

j(lI:) 111:1- ~ (63) 

£(11:) j(lI:) + ~ sgn(lI:) (64) 

l( 11:) j(lI:) - ~ sgn(II:). (65) 
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The momenta Pn are determined by the boundary condition, eq. (58), and are given 

by the solutions of the transcendental equation 

jt(Xn ) + ~( sgn(lI:)it(xn) = 0, (66) 
W n + f 

where, for convenience, the energy, momentum and mass have been written in terms 

of the dimensionless quantities W n , Xn and (f respectively. These are defined by 

Xn Pn R (67) 

(f mfR (68) 

Wn cnR = sgn(v) t./x~ +(J. (69) 

The positive and negative energy solutions are characterized by v > 0 and v < 0 

respectively. These solutions are connected by the symmetry relation, C-V,I< = -CV,-I<' 

Finally, the normalization constant Nn is given by 

2
1 Xn 

(70).N; = 2wn(wn+ 11:) +(f (jt(X n)) 

The spinors (59) form a complete and orthonormal set of states defined within the 

cavity. Explicitly, the completeness relation is given by 

L Un(T)u~(T') = 8(3)(r, i') I, (71) 

where I is the unit 4 x 4 matrix, and the orthonormality by 

Jd3 r u~ (i)unl (i) = bnnl . (72) 

A.2 Quark propagator 

The quark field t/J may be expanded in the complete set of cavity modes 

.i.'Pcf () '" ["acfnUn ( ....) -i~nl + b"t ( ....) i~"/] ,X = L x e cfnu-n x e (73) 
I<jJ 

1'>0 

where the expansion coefficients a and j,t are quark annihilation and antiquark cre

ation operators respectively. The propagator is defined as the time-ordered product 
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of the fields 

is(xI, X2) = (oiT [~eJ(xd~c'JI(X2)] 1 0) (74) 

= 8ee' 8", L [Un(XdUn(X2)8(tl - t2) - U- n(XdU- n(X2)8(t 2- td] e-icnltl-t~l, 
"'I' 


11>0 


where the spinor indices have been suppressed. Using the integral representation of 

the theta function, 
00 iwt

1 e18(t) = lim -----: dw --., (75) 
' ...... 0 211"z -00 W + zt 

the propagator may be written as 

J
dw e-iw(tl-t~) 


is(Xt, X2) = i8cCl 8", L un (idun(X2) 211" W _ En ± i" (76) 


Th~ sum over n now includes both positive and negative radial quantum numbers. 

The usual Feynman prescription for the poles should be employed when performing 

the contour integral, as indicated by the ±iO. In other words, poles with positive 

energy are given a small, imaginary negative part while the negative energy poles 

acquire a positive imaginary part. Of course, the propagator is a Green's function of 

the Dirac equation 

(i~r - m) S(x,y) = 8(4)(X, y) (77) 

A.3 GIllon cavity modes 

The gluon modes a~E(T) are solutions of the wave equation for massless vector fields 

(\72 + n~) a~(T) = 0 (78) 

subject to the M.I.T. boundary conditions 

T . Va~s(r)lr=R o (79) 

f . amE(rjl = f x (V x amE(i)) I 0 E = .c,M,£. (80)
r=R r=R 

The solutions of these equations are labelled by E = S, .c, M, E for the scalar, longi

tudinal, magnetic and electric polarizations, respectively, and m = {N, J, M} denotes 
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the radial, total angular momentum and magnetic quantum numbers , respectively. In 

terms of spherical Bessel functions and vector spherical harmonics, the cavity modes 

are 

Nms
a~S(r) "({"\S)Y

Hm r (A) (81 )
R3/2 IJJ JM r 

Nmcamc(T) [.Ji jJ l(n~r)Yf~{l(f)+v'J+fjJ+l(n~r)Yf~~l (f)]VR3(2J+l) 
(82) 

NmM . (nM ) yJ (A) (83)amM(T) R3/2 JJ m r JM r 

amC(T) Nm£ [v'J+fjJ l(n~r) YfMl(f) -.Ji jJ+l(n~r) Yf~jl(r)],
VR3(2J + 1) 

(84) 

where n~ is the energy of the m'th mode with polarization E. The total angular 

momentum J is defined such that J ~ 0 for E = S,.c and J ~ 1 for E = M , E. 

The boundary conditions for a spherical cavity reduce to the following eigenvalue 

conditions for the gluon energy 

JjJ(n~R) - n;'RjJ+l (n;'R) = 0 E = S, .c 

(J + l)j/n~R) - n~RjJ+l(n~R) = 0 E=M (85) 

jJ(n~R) = 0 E =E. 

The normalization constants are given by 

- 2NmS N;;.~ = tj;(n~R) [1 _J(J + 1)] (86)
(n~R)2 

- 2N tj;(n~R) [1 _J(J + 1)] (87)mM (n~ R)2 
- 2 1 '2 ( £Nm£ 2" JJ+l nmR). (88) 

The set of gluon modes satisfying eq. (78) is complete and orthonormal. These prop" 

erties are most conveniently expressed by introd ucing the metric tensor in polarization 

space, gEE. With its help, the completeness relation may be written as 

L gEE a~E(i) a~~(f') = gI'll 8(3)(f, i'), (89) 
mE 
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and orthonormality is then given by 

Jd3r g/,II a~dr) a:;';E,(r) = gEE'6mm,. (90) 

The diagonal metric gEE is represented as 

gSS = _gee = _gMM = _gEE = 1, gEE' = 0 if E #- E'. (91 ) 

Finally, a few useful identities concerning the cavity modes are noted. Using the 

properties of the vector spherical harmonics, the complex conjugate of a~d r) is 

a~~(r) = (-I)M7la~.dr) (92) 

with the definition m* = {N, J, -M}. The phase TJE is shorthand for 

-I if E = S,M 
(93)TJE = +1{ if E = C,£. 

The scalar and longitudinal modes are related by current conservation i.e. 

1 ... 
a~s(r) - O~ V· Gmc(r) (94) 

1 ... 
Gmc(r) - OS Va~s(r)· (95) 

m 

A.4 Gluon propagator 

The gluon field may be expanded in the complete set of cavity modes 

• 1 [A~(x) = L y'20 c~ma~E(i)e-ifl~t +c~!a~~(i)eifl~t] . (96)
E 

mE m 

The propagator in the Feynman gauge (A = 1) is given by 

iD:~(Xh X2) (0 IT {A~(xdA~(X2)} I0) (97) 

EE 

-6ob L ~OE a~dida:;'~(x2) e-ifl~ltl-tll. 
mE m 

Using the integral representation of 8( t), eq. (75), the propagator may be written as 

J
dw eiW(tl-tJ) . EE JJ ... 11*'" ____iD:~(Xl,X2) = -16ob L 9 am d x J)a m d X2) 271" q2 + iO ' (98) 

mE 
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where the vector qE in polarization space has been introduced. This vector is defined 

as 

qE == (l,qC,qM,q!) (w, O~, 0, 0) (99) 

qE (w, -n;, 0, 0), 

2 and satisfies the condition q2 = w (0;')2. The functions D:~ (x, y) satisfy the 

in homogenous d' Alembert equations 

O:r:D:~(x,y) = 6ob g/'116(4)(x,y). (100) 

More generally, the gluon propagator in an arbitrary covariant gauge is given by [24] 

iD/'II( ) _ ., '""'" /' (... "* ... Jdw [_gEE' 1- AqE E']
ob Xt, X 2 - 100b L.., amE xdamrAx2) - -- - ----q- eiW(tl-t l ) 

mEE' 211" q2 A q4 . 
(101 ) 

http:I)M7la~.dr


B Vertex integrals 

B.1 Quark-gluon vertex integral 

The interaction between quarks and gluons is described by the integral which is 

defined as 

Q:n~ = i Jlfr un(r)'Yl'un'(f} a~df}· (102) 

Closely associated with this integral is one in which the gluon field is replaced with 

its complex conjugate, which will be written as 

Q~n~ = i Jd3
r un(r)/I'un,(r) a~~(f}. (103) 

Using (92), this may be reduced to (102) as 

Q~n~ = (-1)MTJ Ei Jlfr un(r)'Yl'un,(?) a~.E(f} = (_1)MTJEQ~:,E = -Q~~. (104) 

Following ref. [22], but using a slightly different notation, the radial and angular 

dependence of (102) can be separated as 

Q~n~ R-3
/ 

2 R~n~ Jdn X~t(T)YJM(T)X~:(T) ~ =8,£,£ 
(105) 

QmM R-3/2RmM JdO I't(A)y (A) 1" (A)nn' nn' HX" r JM r X_,,' r ~=M. 

The integral over the angular variables is readily evaluated by expanding the spinors 

and spherical harmonics in a Clebsch-Gordan series. In terms of the Wigner 3j

symbols, the result is 

( -1 )1'+1/2 1 + ( -1 )i+J+i' ': AA., Jdf x~t(r)YJM(T)X~:(T) v'41r (106)2 )J) 

j') (j J j')(_~ M 
J 

p' ! 0 -~ , 

where the abbreviation j = J2T+T has been introduced. The notation for the 3j

symbols is that of the encyclopedic Varshalovich et al. [25], and is consistent with 

the standard notation of Edmonds [26]. The radial integrals are given by 
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RmS 
nn' -.NmS lR drr2 jJ(n~r)Snn'(r) (107) 

RmC 
nn' _~~S lR drr{ [n~r jJ+l(n~r) - JjJ(n~r)]Unn,(r) 

+ (K - K')jJ(n~r)Tnn'(r)} (108) 

RmM K +K' lR-,::::::;:::::::::::===;:.NmM drr2 jJ(n~r)Tnn,(r) (109)nn' 
JJ(J+1) 0 

Rmf .Nmf fR drr{J(J + 1)j)n~r)Unn,(r)nn' n~JJ(J + 1) 10 
+ (K - K') [JjJ(n~r) - n~r jJ-l (n~r)] Tnn,(r)} . ( liO) 

Three further abbreviations have been introduced here for the radial parts of the 

quark wave functions. They are 

Snn' 9n9n' + !n!n' 

(111 )Tnn' 9n!n' + !n9n' 

Unn, 9n!n' - !n9n" 

It is convenient to include the phase factor from the angular integration of eq . (106), 

which contains the parity selection rule, into the radial functions by defining 

smE _ 1 - 9EE TJE (-1 )i+J+l' 
nn' - -------=-~'--~-- (112)2 R~n~· 

The vertex integrals involving the scalar and longitudinal modes are related by current 

conservation, 

QmC _ en' - en QmS (113)
nn' - n~ nn" 

The angular integrals for the quark-quark-gluon vertex are easily evaluated, whil e 

the radial integrals require lengthy numerical calculation . 
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B.2 Magnetic moment vertex 

The interaction between quarks and the magnetic moment operator is defined by the 

integral 

Mnnl = ~ Jd3run(T)(rx 1)%Unl(T). (114) 

The radial and angular dependence in eq. (114) may be separated yielding 

Mnn' = -(II:: + II::')A"", lR drr3(9nfnl + f n9nl) , (115) 

where the angular integral has been defined as 

A""I == IfJdf x~t(f)YlO(f)X~I",(f). (116) 

Evaluating the angular integral explicitly yields 

! 
if 11::' = II::411::t- 181'1'1 

(117)
- I 2 _ 2 

- A .., - ../(1<1 + ,j p 6••, 
if 11::' = -II:: ± 1,

4111::1 +2 

where A"", is symmetric. All other possibilities are zero. The radial matrix elements 

ofeq. (115) reduce to 

lR dr r3 (9nfnl + fn9nl) = (118) 

R 4wII:: - 2( + 411::2 - 1 
11::'=11::, v'=v 

"22w(w+II::)+( 

-2xx'R X ~ 
11::' = 11::, v' =f v 

(W +w')2V[2w(w + 11::) +(j[2w'(w' + 11::) +(] 

-2xx'R(w - w' +II:: - 11::') X ~ 
11::' = -II:: ± 1. 

(w +w')(x2 - x,2)V[2w(w + 11::) + (][2w'(w' + 11::') +(] 
Here, the dimensionless energy, momentum and mass variables, introduced in equa

tion (67) to (69) of appendix A, are being used, and the notation is such that w' == W n ' 

and x' == Xn" The factor ~ is a phase factor given by 

Ivl + 1 II:: < 0, V < 0 
~ = (-ly+pl , (119)p = { Ivl otherwise. 
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B.3 Charge radius vertex 

The vertex integral of electromagnetic charge radius is given by 

Pnn, = JJ3r Iill u;(T)unl(T). (120) 

This is easily separated, and the trivial angular integral evaluated immediately to 

give 

4Pnn, = lR dr r (9n9nl + fnfnl) 8"",81'1'" (121 ) 

Evaluating the radial integral yields 

[(2w2+ 2w1l:: +3()( 411::2 - 1+2X2) +4((2w1l:: - () +2X2] R2 
if v' = LI 

6X2(2w2+ 2w1l:: +() 
PI/I/I = 

4xx'R2[(w +w')(w +w' + 211::) +2(] X ~ 
if v' =f v, 

(Xl - x'2)2J[2w(w + 11::) + (][2w'(w' + 11::) +(] 
(122) 

where the phase factor ~ was defined in eq. (119) . 

B.4 Axial vector vertex 

The integral arising from the axial vector coupling constant is defined by 

Gnnl = JJ3r un(T) /%/5 Un,(T) = Jd3r U~(T)O'..Unl(T). (123) 

After separating the angular and radial dependence, and evaluating the angular in

tegral, this expression becomes 

Gnnl = 2A",,1 lR dr r2 [(II:: +1I::'){9n9n l - fnfn') - 9n9n' - fnfnl] ' (124) 

\ 
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Case 3: It' = - It +1where A"", was defined in eq. (11 7). For all possible quantum numbers nn' , the 

remaining integral is given by 

lR dr r2 [(It + K.')(9n9n' - fnfn') - 9n9n' - fnfn'] = (125) 

((4K.2 - 1) +2w(2K.( - w) 
K.'= K., ,/=/1

2w(W+K)+( 

4K.XX' X ¢ 
K.'=K., /I'f:./I 

(w +w')J[2w(w +K.) + (][2w'(w' +K.) + (J 

±2xx'(w - w' + K. - K.') X ¢ 
K.' = -K. ± 1. 

(x 2- xll)v'[2w(w + K.) +(][2w'(w' + K.') +(j 

B.5 Axial charge radius vertex 

The integral for this operator is similar to that arising from the axial vector coupling 

constant, the only difference being the power to which r is raised in the radial integral. 

Hence, only the radial integral need be evaluated here. 

lR drr4 [(K. +1t')(9n9n' - fnfn') - 9n9n' - fnfn'] = I (126) 

Case 1: K.' = K., /I' = /I 

1= R2 [{ 2w2 +2(( + 1)(x2 +2K.w) + ((4K2 - 3) }(4lt2 - 1) +4x2(( + 1)(2Kw - 1) 

2+4w(2w - x w - 4K()] /6x2(2w 2 +2wK +() 

Case 2: K.' = K., /I' f:. /I 

4xx'R2[K(x2 - X'2)2 - 4K{X2+xll) + (w +w')2(4( K - W- w') +2((w +w')(4K.2 - 1)] 

I=----~--~(w-+-w-,~)3~(w---w-,~)2-v'~r2w=7(w=+~K.)=+=(~][~2w='~(w=,=+=K.~)+~(J~------~ 

1= 2xx'R2[{ (w - w' + K. - K.')(x 2 
- x,2 +2K. - 2K.') +2(w +w')(2( - w - w') }(x2 - X'2) 

-4(x2+ x'2)(w - W' + K. - K.')] / (x 2 - x12 )3J[2w(w +K.) + (][2w'(w' + K.') + (J. 

Case 4: K.' = -K.-l 

1= -2xx'R2[{ (w - w' + K. - K.')(x 2- x'2 - 2K. + 2K.') +2(w +w')(2( +w +w') }(x2 - X'2 ) 

-4(x2+ x'2)(w - W' + K. - It')] / (x 2 - X'2)3J[2w(w + K.) + (][2w'(w' + 11:') +(]. 
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c Zero-energy scalar mode 

For the scalar gluon, the M.I.T. boundary conditions yield the eigenvalue equation 

(127)dr 
d 
jJ(O~r)L=R = ° 

which has a solution O~o = °for rno == {N,J,M} = {O,O,O}. This solution must be 

included in order to obtain a complete set of modes, and to be able to construct a 

propagator that is consistent with the boundary condition [6, 13,27]. The normalized 

gluon mode corresponding to this solution is 

° - i -. (128)amoS - 4~If 
As O~o appears in the denominator of eqs.(96) and (97), the corresponding quantities 

are infinite. One way of dealing with this problem is to perform the calculations for 

a mode with the same quantum numbers, but with a small non-zero energy O~o =F 0, 

taking the limit O~o --+ °at the end of the calculation. This method works, but is 

not entirely satisfactory, as one obtains terms which diverge like 0-1 , and one ignores 

the instantaneous nature of such a zero-energy mode. 

A more consistent approach is to examine the scalar part of the gluon propagator 

more carefully. Ignoring the zero-energy modes, the Coulomb part of the propagator 

can be written as the sum over the scalar and longitudinal modes 

00 I '" EE ° -- 0* -I Jdw e-iw(t-t')
Dab(x, x) = -6ab ~ 9 amE(x)amd x ) --- - - (129) 

E=S,£: 2~ 

It is important to note that the propagator is always sandwiched between conserved 

currents, i.e. 

olJjlJ ooP + \7.)= 0. (130) 

Thus, what we usually evaluate are integrals of the form 

A = Ja'xjlJ(x) (a~s(:r)e-iwt - a~dx)e-iwt). (131 ) 

Using amc(x) = -(i/O)\7a~s(x) and performing two partial integrations, one finds 

A = (1 + *) Jd"xp(x)a~s(x)e-iwt. (132) 
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Thus the Coulomb (i.e. scalar plus longitudinal) part of the propagator can be written 

as 

D~(X,X') 61'°6110 f dw e-iw(l-t') '" a~s(x)a~s(x') (133)2~ ~ 0 2 

° 
m 

(~) ° (--I)61J06v06(t _ t') L amS X amS X 

61'°61106(t - t')G( X, X'). 

One can see by substitution that this Green's function satisfies 

n2G( -- -I) '" ° (-) 0* (~/)V X, X = - ~ amS X amS X (134 ) 

which would yield a delta function, if the sum on the right-hand side of eq.(134) 

included the zero-energy mode. However, it is not possible to include the mode rno 

in eq. (129). The contribution of the zero energy mode to the propagator is given by 

3 
\7

2
GO(x, i') = - 4~' (135) 

Hence by integrating and using the symmetry of the propagator, we arrive at 

r/2)
Go(x, x') = 4~ ( c- ~ 2 

- 2 ' (136) 

where c is an arbitrary constant. Thus the contribution of this mode to the full 

propagator is 

D~"(X,X') = 61J061106(t - t') 4~ (c _~ _r;2) . (137) 

The presence of the arbitary constant is not a problem, as it does not contribute to any 

diagram we have calculated. If one excludes the zero-energy mode [24], the Coulomb 

part of the propagator in the Feynman gauge differs from that in the Coulomb gauge 

by 

1(9 r2 r/2)
6G(x, x') = 4~ 5- 2 - 2 . (138) 

Thus one could use c = 9/5 to get results in agreement with the Coulomb gauge; one 

would simply have to insert 

DIJII(X, x') = 61J061106(t - t')~ (~ _ C_~) (139)
4~ 5 2 2 
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for the gluon propagator to fi nd the contribution of the zero-energy scalar mode. The 

zero-energy scalar mode contribution to each one-gluon-exchange diagram is therefore 

A (2) "Pn M 8uJ1.d = L 3P pn. nln~ (140) 
ptn. 2(C4 - cp ) • 

For the vertex correction diagram one arrives at 

~J1.i2) = - L PnlpMpn~ (141 ) 
'p<O C4 - cp , 

p 

and for each self-energy diagram one finds 

~J1.~2) = - L PnlpMpn~ (142) 
'p>O 2(C4 - cp )' 

p;ol:n. 

These results are independent of the arbitrary constant c. The sum over aJl 0(0'.) 

diagrams of the zero-energy mode is zero; thus this mode has no effect. It is, however, 

important to include this mode if one wishes to compare the intermediate results with 

work performed by other groups. 
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D Sum rules 

D.l Vertex correction sum rule 

Although there is no way of checking the final results of the cavity QCD calculations 

carried out here, there are ways of carrying out independent checks on intermediate 

numerical results. In this appendix, a few sum rules are presented which provide a 

powerful means of checking the numerical sum over the complete set of intermediate 

cavity modes of the vertex integrals. These sum rules also demonstrate that the 

method of truncating the infinite sum over cavity modes is valid. 

Consider, for example, the contribution from the vertex correction to the magnetic 

moment 

1/(2) = g21°° dz " gEE Q-mE M QrnE ]mE(Z)ra L n'p pq qn pq . (14 3) 
o pqrnE 

If one discards the z-dependent terms, the sum over two of the three intermediate 

particles may be carried out using the appropriate completeness relation. The re

sulting expression can be used to check that the numerical sum over those vertex 

integrals 	is functioning correctly. Choosing to sum over the quarks p and q, one has 

VmE - 4 EE" Q-mE M QrnE (144)nn' = 1r9 L np pq qn" 
pqM 

where the sum over M runs over the gluon spin projections. Using the completeness 

relation for the quark cavity modes, eq. (71), the sum over p and q may be carried 

out immediately to give 

EE L JVn~~ = _41rg d3 ril n(f}Yl'/o(r x '9)z/oIPun,(r)a~~(r)a~dfJ· (1 ·15) 
M 

After some Dirac algebra, this yields 

3Vn~~ = _41rgEE L Jd r u,,(,.') {lamdfJl2 (rx '9) z+2(rx IlmdfJ) z~;dr) }un,(r) . 
M 

( 146) 

If the gluon fields are now expanded in terms of vector spherical harmonics and Bessel 

functions, the sum over the gluon spins in eq. (146) can be evaluated. After some 

tedious algebra we arrive at 

Vnr;:~ = -A"", lR dr r3 [fn(r)9n,(r) + gn(r)fnl (r)] ~rndr), (147) 
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where A"", is the angular integral defined by eq. (116), 9n(r) and fn(r) are the upper 

and lower components of the quark wave function, and <l>mdr) is given by 

<l>mS(r) (2J + I)N!siJ(Or) (148) 


<l>mc{r) 2~~\ [(J + l)iJ+I(Or) - JiJ_1(Or)r (149) 


<l>mM(r) 0 (150) 


<l>me(r) J(J + 1)(2J + I)N!t: (iJ~~r)) 2 (151 ) 


Equation (147) can readily be evaluated numerically after choosing the quantum 


numbers m~ of the intermediate gluon, and the nand n' of the initial and final 

quarks. 

In a similar fashion, sum rules can be derived for the contribution of the vertex 

correction to other operators. For the axial vector coupling constant, we obtain 

471'9EE L Q':"E Gpq Q;n7 = AM' iR dr r2 [{fn(r)fn,(r) +9n(r)9n,(r) }8mdr) 
"M 0 

+ 211: { fn(r)fn,(r) - 9n(r)9n,(r) }<l>mdr )] , (152) 

where <l>mdr) is defined above, and 8mdr) is given by 

8 ms (r) (2J + 1)N!siJ(Or) 

8 mc (r) 2~~\ [JiJ_1 (Or) +4J(J + l)iJ _ 1 (Or)iJ+l (Or) - (J + I)jJ+l (Or)] 

8 mM (r) (2J + I)N!MiJ(Or) 

N2 
8 m t:(r) 2J ~\ [(J + I)jLl (Or) - 4J(J + 1)iJ - 1 (Or)iJ+l (Or) - JiJ+l (Or)]. 

The sum of vertex integrals for the axial vector charge radius obeys a similar sum 

rule to that above, with the only difference being the that r2 is replaced with r4. 

Finally, a sum rule for the electromagnetic charge radius is 

471'9EE LQ':"E Ppq Q';.7 = -lR dr r 4 [fn(r)fn,(r) +9n(r)9n,(r)] Tmdr), (153) 
pqM 
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w here the function T mdr) is given by 

TmS(r) (2J + I)N!siJ(Or) (154) 

Tmc{r) -N!c[(J + l)iJ+I(Or) + JiJ_l(Or)] (155) 

TmM(r) -(2J + I)N!M iJ(Or) (156) 

Tme(r) -N!,dJiJ+/Or) + (J + I)jLI(Or)]. (157) 

D.2 Sum rule for the self-energy inserts 

The vertex diagrams with a self-energy insert on one of the external legs yield similar 

sum rules to the vertex correction diagrams. In fact, the sum rule for the electromag

netic charge radius is the same for both diagrams. For the magnetic moment, one 

obtains 

471'9EE L Q':"E Q~E Mqn' = -A"", iR dr r3 [fn(r)9n,(r) +9n(r)fn,(r)] Tmdr), 
"M 0 

(158) 

while the result for the axial vector coupling constant is 

4 EE " Q- mE QmE G - (159)71'9 ~ np pq qn'
pqM 

= -A"", iR 

dr r2 [(II: + 11:' - 1)9n(r)9n' (r) - (II: + 11:' + l)fn(r)fn,(r)] TmE(r), 

where the T mdr) were defined in eqs. (154) to (157). 

D.3 One-gluon exchange sum rules 

In a similar way, sum rules for the diagrams involving gluon exchange between quarks 

may be derived. Unfortunately, these sum rules tend to be rather lengthy, since they 

depend on the the quantum numbers of two initial and two final state quarks. 

Consider the expression for the one-gluon exchange correction to the electromagnetic 

charge radius. The part which contains the sum over the vertex integrals is defined 
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as 

W - 4 EE,", Q-mE QmE p. (160)nln~nJnf = 7r9 ~ nln~ n3P pnf· 
pmE 

Both of the intermediate particles may be summed over using the quark and gluon 

completeness relations, eqs. (71) and (89), yielding 

Wnln~nJn. = -47r f d3rlr]2unl(r)IIJUn~(r)Un3(r)IIJUnl(r)· (161) 

After multiplying out the spinors, we arrive at 

4
Wnl n~nJ nf = / dr r [ - (9n, fn~ + 9n~ fn, ) (9nJ fnf +9nf fn3 ) AKI-K~ K3 -Kf (162) 

+ {29n, fn~fnJ9nf +2fn,9n~9nJnf - (9n,9n~ + fn, fn~ )(9nJ9nf + fn3 fnf) } BKIK~K3Kf] , 
where 	A"JI'~"J"f and B"I"~"JKf are the angular integrals, i.e. 

A - 4 fdA ( IJJt(A) - IJ~(')) (IJJt(A) - IJf('))"IK~"J"f = 7r r X"I r a X,,~ r . X"J r a XKf r 

= 6}1 }2)3}il £2 £3 £4 L (_I)J-L+iJ+iJ-l~-lf+1J3-1J2(2J + 1)(2L + 1) 
JL 

jl h J ) ( j3 j4 J ) (il i2 L) (i3 i4 L)
( -11-1 11-2 11-1 - 11-2 -11-3 11-4 J1.2 - 11-1 0 0 0 0 0 0 

il jl ~} {i3 h ~ }
i2 j2 ~ i4 j4 ~ , 	 (163)

{ 
L J 1 L J 1 

where the shorthand} = J2T+T has been used, and 

B - 47r fdAr X"IIJJt(') IJ~(A)r 1J3t(A) XKfIJf(A)r (164)KIK~"J"I = r x,,~ X"J r 

= (_l)ll-l~+lJ-lf }1}2}3}4 L (2J + 1)1 + (_l)ldl~+J 1 + (_I)lJ+lt+J 

J 2 2 


jl h J ) ( h j4 J ) (jl h J) (h j4 J)
( -11-1 11-2 11-1 - 11-2 -11-3 11-4 11-2 - 11-1 ~ -~ 0 ~ -~ 0 . 

The sum rule for the magnetic moment can be derived in the same way. It is given 

by 

4 EE,", Q-mE QmE M
7r9 	 ~ nln~ nJP pnf (165) 

pmE 

Jdr r3 [(9n~fn~ +9n~fnl) (9nJ9nf + fnJn3) GC"J"4"1"~ - ~C"I-"~"3-"f + D"3"4"1-"~) 
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+ {29n, fn~fnJ fnf + 2fn,9n~9n39nf - (9n,9n~ + fnJn~ )(gnJ fnf +9n. fn3) } D", "~"3 - K4 ] . 

In this case, the angular integrals are 

C ::47rfdrXIJ,t(r)a xlJ~(r)xIJJt(f)XlJf(f)=JA. J~ J~ J~ £ i "(_I)L+IJ,+1J3Ll 
KIK~KJKf KI Z K~ K3 KI 1 2 3 4 1 2 ~ 

mL 

( 
i1 2 

1 
jl ) ( i2 ~ h ) (il L i2) 

I1-I-m m -11-1 11-2 - m m -11-2 m - 11-1 11-1 - 11-2 11-2 - 711 

h L j4 ) (j3 L j:)(il i2 L) 1 + (_I)l3+L+l4 (166)( 	 1-11-3 11-2 - 11-1 11-4 2 0 -2 0 0 0 

The other integral needed here is given by 

- ·f A IJlt A IJ~ A IJJt A)(' - IJf(' _ 1 )1J~+lJf" ~ '. '.DKI"~K3Kf =4n drXKI (r)XK~(r)XK3 (r rxa)ZXKI r)- J2(-1 JlJ2J3J4 

L (_I)L+V-m-m' £2£'2 (il ~ jl) ( i2 ~ J2 ) 

mm'LU 11-1 - 711 m -11-1 11-2 - m m -11-2 


i3 1 
2 h ) (i4 ~ j4 ) (il i2

( 11-3 +m' -711' -11-3 11-4 - 711' m' -11-4 0 0 ~) 
il L i2) (i3 L' i4 )

( m-11-1 11-4-11-3 11-2- m -11-3- m '11-3-11-4+ 2m' 11-4 -m' 

i3 i4 L') (L' 1 L) ( L' 1 L) iii £ . (167)
( o 0 0 0 0 0 11-4 - 11-3 - 2m' 2m' 11-3 _ 11-4 1 2 3 4 

Finally, the sum rule for the axial vector coupling constant is 


47r9EE L Q~I~~ Q~; Gpnf = f dr r2 [9nJn~ (fnJ9nf EKI-K~-KJ"f - 9nJnf E"I-"~"J-r<4)

pmE 


- (9nI9n~ + fn, fnl) (9n39nf Cr<Jr<fr<}I'~ + fnJfn4 C-r<J-"4"1"~) 


+ fn,9n~ (9nJ fn. E_", "~"3-"f - fnJ9n4 E_", "~-"J"4) ] . 	 (168) 
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The angular integral E"'I "'J"'J"'{ is defined by 

_ Jd A I'd( A) ~ I'J A I'Jt A) ~ I'{ A) '" A. A. A. A A A A 
E"'I"'2"'J"'{ = 41r rX"'1 r (7X"'2(r) ' X"'3 (r (7(7zx",{(r = 2Jl12)3J4 i 1 i2 i 3 i4X 

L (_lt2 -1'3-
m H/2 (2L + 1) ( i1 2" 

1 
jl ) (i2 ~ j2 ) 

mL III - m m -Ill 112 +m -m -112 

1i3 2" h) ( ~ j4 ) ( i1 i2 L) (i3 i4 L)i4
( 113 + m -m -113 114 - m m -114 0 o 0 000 

( 
L) L)i1 (2 (i3 (4 

m - III m +112 III - 112 - 2m m + 113 m - 114 114 - 113 - 2m 

(169)+C"'I"'J"'J"'{' 

Note that the completeness relation for the gluon modes, eq. (89), includes the zero

energy scalar mode, which has the quantum numbers mE = moS, where mo = {N = 

0, J = 0, M = O} . The contribution of this term to the left-hand side of the one-gluon 

exchange sum rules above may be calculated separately, and added to the numerical 

sum. One finds that 

4 55'" Q-mo5 Qmo5 M - 3o M1rg ~ nln2 n3P pn{ - - nln2 nJnt' (170) 
p 

E Colour and flavour matrix elements 
I 

E.1 One-body terms 

The matrix elements of the external operator and quark creation/annihilation oper

ators between proton and neutron states will be derived here. There are two distinct 

types of these matrix elements, corresponding to the one- and two-body interactions. 

The colour and flavour matrix elements for the one-body interaction to be evaluated 

are given by 

L (pla!lj'n(~a), (~) Qaejn Ip), (171 ) 
ee'df J'n e d de 

where Ip} is the wave function for spin-up protons, given in second quantized form 

by 
c;abe ( 

A ___ Aat at t t t (172) 

The operator a!,U,hT creates a spin-up quark with colour a and flavour u in the Is 

state, and c;abe is the completely anti-symmetric tensor of rank 3. The charge matrix 

Q for u and d quarks may be written in terms of the unit and isospin matrices as 

I)P - VIS a,u,bT b,d,h1 - aa,u,b! ab,d,bT) ae,u,hT 1 0). 

Q = ~ (I +3T3) • (173) 

The action of the diagonal matrices I and T3 can be represented by c-functions which 

restrict the flavour f of the quark to either u or d. 

I Cj,u+Oj,d 

T3 OJ,u - OJ,d' (174) 

The operator Q does not change the colour or flavour of the quarks on either side 

of its vertex, since it interacts only through the colourless electromagnetic field. In 

other words, c' = c and f' = f on either side of the operator insert. Hence, after 

noting the standard relation 

4 
(175)~ (~a)e'd (~a)dC :3 oe'e, 
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the expression for the colour and flavour matrix elements becomes 

L / fila~j'n(~a), (~a) Qaefnl fJ ) = ~L/ fila!fnQaefnlfi). (176)
ccld! fin \ cd de efn \ 

Using the anti-commutation relations for the creation and annihilation operators 

{a efn , a!'j'n/} = 8eel 8ff l8nn/, (177) 

the sum over colours and flavours may be carried out by anti-commuting the annihi

lation operators to the right and the creation operators to the left, through the wave 

function, until the vacuum state is reached. The operators vanish at this point since 

acnlO) = 0 and (Ola!n = O. These sums and ordering operations can be carried out 

on a computer using REDUCE 3.3, and can take a surprisingly long time on, although 

the matrix elements of ] and 73 turn out to be quite simple. The results are 

L (fi Ia!fn] aefn Ifi) (28",.1 + 8",.d8n •h (178)
efn 

L (fi Ia!fn 73 aefn Ifi) ~(48",.1 - 8",.d8n.h. (179)
efn 

The matrix elements of Q can immediately be found by using these expressions and 

the definition of Q, eq. (173). The final expression is 

-8 8 (180)",.1L\fila!lfn(~a),cd (~a) Qaefnl fi ) 3 
4 

n.h· 
efn de 

The corresponding colour and flavour matrix elements taken between neutron states 

are 

L\nla!lfn(~a), (~) QiIefnl n) -~(8",.1 - 8",.1)8r •h . (181 ) 
efn e d de 

E.2 Two-body terms 

The two-body matrix elements arising from the one-gluon exchange diagrams are 

given by 

'" / A I At At (,Xa) (,Xa) Q A A ~ \P aelflnl adlglnJ 2 I 2 I aefn)adgn4 
colo..... e c d d 

I A)P . (182) 

ftavoun 
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The gluon which is exchanged between the two quark lines nlnl and n4n3 carries 

no flavour, and neither does the external operator attached to the line n4n3, so the 

flavour cannot change along either of these lines. Hence, f' = f and g' = g . Using 

the colour factor from the ,Xa matrices 

(183)( ~a )de (~)did = ~ (8eld 8edl- ~ 8ele8dld) , 
the sum over all allowed colours, flavours and radial states of the matrix element for 

] is found to be 

"'\AIAt At (,Xa) (,Xa)]A A lA)~ P adfnladlgn3 2 2 aefn~adgn4 P
de 

I 

colours d d 
flavours 

~ [(8"'1"'3.1 + 28"'1.1 8"'3.1 + 28"'1 .1 8"'3.1 )8"'1''''~ 8"'3."'4 

+ (8"'1"'3.1 - 8"'1.1 8"'3.1 - 8"'1.1 8"'3.1 ) 8"'~."'3 8"'1,"'4] 8nl n~n3n4 .16, (184 ) 

where a shorthand notation for repeated 8-functions having one argument in common 

has been introduced 

8ab ...e. 8a.z 8b. ••. 8e•z • (185)z z 

Similarly, the matrix element containing the operator 73 is found to be 

'" / AI At At (,Xa) (,Xa) A A I A)\p aelfnl adlgn3 2 2~ I 73 aefn)adgn4I P 
colou... e e d d 
ftavours 

~ [2(8"'1"'3.1 +28"'1.1 8"'3.1 - 8"'1.1 8"'3.1)8"'1.",) 8"'3."'4 

+ (28"'1 "'3.1 + 8"'1.1 8"'3.1 + 8"'1.1 8"'3.1) 8",)."'3 8"'1 ,"'4] 8nl n)n3n4 .16· (186) 

A considerable simplification results when these two matrix elements, in conjunction 

with the definition of Q in eq. (173), are added together. The final result for the 

matrix element of Q is 

L \fi Ia!'fnl a~/gn3 (~a) (~a) I Qacfn/ldgn4 Ifi)I 

coloUl"li e e d d 
flavoUl"li 

~ (8"'1",).1 + 8"'1",).1 )81,3"'4.1 8nl n2n3n4.h (1 87) 
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In a similar manner, the matrix elements of the colour, flavour and charge operators 

of a two-body state taken between neutron wave functions yield 

~/-I-t -t (AB) (Aa) Q- _ 1_)
c~un \ n ael Jnl ad'gn3 "2 ele "2 d'd acJn~ a dgn4 n 
HavoUl"ll 

~ [ (481'1'T 81'3,1 - 281'1,181'3,T - 81'11'3,T )81'1'1'~ 81'3,1'4 (188) 

- (281'1, T81'3,1 + 281'1,1 81'3.T + 81'11'3.T) 81'~'1'3 81'101'4] 8nl n~n3n4 ,h' 
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Figure Captions 

Figure 1: Feynman diagrams contributing to the anomalous magnetic moment of a 

quark. The cross and dashed line denote the external electromagnetic source, and 

the gluons are indicated by the wavy lines. 

Figure 2: Feynman diagrams contributing to the baryon magnetic moments. The 

intermediate quarks are labelled by p and q, and the gluon by m,~. 

Figure 3: The vertex correction for the magnetic moment l'i2 )(y) (solid line) and the 

free-space divergence I's(y) (dashed line). 

Figure 4: The two contributions to the diagram with a self-energy insert on an 

external leg. The dashed line shows the free-space divergence. 
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