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Abstract 

The history of higher derivative Lagrangian field theories is briefly re­
viewed and some applications are presented. The incompleteness problem 
of the scalar Higgs sector in the minimal Standard Model is replaced by a 

higher derivative Lagrangian, and the renormalization properties of higher 

derivative quantum gravity are analyzed. It is shown that logically consis­
tent and finite field theories are obtained when higher derivative terms are 
introduced in the kinetic energy of the Lagrangian and some excitations 
of the fields are quantized with indefinite metric in the Hilbert space. The 
Landau ghost phenomenon of the triviality problem in scalar field theory 

is replaced by the state vectors of a complex conjugate ghost pair at some 
finite mass scale with observable physical consequences. A similar mecha.­
nism renders quantum gravity renormalizable and asymptotically free . It 
is shown that the ghost states exhibit unusual resonance properties and 

correspond to a complex conjugate pair of Pauli-Villars regulator masses 
in the euclidean path integral formulation of conventional field theories. 
An argument is given that microscopic acausality effects associated with 
the complex ghost pair remain undetectable in scattering processes with 
realistic wave packects, and the S-matrix exhibits unitarity in the observ­
able sector of the Hilbert space. 
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1 Introduction and History 

In the early days of general relativity Weyl and Eddington suggested to replace 
the Einstein equations for the gravitational field by higher than second order 
field equations [1] . Although speculations along this line were not developed 
into a successful physical theory, interest in higher derivative Lagrangian field 
theories continued to grow. Some highlights of the progress will be discussed in 

this introductory section. 

1.1 Bopp-Podolsky Electrodynamics 

In a serious effort to eliminate divergent quantities in the theory of electromag­
netism Bopp [2] and Podolsky [3] proposed a higher derivative extension of the 
Maxwell equations. Their idea can be illustrated in the following simple way. 
Consider the non-relativistic modification of the electrostatic Lagrangian, 

(1) 

which leads to the higher deirvative electrostatic equation 

(2) 

The solution of Eq. 2 in the presence of a pointlike static charge q with p = q8(i') 
can be written as 

(3) 

In Eq. 3 the coefficient a of the higher derivative term acts as a static screen­
ing length, or cutoff. The modification of the Maxwell Lagrangian eliminated 
the singularity of the electrostatic Coulomb potential at the origin. It was 
hoped, therefore, that the higher derivative Lagrangian will cure the classical 
and quantum divergences of electrodynamics. This program, however, required 
a relativistic generalization and a consistent quantization procedure. 

The relativistic generalization of Eq. 1 is straightforward. The Lagrangian 
is given by 

(4) 

where FJ.Ll/ designates the electromagnetic field strength tensor, and the nota­
tion a- 1 = A is used. In addition to massless photon excitations, the higher 
derivative modification of the Maxwell Lagrangian in Eq. 4 describes a heavy 
photon whose mass m is related to the inverse screening length (cutoff) by the 
simple relation m = hAlc. 
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1.2 Hilbert Space with Indefinite Metric 

Higher derivative quantum field theories were studied by Pais and Uhlenbeck 
[4] in a general context. Their observations are also directly applicable to the 
Lagrangian of Eq. 4. Higher derivative theories have new degrees of freedom 
with negative energy excitations. The heavy photon of the higher derivative 
Maxwell Lagrangian is an illustration. It represents the new and negative energy 
excitation in the theory. The conventional quantization procedure fails in this 
case. The negative energy excitations can grow indefinitely with increasing 
frequencies and there is no stable ground state in the quantized field system. The 
classical analogue of this instability is the presence of some runaway solutions 
of the higher derivative field equations. Indefinite metric quantization of the 
negative energy modes is a remedy for the instability problem. All excitations 
will have positive energies but some of the new degrees of freedom correspond 
to negative metric states in the Hilbert space. This is the famous ghost problem 
which can destroy the unitarity of the S-matrix. 

Lee and Wick investigated the problem of negative norm states and the 
unitarity of the S-matrix in their full complexity [5]. They studied Quantum 
Electrodynamics in the presence of the heavy photon which is represented by 
a state vector of negative norm in the Hilbert space. They pointed out that 
the heavy photon, which has real energy without coupling to charged matter, 
splits into a complex conjugate pole pair on the first Riemann sheet of the 
elastic electron-positron scattering amplitude. Lee and Wick conjectured that 
this complex ghost pair does not violate the unitarity properties of the S-matrix 
in physical processes. 

Based on the investigation of a higher derivative scalar field theory with self­
interaction I will argue that the Lee-vVick conjecture can be derived from first 
principles. It will be shown that logically consistent and finite field theories are 
obtained when higher derivative terms are introduced in the kinetic energy of 
the Lagrangian and some excitations of the fields are quantized with indefinite 
metric in the Hilbert space. The Landau ghost phenomenon of the triviality 
problem in scalar field theory is replaced by the state vectors of a complex 
conjugate ghost pair at some finite mass scale with observable physical con­
sequences. A similar mechanism renders quantum gravity renormalizable and 
asymptotically free. It will be shown that the ghost states exhibit unusual res­

onance properties and correspond to a complex conjugate pair of Pauli-Villars 
regulator masses in the euclidean path integral formulation of conventional field 
theories. An argument is given that microscopic acausality effects associated 
with the complex ghost pair remain undetectable in scattering processes with 
realistic wave packects, and the S-matrix exhibits unitarity in the observable 
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sector of the Hilbert space. 

1.3 Higher Derivative Quantum Gravity 

The higher derivative theory of quantum gravity is a renormalizable field the­
ory with very interesting mathematical and physical properties [6, 7]. The 
Lagrangian which is quadratic in the curvature has three independent terms, 

(5) 

The first term in Eq. 5 with r = 2 corresponds to the original Einstein-Hilbert 
action with second order derivatives in the metric tensor gILI/' The last two 
terms, expressed in terms of fourth order derivatives of the metric tensor, are 

in the class of higher derivative field theories. Although the higher derivative 
terms in the action have very little effect on the low-frequency domain of clas­
sical experiments, at high frequencies they dominate the quantum behavior of 

the theory. They provide the stabilization of the divergence structure at short 
distances, with power-counting renormalizability of the quantum loops. 

Some of the important features of higher derivative quantum gravity will 
be discussed later. The excitation spectrum has to be investigated together 
with the quantization rules in a Hilbert space with negative norm states. The 
short distance behavior of quantum fluctuations exhibits asymptotic freedom in 
the couplings. It remains a challenge to understand the crossover from the new 
short distance physics to the long range behavior of Einstein's general relativity. 

One might speculate that the higher derivative action of Eq. 5 is simply some 

low-energy approximation to a new and more sophisticated theory of quantum 
gravity on the Planck scale. The connection between higher derivative La­
grangian theories and effective low-energy expansions is a somewhat ambiguous 
notion. The last part of this introduction illustrates the problem in a simple 
toy model. 

1.4 Effective Field Theories 

Consider two coupled harmonic oscillators with the Lagrangian 

(6) 

where x is the dynamical variable of the low-frequency (w) oscillator, and ~ 
designates the coordinate variable of the high-frequency (n) oscillator. The 
coupling strength g between the two oscillators is arbitrary. Integration over 
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the high- frequency modes leads to an effective theory in the variable x, 

JV(~) JV(x)e k JL(x,x,E..EJdt = JV(x)e k JLe!f(x,x)dt , (7) 

where 
21 .2 2 2 1 2 2 w

L ff = -x - -w x + -g w x 
d2 X (8)

e 2 2 2 dF+ H
("")2 

The last term is recognized as the non-local effect of the high-frequency oscillator 
on the dynamics of x. The non-local effective Lagrangian in Eq. 8 is exact . At 
very low frequencies Leff can be approximated by a power series expansion of 
the non-local operator, 

where the higher derivative terms are organized according to increasing powers 
of 1jSl2. The higher dimensional operators, which appear as corrections to the 
original oscillator Lagrangian of x, have small effects at low frequencies and 
they can be treated perturbatively. One can also construct a higher derivative 
Lagrangian where the infinite number of terms designated by the ellipsis are 
truncated. This Lagrangian can be subjected to a full quantization procedure 
as it will be described in the next section . This higher derivative theory ap­
proximates the original theory at low energies . However, the truncated effective 
expansion breaks down at the energy scale E ~ hSl and the higher derivative La­
grangian will not approximate the exact Leff of Eq. 8 at large frequencies. The 
quantization procedure when applied to the truncated Lagrangian as a higher 
derivative theory will introduce new physics on the energy scale hSl, like ghost 
states, which were not part of the exact non-local effective Lagrangian in Eq. 8. 

The Quantization Procedure 

The canonical quantization procedure for higher derivative field theories will 
be described in this section starting from the method of Ostrogradski [8]. In­
definite metric will be introduced in the Hilbert space of the state vectors to 
secure a stable ground state and positive energy excitations. The mathemati­
cal properties and physical consequences of complex conjugate ghost pairs with 
state vectors of negative norm will be discussed. A simple quantum mechanical 
model illustrates the strategy of our approach [10, 11] . 
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2.1 Quantum Mechanics 

Consider the classical Lagrangian of a non-relativistic particle moving in one 

dimension: 

1 ( 2w
2 

) . 2 1 ( W 
2 

) .. 2 1 ... 2 1 2 2L = - 1+--cos28 x -- cos28+-- x + --x - -w x (10)2 M2 M2 2M2 2M4 2 . 

Eq. 10 describes a simple harmonic oscillator with second and third derivative 
terms added to the original Lagrangian whose potential energy term is V(x) = 
1/2 w 2 x 2 ; M and ware measured in units of the Newton mass m of the original 
oscillator particle, set to m = 1 for convenience, For simple interpretation of 
the results, the coefficients of the derivative terms are given in terms of M 
and an angle parameter 8; the only restrictions imposed are w 2 / M2 < 1 and 

0<8<7r/2. 
If an additional term, proportional to xd6x/dt 6 , had been displayed in Eq. 9 

before truncation, the derivative structure of the Lagrangian in Eq. 10 would 
match the displayed terms by partial integration. The parametrization of the 
Lagrangian L in Eq. 10 differs from the parametrization of Le!! , since we 
are considering an independent and self-contained higher derivative Lagrangian 
model. 

The variational principle leads to the higher order Euler-Lagrange equation 
of motion, 

(11) 

which differs from Newton's equation by higher derivative terms with small 
coefficients in the limit w 2/1\112 « 1, and 1 / M2 « 1 (limit of large regUlator 
masses in field theory) . Even very small higher derivative terms will have, 
however, a qualitative impact on the theory, as shown in the following analysis. 

The canonical formalism for higher derivative theories was developed first 
by Ostrogradski [8, 4]. Three independent generalized coordinates x, X, and Ii 
are introduced and the generalized canonical momenta are defined by 

d2aL d aL aL 

7rx = ax - dt ax + dt 2 a·X" = 


2w2 ) 2 ( w2 ) ... 1 dSx 
( 1+ M2 cos28 x + M2 cos28+ 2M2 x + M4 dtS ' 

aL 1 ... 
-=-x (12)a·x· M4 . 
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With Ostrogradski's method we find the Hamiltonian 

. .. 1M4 2 1 2 2H = 7rx . X + 7rx . X + '2 7rx + '2w x 

2 2
1 ( w ) 2 1 ( w 2COS28) 2- '2 1 + 2 M2 cos28 x + '2 M4 + M2 x . (13) 

In quantum mechanics the operators of the canonical variables satisfy standard 

Heisenberg commutation relations, 

[i, 7rxl = in , [i,7rxl = in . (14) 

All the other commutators of the six operators vanish. We define the Hilbert 

space with indefinite metric by the scalar product [91 

(x', x', x'lx, x, x) = 8(x' - x) 8(x' + x) 8(x' - x) , (15 ) 

as indicated by the plus sign in the second 8-function on the right side of Eq. 15. 

The wave function 1/;(x, x, x) = (x, -x, xl1/;) depends on the three indepen­
dent generalized coordinates. The completeness relation in the indefinite metric 

Hilbert space is given by 

JdxJdxJdX lx, -x,x)(x,x,xl = I . (16) 

The representation of the self-adjoint operators X,7rx , i,7rx follows the rules 
of ordinary quantum mechanics, x1/;= x,1/;, 7rx 1/; = -in ~:, and similarly, 

i 1/; = x,1/;, 7rx 1/; = -in ~t· However, i and 7rx (also self-adjoint with respect 
to the indefinite metric) are represented by i 1/; = ix .1/;, and 7rx 1/; = -n!fif [9]. 

The euclidean partition function in the presence of external sources is defined 
by 

Tre-*T H 

JdxJdxJdX (x, -x, xle-*T Hlx, x, x) , (17) 

where a time-dependent source term Jox + Jd: + J2i is included in the Hamil­
tonian. The partition function of Eq. 17 can be written as a Hamiltonian path 

integral in six canonical variables. After integrating over X, x, 7r x , 7rx, 7rx, we find 
[10,11] 

(18) 
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where LE is the euclidean Lagrangian of the higher derivative model, 

(19) 

In the T ~ 00 limit, after the evaluation of the path integral in Eq. 18, we 
obtain 

Zoo(Jo(E), J1(E), J2(E)) = Zoo(O,O,O) 

x exp { -~ JdEJ(E)D(E)J( -E)} , (20) 

where J(E) Jo(E) - iEJ1(E) - E2 J2(E) . The Fourier transform of the 
quantum mechanical propagator D(r) is given by 

_ M4 
(21 )D(E) = (E2 + w2)(E2 + M2 e2i8)(E2 + M2 e-2i8) 

The physical significance of the multiple pole structure in the propagator 

becomes clear from the spectrum of the Hamiltonian which can be transformed 
to a diagonal form, 

H = n[wa(+)a(-) + Mei8b(+)b(-) + Me- i8c(+)c(-) +1(w + Mei8 + Me- i8 )] . 

(22) 
The creation operators a(+),b(+),c(+) and the annihilation operators a(-),b(-), 

c(-) are linear combinations of the six canonical variables x, X, i, 7rx, 7rx, 7rx with 
commutation relations [a(-),a(+)] = 1, [b(-),b(+)] = 1, [c(-),c(+)J = 1. All the 

other commutators vanish. The adjoint of a(+) is a(+) = a(-), and similarly, 
bC+) = c(-), c(+) = b(-). 

The eigenstates of the Hamiltonian are given by 

Il,m,n) = ~(c(+)t ~(b(+))m Jrr(a(+))l 10,0,0) , (23) 

where the ground state 10,0,0) is annihilated by a(-), b( -), c( -). The complex 
energy eigenvalues 

(24) 

satisfy the symmetry relation El,m,n = E~n,m . In addition to the ordinary 
oscillator excitations we have two conjugate ghost oscillators with complex en­
ergies, in agreement with the two new degrees of freedom in the Lagrangian. 
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The energy eigenstates have indefinite metric normalization , 

(25) 

For m = n, the ghost oscillator and its complex conjugate partner are excited 
in pairs and the corresponding state vectors have positive norm with real en­
ergy. However, unbalanced ghost excitations with m f:. n correspond to zero 
norm state vectors with complex energies. Some linear combinations of ghost 

excitations with m f:. n will have negative norm. 
The quantization procedure we developed has several important consequences. 

The euclidean propagator D(E) of Eq. 21 can be written as a sum of three sim­
ple pole terms describing the original oscillator and the complex conjugate pair 
of ghost oscillators. The conjugate ghost poles play the same role as the auxil­
iary Pauli-Villars regulators in field theory. The method, which is applicable for 
any potential energy V(x) in the Lagrangian of Eq. 10, leads to the euclidean 
path integral formulation of Eq. 18 providing a non-perturbative framework for 
numerical investigations [10, 11]. The euclidean path integral, however, cannot 
be continued to real time since the Wick rotation of the integration contour is 
blocked by the complex ghost poles on the first sheet of the complex energy 
plane. The ghost eigenstates with complex energies represent run-away time 
evolution in the Hilbert space rendering the real-time path integral ill-defined. 
At the same time, the hamiltonian approach remains well-defined in the indefi­
nite metric Hilbert space and provides the theoretical foundation of the model 
in real time. Important informations can also be extracted directly from the 
euclidean path integral of Eq. 18. 

2.2 Scalar Field Theory 

As the first example of the canonical quantization procedure in higher derivative 
field theory consider the scalar field ¢o.(x, t) with an internal index ex = 1,2, .. .,4 
for the purpose of later applications . The Lagrangian is defined as 

(26) 

The notation ~ indicates that the scalar field transforms as a vector under 
the 0(4) symmetry of the Lagrangian. Following the procedure of Ostrogradski 
three independent field variables (generalized coordinates) ¢o.(x, t), ¢o.(x, t), and 
4>0. (x, t), ex = 1,2,3,4 are chosen at each point x in the three-dimensional coor­
dinate space. The notation ¢o.(x, t) stands for the first partial time derivative 
of ¢o.(x, t); 4>0. (x, t) designates the second partial time derivative. 
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The canonical field momentum variables TI¢o' TI¢o' TI,po are defined in close 
analogy with Eq. 12. The Heisenberg commutators of the canonical field and 
momentum variables have the same form as in ordinary quantum field theory 
with positive definite metric, similarly to the quantum mechanical case ofEq. 14. 
The state vectors 11/J) are described by wave functionals in the field-diagonal 
representation of the indefinite metric Hilbert space, 

The operators ¢o., TI¢o are represented in the Hilbert space conventionally, 

¢o.Ui) 1/J{ <Po. Ul) , ¢o.Ui), ¢o.(;l)} = <Po.(x) .1/J{ <po.Ul) ,¢o.(x), ¢o.(x)} , (28) 

TI¢o 1/J{ <Po. (x) ,¢o.(x) ,¢o.(x)} = -in 8<P:(X) 1/J{ <Po.(x), ¢o.(x) ,¢o.(x)} , (29) 

with similar repr:sentation for the ¢o.' TI,po operator pair. However, the repre­

sentation of the ¢o.' TI¢o pair reveals the indefinite metric [10, 11], 

¢o.(x) 1/J{ <Po. (x), ¢o.(x), ¢o.(x)} = i ¢o.(x) .1/J{ <Po.(x), ¢o.(x) ,¢o.(x)} , (30) 

8IT¢ 1/J{<po.(x), ¢o.(x) ,¢o.(x)} = _n_._ - 1/J{<po.(x) ,¢o.(x), ¢o.(x)}. (31) 
o 8<Po. (x) 

Following the canonical procedure of the quantum mechanical model, the 
Hamilton operator can be expressed in terms of the field variables <Po.(x), ¢o.(x), 
¢o.(x) and the canonical field momentum variables TI¢o (x), TI¢o (x), TI,po (x) . 
The euclidean partition function ZT = Tre-k T H is represented by a Hamilto­
nian path integral in the six canonical variables. It is straightforward to derive 
the conventional euclidean path integral by integrating over the variables ¢o., 
¢o., TI¢o' TI¢o' TI,po' In the T --+ 00 limit we find 

(32) 

where the euclidean action S E is given by 

J
4 [1.... 1 3 .... 1 ........ .... .... 2]

S E = d x - '2 <P (0 + M 4 0 ) <P + '2 rno 2 <P . <P + AO (<P . <p) , (33) 

and 0 is the euclidean Laplace operator in four dimensions. The higher deriva­
tive term M-4 0 3 acts in the inverse euclidean propagator as a Pauli-Villars 
regulator with mass parameter M. It represents a minimal modification of the 
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continuum model, if we want to render the field theory and its euclidean path 

integral finite. Like in higher derivative quantum mechanics, the euclidean prop­
agator is the sum of three simple poles: a complex conjugate pair of ghost poles 

is added to the simple pole representing the original 0(4) particle. 
The general particle content of the model is exhibited by the Hamiltonian 

in terms of creation and annihilation operators, H = Ha + Hint, 

Ha = Lh[w(PJa~+)(PJa~-)(p) + O(PJb~+)(P)b~-)(PJ + O*(PJc~+)(P)c~-)(P)] , 

(34) 
where the summation is over internal 0(4) indices and momentum modes. The 
dispersion of the massive 0(4) particle is given by w(P) = VP---'2 + m6 and the 

i8complex energy of the ghost state is O(PJ = vr + M2, with M = M . e . 

In a more conventional parametrization one separates the real and imaginary 

parts, M = J-L + ir/2, J-L = McosG, I = 2MsinG. The form of the Lagrangian 
in Eq. 26 determines the complex phase G as a specific function of ma and M . 
With the addition of a 0 2 term to the Lagrangian the phase angle G can be 
promoted to an independent parameter moving the ghost pair on the complex 
energy plane without restrictions. We will assume tanG ~ 1, so that I is of the 
same order of magnitude as J-L in our applications. 

The operator a~+) (P) creates the original 0(4) particle with momentum ji 
and energy hw(P). The operator b~+) (P) creates a ghost state with momen­
tum fJ and complex energy hO(PJ; c~+)(p) creates the complex conjugate ghost 
state. The commutation relations of the creation and annihilation operators, 
their conjugation properties, and the metric properties of the states they create 
are obtained in full analogy with the higher derivative quantum mechanical os­
cillator. The interaction part of the Hamiltonian is proportional to the coupling 
constant and expressed in terms of creation and annihilation operators. 

The hamiltonian formulation and the euclidean path integral framework we 
derived provide self-contained non-perturbative tools for further investigations 
[10, 11]. In earlier work Slavnov introduced a formal path integral in Minkowski 
space-time, based on a canonical quantization procedure [12]. The complex 
ghost states with run-away time evolution render the Minkowski path integral 
ill-defined and inadequate for non-perturbative analysis. Hawking based his 
work [13] on the euclidean path integral approach as an intuitive starting point 
without establishing the important connection with the canonical quantization 
procedure. 
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3 Ghosts and Unitarity 

The anatomy of a complex ghost state and the unitarity properties of scattering 
amplitudes will be discussed in this section. The mathematical properties and 
physical consequences of complex ghost poles in scattering amplitudes will be 
illustrated first in the simple Wigner-Weisskopf model [14]. 

3.1 Wigner-Weisskopf Model 

Consider a static object in three-dimensional space, located at the origin of the 
coordinate system. We assign mass M and two intrinsic states, labelled by 0 
and 1, to the object. When this motionless heavy particle is in its intrinsic 
state 0, a nonrelativistic particle of mass m is also present and described by the 
Schrodinger equation. When the static particle is in its intrinsic state 1, the 
Schrodinger particle of mass m is not present. The vectors of the Hilbert space 
have two orthogonal subspaces. The vector 10; r) describes the heavy object 
at the origin in state 0 and the Schrodinger particle at some position r. The 
state vector 11; 0) corresponds to the heavy particle in state 1 without the light 
particle present . The static particle can change its intrinsic state from 0 to 1 
by absorbing the Schrodinger particle, and from 1 to 0 by reemitting it with a 
form factor A(T). The Hamiltonian H = Ho + V is given by 

J 
--2 

Ho d3p(~m) 10;pj(0;]31 + Mll;O)(I;OI , 

V g(IO;x)(I;OI + 1 1;0)(0;xl) , (35) 

where 9 is a coupling constant and A(T) = (0; 710; X) is the form factor which 
was mentioned before. The orthogonality properties of the state vectors are 
conventional, 

(1,011,0) 1 , 


(0; ]310; if) (36) 


The Lippmann-Schwinger equation 

(37) 

with Ep = P212m, describes the scattering of the Schrodinger particle on the 
heavy object. The solution of Eq. 37 with a spherically symmetric form factor 
A(r) corresponds to s-wave scattering and the exact scattering amplitude is 
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given by 
-lr(p) 

t(p) = E _ ER(P) + ~r(p) , (38) 

where 

ER(p) 

r(p) (39) 

In Eq. 39 A designates the Fourier transform of the form factor and P J is 
the principal value of the integral. It is easy to see that there is a narrow 
resonance in the scattering amplitude t(p) at weak coupling. The resonance 
energy is close to M for small g, and the width r is proportional to g2. The 

phase shift 8(E) rapidly changes from 0 to 7r near E ~ M with a time delay 
tD = d8(E)/dE ~ r- 1 in the emergence of the scattered wave. The resonance 

pole is located on the second Riemann sheet of the scattering amplitude in the 
complex energy plane E. 

It is easy to work out the scattering process in the same model with indefinite 
metric Hilbert space [15]. In this case negative norm is assigned to the state 
vector of the static particle when the SchrOdinger particle is absent, (1,011,0) = 
-1. The other state vectors 10;p) have positive norm. In the new Hamiltonian 
H = Ho + V the free part Ho is given by 

J 
--.2 

Ho = d3p(~m)10;p)(0;P1-MI1;0)(1;01, (40) 

and V is the same as in Eq. 35. Note the sign change of the second term in 
Eq. 40 when compared with Eq. 35. It is easy to see that the Hamiltonian 
remains self-adjoint in the indefinite metric Hilbert space. The state vector 
11; 0) with negative norm is an eigenstate of Ho with positive eigenvalue M. 

One can solve again the Lippmann-Schwinger equation with the incoming 
state 10; p) [15]. For a spherically symmetric form factor A (r) the exact scatter­
ing amplitude in the s-wave has the form 

t (p) = ~r (p ) . (41 )
E - ER(p) - ~r(p) 

where ER(p) is given by 

(42) 
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The form of r(p) in Eq. 41 is the same as in Eq. 39. Note the sign change again 
in the second term of Eq. 42 when compared with the form derived earlier in 

the model with positive metric Hilbert space. 
The analytic properties of the scattering amplitude are unusual in the com­

plex energy plane [15]. In addition to the cut along the positive real axis (also 
present in the model with positive metric Hilbert space) we find a complex con­
jugate pole pair on the first Riemann sheet . This is the manifestation of the 
complex ghost pair whose origin is traced to the state vector 11; 0) with negative 
norm. When the interaction is switched on, the real eigenvalue M splits into a 
complex conjugate pair with two conjugate eigenvectors . For small g the phase 
shift 8(E) rapidly changes from 7r to 0 for energies E ~ M, near the ghost pole 
location. The negative time delay tD = d8(E)/dE ~ _r- 1 is interpreted as 

time advancement in the emergence of the scattered wave. The time advance­
ment of the scattered wave is a characteristic aspect of microscopic acausality 
effects in scattering amplitudes with complex singularities on the first Riemann 
sheet. 

As I will explain in the nex part, microscopic acausality is not expected 
to lead to logically inconsistent macroscopic phenomena in relativistic higher 
derivative field theories, like producing a heavy Higgs particle at the SSC site 
before the accelerator is built (perhaps the U.S. Congress did not know this). 

3.2 Relativistic Scattering Processes 

In section 2 we derived the quantization rules for the higher derivative 0(4) 
scalar field theory with quartic self-interaction. The Hilbert space of the model, 
which also describes the dynamics of the Higgs sector in the minimal Standard 
Model, is divided into two distinct parts. In the physical subspace the norm 
is positive and the energy eigenvalues of the stationary eigenvectors are real in 
every Lorentz frame. Physical wave packets in observable initial and final states 
of scattering processes are formed from the Hamiltonian eigenstates of the phys­
ical subspace. Ghost states with complex energy and non-positive norm are in 
the unobservable nonphysical part of the Hilbert space. Although complex con­
jugate ghost pairs can have positive norm and real total energy in some special 
Lorentz frame, their energy is complex in general Lorentz frames. Accordingly, 
conjugate ghost pairs are described by state vectors in the unobservable part of 
the Hilbert space. 

We will study the scattering amplitudes in the Higgs phase of the model 
with spontaneous symmetry breaking. The spectrum is more complex than 
in the symmetric phase. There is a Higgs particle with mass mH, and three 
massless Goldstone excitations with residual 0(3) symmetry. In addition, there 
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is a complex conjugate pair of heavy ghost states with the internal quantum 
numbers of the Higgs particle, and a three-component complex ghost pair which 

transforms as 0(3) triplet according to the quantum numbers of the Goldstone 
particles. The heavy masses of the Higgs ghost and the Goldstone ghost are 
split by the symmetry breaking mechanism. 

The scattering amplitudes of physical states have unusual singularity struc­
tures. Consider the elastic scattering of two Goldstone particles (WL WL scat­
tering via the equivalence theorem [16]). The scattering amplitude has a cut 
in the invariant energy variable s = (PI + P2)2 along the real axis, starting at 
the origin. This cut is attributed to the contribution of intermediate Goldstone 
states to the imaginary part of the scattering amplitude. In addition, there are 
two complex poles at s = M2 and s = M*2 on the physical sheet (the Higgs 
particle appears as an ordinary resonance pole on the second sheet). 

In the more complicated intermediate state of Fig. 1a the unphysical complex 
ghost state and a massIes Goldstone particle generate branch point singularities 
at s = M2 and s = M*2 in the complex plane of the variable s. It can be shown 

>I "'--_._--------,.,<
I • 

' (a) 
\, " 

............... -------~~#" 


(b) 

Figure 1: (a) The simplest Feynman loop diagram that probes unitarity in a 
nontrivial way is depicted. Internal dotted lines represent the full propagator 
which is a sum of Goldstone and ghost propagators with complex poles. The 
solid line designates massless Goldstone particles in the initial and final states. 
(b) Inelastic production of Goldstone particles through an intermediate ghost 
pair. 

that the loop diagram is compatible with unitarity because the imaginary part 
of the corresponding scattering amplitude vanishes [15]. Although the ghost pair 
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does not appear in the physical final state, the ghost loop contributes to the real 
part of elastic scattering. The ghost loop also contributes to the renormalization 
group ,B-function in a non-trivial way. Cancellation effects between the ghost 
loop and ordinary particle loops will determine the evolution of the effective 
coupling constant of the scattering process at asymptotic energies. 

The expected time advancement effects of the complex ghost pole on the 
outgoing wave packet can be estimated . The normalized incident wave packet 
Xin is given by IXin 12 ~ e-~Ir+tl where r designates the distance between therv 

colliding particles in the center of mass system and .6. is the momentum width of 
the incident wave packet. Assuming that .6. > > I the ghost pole contribution 

22to the outgoing wave packet Xo ut has the intensity Ixout 
l be-"Ylr-t, forrv 

r - t > > .6. -1. Since t = 0 is the time of collision, the intermediate ghost state 
acts in the scattering process as a peculiar resonance with time advancement 
in the emergence of the decay products. The scale of the time advancement 
is set by I and remains undetectable with realistic wave packets which can be 
prepared in the initial states of realisitic experiments [5J . In the experimental 
mass distribution of the decay products the ghost will appear as a resonance 
state of approximate mass ReM. 

In the inelastic channel, schematically depicted in Fig. 1b, the mass distribu­
tion of the four Goldstone particles in the final state will show a pair of resonance 
bumps, although the ghost pair does not propagate in the intermediate state 
with macrosopic acausality effects. We estimated that the time advancement 
effects of the intermediate ghost pair in the outgoing scattered wave of elastic 
scattering, or in the decay products of the inelastic channel, are too small to 
observe. 

In the next section I will apply the new theoretical developments to the 
investigation of the Higgs sector with a very heavy Higgs particle in the Te V 
mass range. Most of the simulation results are new and preliminary. I would 
like to thank my collaborators Karl Jansen and Chuan Liu for their permission 
to present the results [17]. 

Higgs Sector with Strong Interaction? 

In the minimal Standard Model with 3U(2)L x U(l) gauge symmetry the Higgs 
sector is described by a complex scalar doublet <I> with quartic self-interaction. 
The Higgs potential has the well-known form V(<I>t<I» = ~m~<I>t<I> + "\0(<I>t<I»2 
where m5 is a negative mass parameter and "\0 designates the quartic coupling 
constant. The four real components of the complex scalar doublet <I> transform 
as a real vector <I> a , a = 1,2,3,4, under 0(4) symmetry transformations while 
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the Higgs potential remains invariant. In the limit where the gauge couplings 
and Yukawa couplings are neglected the quantization procedure for the higher 
derivative Higgs Lagrangian is the same what we discussed earlier. 

Let me summarize again the main features of the spectrum. The 0(4) model 
defined by the partition function of Eq. 32 has two phases. In the symmetric 
phase we find the original massive particle (with four components in the in­
trinsic 0(4) space), and we also find a complex ghost pair with intrinsic 0(4) 
symmetry whose mass scale is set by the Pauli-Villars mass parameter M. In the 
broken phase we find a Higgs particle with mass mH, and three massless Gold­
stone excitations with residual 0(3) symmetry. In addition, the 4-component 
heavy ghost particle and its complex conjugate partner also appear in the par­
ticle spectrum of the broken phase. One ghost state has the internal quantum 
numbers of the Higgs particle. The other three ghost states carry the internal 
quantum numbers of the Goldstone particles. 

4.1 Lattice Action and Phase Diagram 

We would like to investigate the existence of a very heavy Higgs particle and the 
feasibility of a strongly interacting Higgs sector. For non-perturbative computer 
simulations of the higher derivative Lagrangian we introduce a hypercubic lattice 
structure. The lattice spacing a defines a new short distance scale with the 
associated lattice momentum cut-off at A = 1fIa. We will have to work towards 
the large AIM limit in order to eliminate finite lattice effects from the already 
regulated and finite theory. After rescaling the continuum field components by 
<Po: = V'fK,1>0: the euclidean lattice action has the form 

SE = L [-I'>, 1>0:(0 + M-4 0 3 )1>0: + (1-81'>,)1>0:1>0: + A (1)0:1>0: - 1)2] (43) 
x 

where D is the lattice Laplace operator, with the lattice spacing a set to one 
for convenience. The mass parameter and coupling constant are related to 
the hopping parameter and lattice coupling A by m5 = (1 - 81'>, - 2A) II'>"I'>, 

AQ = A/(41'>,2). 
Stochastic algorithms exhibit severe critical slowing down for small values 

of the regulator mass M in the range M < 1. In this regime the M-4 D3 term 
leads to a dramatic broadening of the frequency spectrum of the Fourier modes. 
We developed a Hybrid Monte Carlo algorithm with fast Fourier acceleration 
which solved the problem of critical slowing down very effectively. 

The lattice model exhibits two phases, as expected. The symmetric phase 
with full 0(4) symmetry is separated by a second order phase transition line 
from the broken phase which has a residual 0(3) Goldstone symmetry for every 
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fixed value of A in the (/\', M) plane. The phase diagram is shown in Fig. 2 in 
the A = 00 limit. Tuning the hopping parameter /\, to the critical line for fixed 
M corresponds to the limit of trivial scalar field theory in the continuum. In 
this limit, the dimension eight operator M-4¢aD3¢a becomes irrelavant and 
while mH ---+ 0 in lattice units, MR/mH ---+ 00, so that ghost effects from the 
higher derivative term disappear . In our notation mH is the physical Higgs 
resonance mass and MR designates the real mass parameter of the exact ghost 
pole location in the complex plane. The continuum limit of the higher derivative 
theory without the underlying lattice structure is equivalent to the tuning of /\, 
towards zero along a line of fixed MR/mH ratio . In this limit, which is depicted 
in Fig. 1 as the solid line, the higher derivative term M-4¢a 03¢a cannot be 
treated as an irrelevant operator in the Lagrangian. 

.......•...... 
Higgs 

0.3 

/./·tIC phase 

symmetric 
phase 

o 	 0.2 0.4 0.6 0.8 1 
aM/(l+aM) 

Figure 2: The phase diagram of the lattice model at infinite bare coupling. The 
dotted line is calculated in the large-N expansion. The solid line displays the 
fixed MR/mH ratio towards the continuum limit of the higher derivative theory. 

4.2 Higgs Particle in the TeV Mass Range 

Most of our computer simulations were performed on lattices which have cylin­
der geometry in the size range 163 x 40 to 203 X 40 . On each lattice with a 
given parameter set 20,000 to 60,000 Hybrid Monte Carlo trajectories were ac­
cumulated in the Fourier transformed variables. On each time slice T the radial 
Higgs field p(T) and the 0(4) unit vector na(T) at zero three-momentum were 
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defined as 
- 1 ~ 
¢o(T) == 3" L.J ¢a(T, x) == p(T)no(T) . ( 44) 

L x 

The renormalized vacuum expectation value v and the Higgs mass m H were 
determined from the correlation functions (no(O)no(T)) and (p(O)p(T)). 

The fitting procedure requires a theoretical understanding of the energy spec­
trum which is organized in the large volume limit according to inverse powers 
of the linear spatial size L. The tower of 0(4) rotator states forms the most 
densely spaced energy levels with level spacing of the order (v2 L 3 ) -1. The rota­
tor states dominate the correlation function (no(O)no(T)) [18]. The Goldstone 
excitations have a level spacing which is of the order L -1. In the correlation 
functions at zero three-momentum only Goldstone pairs can contribute which 
have rather large energies in the volumes we are considering. The largest level 
spacings correspond to radial Higgs excitations with a finite energy gap mH 

above the ground state. 
A simultaneous fit to mH and v was performed on the data. The results 

are shown in Table 1 where all points correspond to a cylinder size of 163 x 40 

Table 1: Simulation results at M = 0.8 

K, "\0/(10+"\0) mH v mH/v 

0.056 0.761 0.40(2) 0.058(2) 6.8(4) 
0.056 0.761 0.32(2) 0.045(1) 7.1(6) 
0.105 0.185 0.30(2) 0.066(2) 4.6(4) 
0.115 0.086 0.21(3) 0.084(2) 2.5(4) 

except for the second entry with size 203 x 40. The radial Higgs excitation in our 
simulations corresponds to a stationary state with real energy. A voided level 
crossing with the lowest Goldstone pair of zero total momentum would only 
occur in larger spatial volumes. In our preliminary analysis the finite volume 
profile of the Higgs resonance was not developed. This rather crude approxi­
mation, where we identified the measured energy level of the radial excitation 
with mH, is being subjected to systematic finite volume resonance analysis. 

To compare our new results with earlier Higgs mass values, the ratio mH /v is 
plotted as a function of the bare coupling constant in Fig. 3. If our preliminary 
results will not change after a more developed analysis, mH 2: 1 Te V with a 
ghost location in the multi-TeV region implies the existence of a strongly inter­
acting Higgs sector, a scenario which was excluded in previous lattice studies. 
Our heavy Higgs mass values in the Te V range do not represent conventional 
triviality bounds [19, 20, 21, 22, 23] at fixed bare coupling constants. Since 
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the ghost pair evades easy experimental detection without violating unitarity, 
Lorentz invariance, or any other sacred principles, a nonperturbative reinter­
pretation of the triviality Higgs mass bound becomes necessary. 

To test the strongly interacting Higgs sector, we also determined the renor­
malized coupling constant in the symmetric phase. The preliminary results show 
stronger couplings in comparison with the lattice regulated 0(4) model. 

8 
mH/v 

6 

~ 4 

~ 2 
0 

0 
0 0.2 0.4 0.6 0.8 1 

~o/(10+~o) 

Figure 3: The circles are from our simulation results. They are compared 
with the simple 0(4) model on a hypercubic lattice [19,20,21] (squares), with 
Symanzik improved action on a hypercubic lattice [22] (star), and with dimen­
sion six interaction terms added on F4 lattices [23] (triangle). 

5 Quantum Gravity 

It is well known that Einstein's theory of gravity fails the renormalizability test. 
An extended theory of general relativity with higher derivatives, based on a 
Lagrangian which is quadratic in the curvature, becomes a renormalizable field 
theory with very interesting mathematical and physical properties [6, 7]. 

5.1 Higher Derivative Lagrangian 

The action of this extended gravitational theory has three independent terms, 

( 45) 
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where ",,2 = 327rG, and 0., /3, and, are dimensionless numbers (coupling con­
stants); G = 6.67 x 10-8cm3 g -1 s-1 is the fundamental Newtonian constant. 

In our notation (- + ++) signature is used. The curvat ure tensor is defined 

by R~QV = aJ-Lr~Q + ..., and the Ricci tensor is given by RJ-Lv = R~)\V. The 
Gauss-Bonnet topological invariance requires that the integral 

(46) 

is a constant for a manifold with fixed topology. It actually vanishes for space­
time manifolds which are topologically equivalent to flat space-time. Therefore, 
one can only construct two independent additions to the Einstein-Hilbert action 
which are quadratic in the curvature and fourth order in the derivatives. The 
addition of a cosmological term will be considered later. 

The first term in Eq. 45 with, = 2 corresponds to the original Einstein­
Hilbert action with second order derivatives in the metric tensor gJ-Lv. The last 
two terms, expressed in terms of fourth order derivatives of the metric tensor, 
are in the class of higher derivative field theories. Although the higher deriva­
tive terms in the action have very little effect on the low-frequency domain of 
classical experiments, at high frequencies they dominate the quantum behav­
ior of the theory. They provide the stabilization of the divergence structure at 
short distances, with power-counting renormalizability of the quantum loops. 
In linearized perturbation theory the presence of the fourth order derivative 
terms leads to a graviton propagator with asymptotic momentum behavior q-4 

reducing the degree of divergences to :::; 4 in all graviton loops. 

5.2 Gravitational Potential and Particle Content 

It is straightforward to calculate the generalized gravitational field equations 
from the action of Eq. 45, augmented by a matter action [7]. For a point 
particle with TJ-Lv = 8288M 83 (x), the gravitational field solution has the form 

_",,2 M ",,2 M e-rn2T ",,2M e-rnoT 

V = -- + ----- - ----- (47)
87r,r 67r, r 247r, r 

where m2 = ,1/2(0.",,2)-1/2 and ma = ,1/2[2(3,8 - 0.)",,2]-1/2. The Newtonian 
result at large r values is V = -2GMr- 1 which requires the choice, = 2. As 
expected on dimensional grounds, the higher derivative terms only produce an 
appreciable effect at small distances from the source of the gravitational field, 
at a scale set by ma and m2 . At the origin, the Newtonian singularity l/r is 
cancelled and V in Eq. 47 tends to a finite value ",,2M(247r,)-1(ma -4m2). 
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Eq. 47 has a Newtonian limit for positive values of mo and m2 . This constraint 
requires the positivity conditions 

a> 0, 3{3 - a > 0 ( 48) 

on the couplings, eliminating the oscillatory behavior of l/r terms at infinity. 
The domain in the coupling constant space which is consistent with the posi­
tivity conditions will be referenced later as the physical region of the couplings. 

A detailed analysis of the linearized radiation in flat background space-time 
shows that there are eight dynamical degrees of freedom in the gravitational 
field. Two of these excitations correspond to the familiar massless spin-2 gravi­
ton. Five more correspond to a massive spin-2 particle with mass m2. The 
eighth corresponds to a massive scalar particle with mass mo. Although the 
linearized field energies of the massless spin-2 and massive scalar excitations are 
positive definite, the linearized energy of the massive spin-2 excitations is nega­
tive definite. This feature, as we have seen, is characteristic of higher-derivative 
models and requires quantization with indefinite metric in the Hilbert space. 

The same constraints on the couplings which kept the masses mo and m2 posi­
tive also eliminates the possibility of tachyon excitations in the dynamical fields . 
These constraints will have a significant effect on the consistency of asymptotic 
freedom in the couplings at short distances. 

5.3 Astronomical and Laboratory Tests 

The static solution as given by Eq. 47 can be viewed as the gravitational poten­
tial of a star and it can be used to set limits on mo and m2 from astronomical 
observations. It is perhaps surprising that the constraints are very weak even 

from high precision observations. For example, the orbital precession of Mercury 
is known to about 10-9 accuracy. The corrections from the higher derivative 
terms are proportional to e-mOT" and e-m2 T" where the radius of Mercury's orbit, 

~ 5 x 106 km, has to be used for the value of r. This constraint on the masses 
is only ~ 5 x 10-11cm -1, 

It was pointed out [7] that there is no discontinuity in the coupling to light 
in the limit mo, m2 ~ 00. This implies that measurements of light bending 
by the sun do not yield more stringent constraints than other astronomical 
observations. One might expect that laboratory experiments on the Newtonian 
law of the gravitational 1/r2 force, as measured on the scale of meters, are more 
restrictive. Indeed, Cavendish type experiments are sensitive on the scale of 
a meter and they increase the lower bound on the two mass values to m ~ 
10-4cm- 1 . 
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In our discussion I will assume that mo and m2 are both in the mass range 
of the Planck scale mp = (fic/C)1/2. The Planck mass mp = 1.3 x 1019CeV/c2 

is more than thirty orders of magnitude larger than astrophysical, or laboratory 
lower bounds. There is no classical experiment which can signal the presence of 
higher derivative terms in this mass range. After a detailed understanding of the 
quantum theory, it will become a challenge to calculate more direct quantum 
effects of the new mass scale set by the higher derivative terms. 

5.4 Renormalization and U nitarity 

In the classical theory negative energy excitations were found in the linear ap­

proximation which signal wave propagation outside the light cone with acausal 
behavior. The quantization procedure preserves the positivity of the energy 
spectrum when indefinite metric is introduced in the Hilbert space of state vec­
tors . A stable ground state is secured at the cost of states with negative norm. 

The investigations of renormalization properties and the short distance be­
havior of quantum fluctuations are convenient in euclidean space, with a differ­
ent parametrization of the gravitational action, 

s = / d4xv'9{ j-2W - 3;2 R2 - ~2 R + 8A//,\;4 } . (49) 

In this notation [24] sign gj.LV = +4, 9 = detgj.Lv, W = R~v - (1/3)R2 , and 
A = Ak2 is a dimensionless cosmological constant which was not introduced 
earlier. The parameters wand j can be expressed in terms of a and {3 by 
simple relations. 

The euclidean propagator in the quadratic approximation about flat eu­
clidean background is given by 

~( 2) _ P2 Po 
(50)q - q2 + -2 q4 m 2 

where Po is the spin-zero projection operator and P2 is the spin-two projection 
operator. The asymptotic behavior of the propagator is ~(q2) ~ 1/q4 and it can 
be shown that the loop expansion around the quadratic part of the euclidean 
action is renormalizable [7]. 

The particle content of the theory is exhibited by the propagator when writ­
ten as a sum of simple pole terms, 

~(q2) = P2 _ P2 _ Po + Po (51 )
q2 q2 + m~ q2 q2 + m6 

The first term in Eq. 51 is identified as the massless spin-two graviton . The sec­
ond term is the massive spin-two particle which is quantized with negative norm 
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as evidenced by the negative sign of its contribution to the full propagator. The 
third term is not part of the spectrum, it is a gauge artifact of the quantization 
process. The last term describes the massive spin-zero particle with positive 
norm. 

Since the massive spin-two particle can decay into a massless graviton pair, 
the Lee-Wick mechanism of higher derivative Quantum Electrodynamics was 
cited for the protection of the unitarity properties of the S-matrix in the presence 
of negative norm states [25]. The spin-two ghost state is split by the graviational 
interaction into a complex conjugate pole pair in graviton scattering amplitudes 
and the Lee-Wick mechanism is expected to maintain a logically consistent 
theory. 

5.5 Asymptotic Freedom 

The asymptotic behavior of quantum gravity with higher derivatives has been 
studied by several workers[26, 27, 24J. Only one of the three references came up 
with the correct answer, I believe. 

In [27] the one-loop counterterms were calculated and the results of [26] were 
corrected. The analytic form of the one-loop counterterms allowed the calcula­
tion of the ,B-function to the same order. It was concluded that the theory is 
asymptotically free in the physically acceptable region of the coupling constants 
which is selected by the absence of tachyon instabilities in fiat euclidean space. 
The condition for that requires a negative R2 term in the euclidean action. 

Although the conclusions of [27J that the tensor sector (the coupling con­
stant of the W 2 term) exhibits asymptotic freedom is correct, the short distance 
behavior in the R2 sector was changed completely [24]. In particular, the cou­
pling constant associated with the R2 term and the dimensionless cosmological 
constant have a triviality problem in the tachyon-free physical region of the cou­
plings. Asymptotic freedom can be maintained only in the unphysical region of 
the couplings. 

Although very little physics has been studied in the model, I am quite con­
vinced that the picture of asymptotic freedom is basically correct. One has to 
choose the starting point of the loop expansion around the quadratic part of the 
euclidean action in de Sitter background. The expansion around flat euclidean 
space remains problematic and unstable . I hope to return to the continuation 
of the story at a future Johns Hopkins workshop. 
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