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Quark Deconﬁnement at Finite In this talk I discuss a proposal for an order parameter to characterize quark decon-
Temperature finement at finite temperature. The motivation is to find an order parameter such that

the phase transition could be studied analytically, as opposed to numerically, e.g. from

simulations of QCD on the lattice. Clearly, since we are still unable to perform analyt-
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ical (first principle) calculations in QCD at hadronic scales, such an order parameter

. has to be introduced phenomenologically. Having done this I shall discuss how one can
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study the transition to quark deconfinement in the framework of Finite Energy QCD
Sum Rules. In the process, an important relationship emerges between the colour de-
confinement phase transition and that of chiral-symmetry restoration. Finally, I shall

briefly discuss some implications for dilepton production in heavy ion collisions.
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and M the quark mass matrix. Tor the purposes of this talk I consider only two
e e, e o B quark flavours (up and down). Among the various symmetries of Locp one finds a
(global) SU(2)y and an SU(2)r ® SU(2)L symmetry. These Lagrangian symnetries

‘ are explicitly broken by the quark masses. In fact, the vector (I-spin) Noether current
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V= iy, 7, and the axial-vector current Al = ¥ 4, v T have divergences

0"V, = i(myg — m,)du , (4)

0" A, = i(ma + m,)dysu . (5)

In the linit m, = my = 0,SU(2)v, and SU(2)gr @ SU(2)L become exact Lagrangian
symmetries. [lowever, thisis not what is usually meant by chiral-symmetry restoration,
which refers to the symmetry of the vacuum. Given a Lagrangian symmetry one must
investigate how it is realized in the states, starting with the vacuum. According to
whether the Noether charges Q° = [ d®x Ji(#,t) annihilate the vacuum or not, one
has a Wigner-Weyl or a Nambu-Goldstone realization of the Lagrangian symmetry. In
the former case particles are classified according to the irreducible representations of the
synunetry group, as in e.g. SU(2)v. The Nambu-Goldstone realization (spontaneous
symmetry breaking) corresponds to a hidden symmetry, as the vacuum does not share
the symmetry of the Lagrangian. This is the case lor SU(2)p @ SU(2)L since e.g.
there are no (quasi) degencrate parity doublets in the particle spectrum. No particle
classification is possible in this phase as the vacuuin is contaminated by an arbitrary
number of massless (Nambu-Goldstone) bosons carrying non- trivial quantum numbers.
In the case of SU(2)p@SU(2), the three einerging Nambu-Goldstone bosons are readily
identified with the pion (7%, 7°), which decays to the (hadronic) vacuum through the

axial-vector current, i.e.
OIAL(O) = (p)) = ¢ fa pu 87, (6)

with f, = 93.2 MeV. In the limit m, = my = 0 the axial-vector current is strictly

conserved and, hence, f, p2 = 0. In the Nammbu-Goldstone phase
12 o (my +my) =0, (M)

£2 o (Ofai + dd|0) £ 0 , (8)

with the proportionality constants such that 2f2u% = (m, 4+ my)(0luu + dd|0). A

phase transition fron a Nambu-Goldstone to a Wigner-Weyl mode (chiral-symmetry

restoration) is characterized by the vanishing of the order parameter f,, or alterna-
tively (0/¢q|0) . Clearly, this can only happen at finite temperature, and if the phase
transition does take place this should happen regardless of whether the quark masses
are zero or not. The numerical value of the critical temperature, though, is expected

to depend on this fact.

The temperature behaviour of fr(T) at low T (T << p,) has been investigated in
chiral perturbation theory with the result [1]
TZ

S (1) = £:(0) |1 - §72(0) +0(17)]| , (9)

in the chiral Timit for three flavours. Chiral-symmetry breaking corrections to (9) have
been also calculated [1], together with corrections due to massive states [2]. The low
temperature expansion of (gq)r has been carried out up to order O(T®) in [2]. As
the authors of [1],[2] have pointed out, this low temperature expansion should not
be extrapolated to the critical temperature. For instance, if the phase transition is

of sccond order then the critical exponent should be 1, rather than 2 as one would

2
naively obtain from (9). If one is interested in the behaviour of f,(1') near 1' = 1.,
other methods should be used, e.g. the composite operator formalism of 3], which
reproduces (9) at low 7', but gives instead fo(T) (1 — T/1.)% as T — T.. This

feature will become particularly important in Section 4.

3 Quark Deconfinement (Order Parameter)

At zero temperature the shape of a typical hadronic spectral function consists of some
delta functions plus resonances with increasing widths, followed by a smooth continuum
starting at some threshold energy Ey. It is known from fits to actual data that for
£>Ey the hadronic spectral functions are well approximated by perturbative QCD;
L2y 1s thus called the asymptotic freedom (A.F.) threshold. In Fig.1 I show the results

of a numerical fit to experimental data in the vector channel (curve (a)), and in the
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axial-vector channel (curve (b)), as extracted from 7- lepton decays [4]. For simplicity

I do not show the data points. The resonance peaks correspond to the p and the

a; mesons; the delta function from the pion pole in the axial-vector channel is not

shown. One can see that for s = E?>2 GeV? the two spectral functions become

smooth and roughly equal. The one-loop perturbative QCD prediction is ImIly(s) =
1

5]ml’lA(s) = g7, in excellent agreement with the data. Under the assumption that
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quark deconfinement does take place at some critical temperature Ty, one would expect
that by increasing T from T = 0 the resonance peaks in the spectral function should
become broader. At T = T the resonance widths would then become infinite, signalling
quark deconfinement. This resonance melting with increasing temperature would be
accompanied by a shift of the asyrmptotic freedom threshold sq towards threshold. In
this picture the resonance width, and/or the asymptotic freedom threshold provide
a suitable order parameter. In the complex s-plane, bound states (e.g. the pion)
correspond to poles of the S-matrix lying on the real axis, and resonances correspond
to poles located in the second Riemann sheet, their distance to the real axis being

measured by the width I'p. At finite temperature the forin of the Green’s fuuction will

be
1

. . (10)
E — Mg(T) + 3Tr(T)

G(F,T) x

In the picture described above, an increase in the temperature will shift all poles farther
away from the real axis as [g(T) increases. While the mass Mg may depend on T,
it is not a relevant order parameter. With the second Riemann sheet poles infinitely
far from the real axis, and the A.F. threshold correspondingly close to the origin, the
spectral function is then described entirely by the QCD continuum extrapolated down
to the kinematic threstiold. One may interpret such a phase as a deconfined phase
where all hadrons originally contributing to the spectral function have melted into

quarks or quark-antiquark pairs.

| wisli to stress that the relevant order parameter for deconfinement should be the
width and not the mass. Claiins have been made occasionally in the literature that
the mass should vanish at the critical temperature. I believe this to be incorrect for
the following reason. Let us consider a stable hadron, i.e. one with zero width, at zero
temperature such as the pion or the nucleon. If with increasing temperature the mass
goes to zero, and nothing liappens to the width, tlien at the critical temperature one
would still sce a peak in the hadronic spectral function at zero energy. The hadron
lias not disappeared froin the spectrum, and hence has not melted! The only way a

particle can melt is by having a temperature dependent width such that I'n — oo as

T - T.. What happens to the mass (defined as the position of the pole on the real

axis) is irrelevant for this argument. Once the resonance becomes infinitely broad,
the spectral function becomes smooth and should be well approximated by the quark

degrees of freedon, i.e. by perturbative QCD.

Since this proposal was first made [5] independent theoretical evidence has become
available. In fact, Leutwyler and Smilga [8] have shown in the framework of the virial
expansion that: (a) at low temnperatures (7' < 50 MeV) and in the chiral limit (y, = 0)
the mass of the nucleon My(T) ~ Mn(0), and its width Ty(T) ~ Cn(0) = 0; (b)



At higher temperatures both My(T') and 4,(T) increase slightly (by 4% and 1%,
respectively, up to 7<160 MeV), while T'y(T) and [',(T) increase substantially, e.g.
at 7' = 160 MeV the ratio of width to mass (imaginary to real part of the propagator)
is about 43% for the pion and 20% for the nucleon. Since the pion and nucleon widths
are strictly zero at T = 0, this is quite a dramatic effect. Additional evidence for the
approximate constancy of My and u, follows from the sigma model [9], which also
gives increases over My(0) and p,(0) at the level of a few percent. Further support
comes from a recent calculation of y,(T) in the composite operator formalism [10],
showing approximate constancy of the pion mass over a wide range of temperatures,

with a tendency to increase near the critical temperature.

4 Relationship between Deconfinement and Chiral-
Symmetry Restoration

[ consider the retarded two-point function involving the axial-vector current
Hw(w,p) =1 / d*r e?70(x0) < [AL(z), AL(0)] >, (11)

where

«A-B>="exp(~Ey/T)(n|A- Bln)/Tr(exp(-H/T)), (12)

with |n) a complete set of eigenstates of the Hamiltonian H. The philosophy of QCD
sum rules [11] is to calculate the two-point function in the deep euclidean region in
perturbative QCD, add non-perturbative effects parametrized in terms of vacuum ex-
pectation values of the quark and gluon fields appearing in the QCD Lagrangian, and

relate the result to the hadronic spectral function by means of a dispersion relation.

In order to find the QCD behaviour of (11) in the deep euclidian region we assume a
dilute quark gas at temperature T with zero chemical potential. The virtual “quanta”
associated to the local current A,(z) will convert into ¢g pairs for p* = w? — p? > 4m:

while for space-like momenta (w? -~ p?) < 0 there will be “scattering” of these quanta by

8

the quarks in the gas. These two distinct processes contribute to the spectral function

as follows
l[m[[:u(w,p) = Z / LIPS(w,p, E1,p1E2,p2)
T q

% (014,199)(4dlA.10) x {[1 = np(EV)][1 = np(E)] — ne(Ev)ne(E))} (13)

for annihilation, and
1
S p) = 3 [ LIPS(,p Brpr - B2 = pa)
? g

x (alAula) (@l Aulg) x {np(EV)[} = np(E2)] — ne(E2)[l - nr(Er)]} (14)

for scattering. In the above equations ng(E) is the Fermi-Dirac distribution function,

and the phase space is

&*p &p
LIPS(w,p, By piEPr) = 55053 5553

x 8(w — By — E2)6®(p — p, — p2) . (15)

[t must be stressed that the above two contributions to the spectral function, arising
from different physical mechanisms, are unrelated. The first contribution (“annihila-
tion”) leads to the usual right- and left-hand cuts in the complex energy plance, and
docs not vanish at 7' = 0. The second piece (“scattering”) leads to a new cut centered

around w = 0, vanishes at T = 0, and is unrelated to duality.

"On the hadronic side, at low temperatures 7 < px only pions from the gas will

contribute to the spectral function. Aside from the pion pole contribution to the
“annihilation”, or right- and left-hand discontinuities in the complex w-plane, there is
a “scattering” piece in the hadronic spectral function from the center cut arising from
the scattering of the current off the pions in the plasma. The latter involves an integral
of (r|A,|27)(2n|A,|7) weighted by Bose factors. However, since A, oc @(p* 5“ ) this
term appears at order T4/ f2 in ImII(S). Hence, a parametrization in terms of the pion

pole plus a continuum modelled by perturbative QCD should be a good approximation



to the hadronic spectral function. In this way one obtains the following Finite Energy

QCD sumn rule (FESR) [7]

1 So(T)
87 f1(T) = 5 [2 dzv(z)[3 — v*(2)] th (%)

+ /m d2?v(2)[3 — v3(2)JnF (i) , (16)
am2 2T

where v(z) = (1 747113/27)%. Equation (16) is an eigenvalue equation fixing So(T") once
f+(1') is known independently. Notice that even if f,(T') were to be assumed constant
at low temperatures, So(7) would still be a decreasing function of T' on account of
the quark “scattering” piece of ImII(S), i.e. the second term on the right-hand side of
(16). The advantage of our choice of Green’s function (11) should be evident: at low
temperaturves (1° < py) apart from fr(7') there are no other unknown T-dependent
hadronic parameters such as masses and widths. For instance, QCD sum rules for the
correlator of two vector currents at T' # 0 [6],[12], involve m,(T) and I',(T') which,

unlike f-(T), are a priori unknown and model- dependent.

In the chiral limit the FESR (16) takes the simple form

So(T) y
So(T' =0) — 13—0#]" = / dS th (f) , (17)
0

where So(1' = 0) = 87%f2(0). In [7) we solved the FESR using the low temperature
expansion for f-(T) from [1], i.e. eq.(9). The solution to (17) is illustrated in Fig.2.
The solution to (16) is qualitatively the same, except that So(7') vanishes at a slightly
higher temperature, viz. So(Ty) = 0 for Ty ~ 135 MeV (g, = 0), and Ty ~ 170
McV (pr # 0). llowever, one should keep in mind that (9) is not supposed to be
extrapolated all the way up to the critical temperature for chiral-symmetry restoration
(1%.). In fact, as shown in [3], if one uses the expression for f+(T') from the composite
operator formalism, So(7') vanishes at practically the same temperature as f,(T), i.e.
Ty ~ T., as seen from I'ig.3 (reproduced from [3]). Independent confirmation of this

result may be obtained by using the first Weinberg sum rule at T # 0, which in the
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chiral limit is given by
1 So(T) B
l / dS[Im Ty (S, T) — Im [4(S, T)] = fA(T) (18)
0

This sum rule was studied in [7] using eq. (9), the result being essentially the samc as
with the FESR (17). However, the authors of [3] obtained T/T, =~ 0.99 using the more

accurate expression for f,(T') from the composite operator formalisin.

In summary, Finite Energy QCD sum rules at T' # 0 lead to the prediction that Sy(1")
vanishes at some critical temperature, whicli is essentially the same as that for chiral-
symmetry restoration : 1y ~ T, ~ 130 MeV. According to the interpretation of So(7')
as a relevant order paraineter for quark deconfinement (see Section 3), one can conclude

that the QCD-FESR provide evidence for the existence of this phase transition.

At this poiut it is importanut to point out that 7' = 0 QCD suin rules cannot be naively
extrapolated to finite temperature. In particular, it has been shown in [12] that the
lowest dimension FFESR, i.e. the one not containing the gluon condensate, is the only

one free from contradictions. Higher dimensional FESR, and hence Laplace transform

11
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QCD suin rules, give the wrong temperature dependence of the gluon condensate. The
QCD sum rule prograin breaks down at dimension d = 4, and hence claims on the
vanishing of hadron masses from Laplace transform QCD sum rules are invalidated.
This happens even after taking into account the temperature dependent “scattering”
termns discussed at the beginning of this section. Whether additional mechanisms could
be brought into play in order to rescue the QCD sum rule program remains an open

problem.

5 Dilepton Production in Heavy Ion Collisions

As discussed in Section 3 one expects resonance widths to diverge as the critical tem-
Perature for decoufinement is approached. This has important implications for the
rates of dilepton production in heavy ion collisions at high energies, as first pointed

out in [13]. The point is that when calculating rates in the hadronic phase of the

plasma one should nse a temperature dependent pion form factor, i.e.
M} + M2T(T)
(M? — M2)2 4+ M2T%(T) ’

|FP (M2, T = (19)

where M is the (dilepton) invariant mass, and M, is taken as a constant. Although the
approximate constancy of particle masses with increasing temperature has been shown
only for the nucleon and the pion [8]-[10], it seems quite reasonable to assume the same
for the p-meson. In the following discussion I shall further assume the following simple

ansatz for I',(t)
_ 0,0
1-T7%T}"°

where T is the critical temperature for deconfinement. Other critical exponents are, of

L,(T) (20)

course, possible but this does not affect the dilepton production rates in any significant
way. In Fig. 4 I show the dimuon spectrum for the case of an '®0 beam with incident
energy of 225 GeV per nucleon on a target of '®*Pt. The pion form factor is assumed
temperature independent and a commmon critical temperature for deconfinement (7;)
and chiral-symmetry restoration (7¢) is specified as T, = T; = 200 MeV. The dashed
and dash-dotted lines are the quark-gluon phase (QGP) and the hadronic contributions,
respectively; the solid line is the total. The nice feature about this result is that the
QGP contribution is some two orders of magnitude larger than the hadronic. If I, is
given a temperature dependence, through the p-meson width, the spectrum changes
dramatically as shown in Fig.5. The unfortunate result is that the QGP contribution is
now comparable to the hadronic. Hence, experimental data would not be offering much
information about the QGP, which is what one wishes to probe in these experiments
(for a recent related discussion see [14]). Nevertheless, we have shown {13] that the
derivative of the average momentum distribution can offer information on the nature
of the phase transition, i.e. whether the system goes through a single (7, = 1) or a

double (T, < T.) phase transition.

In Fig. 6 I show the derivative of the average momentum distribution, for a 7-
independent pion form factor. The solid curve corresponds to 7, = Ty = 246 MeV, and

the dashed curve to T, = 246 MeV and T; = 200 MeV. Figure 7 shows the result of
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making F, temperature dependent. One notices that if T. = T4, there is quite a dra-
matic difference between the results for F = Fx(M?) and those for f% = F(M?,T).
A measurement of d < P, > /dM would then be useful to pin down the temperature

dependence of the pion form factor.
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