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Abstract 
An interpretation of quantum mechanics in terms of classical concepts, (beables', 
due to de Broglie, Bohm "and Bell (BBB) is generalized and further developed. By 
assuming that all physical quantities take discrete values on sufficiently small scales, 
we can use this interpretation to give trajectories for all possible quantities, including 
the position of a particle, its spin etc. When applied to position, it is shown that in 
the continuum limit this interpretation reduces to the causal one of Bohm. As an 
illustration, the BBB trajectories are computed explicitly in two simpie models. 
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1 Introduction 

In the usual interpretation of quantum mechanics, a description of the sub-atomic 
world in term s of classical concepts is rejected. In stead of attributing specific prop­
erties to microscopic systems only the possibility to observe these properties is con­
sidered. To be specific we may consider a particle in a one dimension. Classically 
this particle has a position x( t) and a momentum p(t) for all times t. In a quantum 
mechanical description one can still observe that the particle has a position x( t l ) by 
doing a suitable experiment or one can observe a momentum P(t2) by doing a differ­
ent experiment. However these two experiments are non-compatible (hence tl i= t 2 ) 

and the classical picture that the particle at the same time has a sharp position and 
a sharp momentum cannot be verified. In the Copenhagen interpretation of quan­
tum mechanics, this non-commensurability of non-commuting observables is taken 
one step further by stating that the quantum particle only potentially has a position 
and momentum; these properties do not actually exist, unless a specific measure­
ment is performed. The belief that it is impossible to assign precise values (,hidden 
variables') to observables has resulted in proposals for no-go theorems against such 
hidden variable interpretations of quantum mechanics [1,2, 3, 4]. 

It is not clear, however, that the denial of position and momentum on a micro­
scopic level is really unavoidable. In fact there are attempts to reconcile quantum 
mechanics with a description in terms of classical concepts like position and momen­
tum, and Bell has discussed the loopholes in the various no-go theorems in refs. [2, 5]. 
A realistic interpretation in terms of 'be-ables' [6] rather than 'observables' is appeal­
ing because it avoids the notion of a conscious observer and avoids a 'cut' between 
the microscopic, quantum, world and our macroscopic world of classical phenomena. 
Also it allows one to make sense out of a wave function of the Universe [7, 8], which 
might be relevant for a better understanding of quantum cosmology. 

Two of the better known beable interpretations of quantum mechanics are the 
'causal interpretation' due mainly to Bohm [9, 10] (see ref. [11] for a review) and 
the 'stochastic interpretation' associated with Nelson [12, 13, 14] (see ref. [15] for 
a review). Both approaches provide trajectories x(t) for the particle position which 
correspond to a given wave function 'l/;(x, t). This wave function is a solution of the 
Schrodinger equation, 

iTi8t 'l/;(x, t) = -Ti28;'l/;(x, t)/2M + V(x)'lf(x, t), (1) 

where M is the particle mass and V( x) the potential. 
In the causal approach, the trajectories x( t) are found from 'l/; by solving 

x = 8;r:S(x, t)/M (2) 

with S(x, t)/Ti the (real) phase of the wave function, 'l/;(x, t) = R(x, t) exp(iS(x, t)/Ti). 
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In the stochastic approach one has to solve the Langevin equation, 

(3) 

Here TJ(t) is white noise with (dTJ(t)) = 0 and (dTJ(t)2) = dt and v is an arbitrary, but 
sufficiently small diffusion constant oc h. Note that for v = 0 this equation reduces 
to the causal one of eq. (2). 

The probability density of an ensemble of particles which move according to equa­
tion (2) or (3) obeys the continuity equation 

(4) 

which follows from (the imaginary part of) the Schrodinger equation. Assuming that 
the probability distribution of the particle positions equals I~ 12 at some initial time to, 
it will be equal to 1~12 for all later times as well. This assumption on the initial particle 
distribution was modified by Bohm [16] which may lead to observable deviations from 
standard quantum mechanics. In this paper we shall not follow this modification but 
assume that also the initial positions are distributed according to I~ 12. Then all 
predictions of quantum mechanics involving only position are reproduced in terms of 
particles moving according to eqs. (2) or (3). 

Moreover one can make contact with the classical equation of motion for the 
particle as follows. In the stochastic approach one first introduces suitable forward 
and backward time derivatives Dt and D; (see [14, 15] for the definitions). Then 
one can show that [17] 

lM(D+ D- + D- D+)x = -8 [V _ 8;R (h2 - 4M2v2)] (5)
2 t t t t :z: 2MR . 

Nelson chooses v = hiM [14] and then this equation resembles Newton's equation, 
up to the quantum modification x ---+ ~(DtD; + D; Dt)x. For v = 0, which is the 
causal case, Dt = Dt = 8 t and one recovers Newton's equation up to a modification 
of the potential, V ---+ V + Q, where the additional piece is the 'quantum potential', 

(6) 

These approaches show that it is possible to give an interpretation of quantuIIl 
mechanics, where the particles actually have a definite position whether they are 
observed or not. They give a counter example to the assertion of the usual Copen·· 
hagen interpretation that well-defined and sharp particle trajectories are not allowed 
by quantum mechanics. It has been objected, however, that these interpretations 
are too limited: It is not obvious how to extend them to observables which cannot 
follow continuous trajectories, like spin or fermion number. A related critisism is 
that position space is singled out and it is not clear why this should prevail over e.g. 
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momentum space [18, 19]. Also the possibility to generalize these interpretations to 
relativistic quantum mechanics or field theory has been questioned. These critisisms 
have been put forward already a long time ago [20, 21, 22] and have been answered 
already to some extend by Bohm [23]. 

In this paper we focus on yet another beable interpretation, which is less known 
and less developed than the causal and stochastic interpretations, but which appears 
to obviate the critisisms just mentioned. It will be seen to include the causal inter­
pretation as a special case but it can also be applied to discrete variables like spin 
and to other non-position variables like (angular) momentum. Also an extension to 
relativistic field theory is in principle straightforward. 

In ref. [24] Bell has sketched this beable interpretation which provides stochastic 
trajectories for discrete quantities (he considers fermion number) . Below we shall 
extend and further develop this approach and we shall illustrate it with explicit 
examples. We argue that this 'de Broglie-Bohm-Bell' (BBB) approach can be applied 
to any observable, position, momentum, spin etc, by making the assumption that on 
a sufficiently small scale all quantities take discrete values. It is shown that the 
position trajectories x(t), computed in the BBB fashion, reduce in the continuum 
limit (where the discretization can be ignored) to those of the causal approach, or ­
choosing a different version of BBB - to the stochastic approach. 

We shall also argue that this beable interpretation can be taken to an extreme 
(but in our opinion natural) form where all conceivable observables simultaneously 
have a sharp value, as is the case in a classical description. From a given wave 
function, one can compute trajectories for any observable Oi, i.e. definite values 
v( Oi) evolving in time. Of course these trajectories in general lack the classical 
correlations: i.e. v(J(OI,02)) f= J(V(Ol),V(02)), where J denotes some arbitrary 
functional relation. This is obvious for non-commuting operators, but in order to 
circumvent the Kochen-Specker (KS) type no-go theorems [3], it must also be the 
case if the operators commute. Only when 'lj; is an eigenstate of the commuting 
operators the classical correlations hold for these observables on the microscopic level 
of the trajectories, otherwise the correlations are only restored in the classical regime. 

In the following we shall first explain and generalize the BBB interpretation of 
quantum mechanics in sect. 2 and discuss the relevance of the KS theorem for 
our approach. In sect. 3 we show the connection with the causal and stochastic 
approaches. A technical part of the argument is deferred to an appendix. In sect. 4 
we illustrate the BBB approach by computing the trajectories for a particle moving 
on a one dimensional lattice and for a spinning particle in a magnetic field. Sect. 5 
contains a discussion of possible objections. 

3 




2 	 de Broglie-Bohm-Bell interpretation of quan·, 
tum mechanics 

It is sometimes argued [19,24] that in the end all measurements amount to observing 
(pointer) positions and that it is sufficient to give a beable interpretation for location. 
Arguing this way, Bell focussed on the spatial distribution of fermion number and 
Bohm exclusively works in the position representation. However, specifying that only 
a single quantity is a beable with all others being merely observable, seems arbitrarYl 
even if this quantity is as fundamental as position. Therefore we propose to give all 
observables a beable status and we shall explore this point of view below. First it is 
shown how Bell's interpretation can be applied to an arbitrary observable. After that. 
we discuss how the KS theorem, which appears to forbid a realistic interpretation for 
all observables simultaneously, is circumvented. 

2.1 Trajectories for any observable 

In order then to apply Bell's beable interpretation [24] to an arbitrary observable, we 
shall make the assumption that all physical quantities are discrete and bounded. For 
those quantities that we observe to be continuous, like e.g. the position of a particle, 
we assume that the minimal separation between two consecutive values is very small, 
e.g. of the order of the Planck scale. The size of the system is also taken to be finite, 
such that also momenta are discrete. We shall assume that the dynamics of this finite 
(but huge) number of degrees of freedom follows from a quantum mechanical wave 
function which is a solution of the (continuous time) Schrodinger equation. 

Consider a solution I~(t)) of the Schrodinger equation for a subsystem of this 
discrete and finite world, 

iIi8tl~(t)) = HI~(t)), (7) 
where H is the Hamiltonian for this subsystem. Suppose we want to find the trajec­
tories for an arbitrary but maximal set of commuting observables Oi, (i = 1"", I) 

N iwhich have eigenstates 10~1' 0~2' ••• , O~I) with ni = 1"" labeling the finite and 
discrete eigenvalues of Oi. For ease of notation we suppress the index i such that the 
completeness relation simply reads 1 = En IOn) (On I. However, it should be kept in 
mind that each On represents a maximal set of quantum numbers. 

The continuity equation in the 0 representation, which follows from the Schrodinger 
equation (7) is 

(8) 
171 

The 	probability density Pn and source matrix Jmn are defined by 

Pn ( t ) 1 ( On I~ (t ) ) 1\ 
Jnm (t ) = 21m { (~( t )IOn) (On IH 1Om) (Om I~ (t ) ) }. (9) 

4 




In passing we note that we have deviated slightly from Bell's approach, because 
we assume that the states {Ion)} form a basis in Hilbert space. In Bell's paper [24] the 
probability density P and source J for a specific observable Oi is considered, while 
summing over the remaining quantum numbers. In his approach the probability 
density for observable Oi is then defined by P~ = Eq I(o~, qlt/J)1 2 with q denoting the 

O~j, j ¥- i, and a similar modification in his definition of J~m' 
We want to interpret this system in terms of beables: at each time the observable 

actually has a value On. Since a trajectory for a discrete quantity cannot be continuous 
(unless it is time independent) we cannot use a differential equation of motion and 
it is natural to expect stochastic dynamics . In such a description the jumps of the 
beable are governed by a transition probability T mndt which gives the probability to 
go from state On to Om in the time interval dt. The transition matrix T gives rise to a 
time dependent probability distribution of On values, Pn(t), which has to satisfy the 
master equation 

(10) 
m 

In order to use this stochastic description for the quantum mechanical system, we 
have to reconcile (8) with (10). For that it is sufficient to solve T, for given P and J 
from 

(11) 

with Tmn 2 O. Since Jmn = -Jnm this gives only N(N - 1)/2 equations for the N 2 

elements of T and there is a lot of freedom to find solutions. Bell chooses a particular 
solution where for n ¥- m, 

(12) 

For a given T and an arbitrary but sufficiently small time discretization step dt, one 
can compute trajectories from the transition probabilities Tnmdt. The probability 
Tnndt to stay in the same state, is not fixed by eq. (11) or (12) but follows from the 
normalization 

(13) 
m 

However, one can add to the Tnm defined in (12) any solution TO of the homoge­
neous equation, 

T~mPm - T~nPn = O. (14) 

Again there is lots of freedom, but perhaps a natural solution is to take a gaussian 
Ansatz, T~m ex exp( - F~m/40-), where the antisymmetric part of Fnm is chosen to be 
m - n. The symmetric part of F is then fixed by (14), leading to 

T o { [ 20-Iog(Pn /Pm)]2/}ex exp - n - m - 40- (15)
nm (n - m) . 
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For (J" ~ 0 this extension of Tnm is ex 8nm and has no effect on the trajectories, for 
finite (J" it adds to the probability for jumps over larger values of In - mi. 

For the sake of illustration we write down a third solution 

T~m = 1, T~n = Pm/Pn, n > m, (16) 

and T~n following again from (13). 
The choice Bell made looks more simple than extensions with non-zero TO but a 

priori any solution of (11) leads to the same time dependence of expectation values 
involving the observables Oi and is compatible with quantum mechanics. In order to 
put a constraint on the choices for Tnm we need to judge the resulting trajectories . 
In particular we have to verify that the trajectories become solutions of the classical 
equations of motion in the classical region where S > > n. To investigate this it is 
appropriate to use 'position' as observable, for which we then must recover Newton's 
equations of motion. 

We shall not carry out this investigation for general solutions of (11) but in the 
next section we shall show that Bell's choice (12) leads to the de Broglie-Bohm 'causal' 
interpretation in the continuous positions limit and the gaussian extension (15) leads 
to Nelson's 'stochastic' interpretation, provided we choose the width of the gaussian 
sufficiently small. The third solution (16) leads to discontinuous trajectories and 
must be rejected. 

2.2 Trajectories for all observables 

In the above it is shown that a trajectory can be assigned to an arbitrary observable. 
Given this possibility, one has two options for a realistic interpretation of quantum 
mechanics: Either one selects a preferred set of observables for which definite values 
are assumed to exist, or one attempts to assign definite values to all observables 
simultaneously. The first option is taken for example in the causal and stochastic 
interpretations. The second option, which we want to advocate in this paper, at first 
sight seems to be forbidden by the KS theorem. 

The KS theorem, in the simplified form discussed in refs. [4], starts from the 
assumption that a functional relation among mutually commuting operators should 
also hold for the values one would assign to them. Denoting the value of an operator 
Oi by v( Oi), the assumption is that for commuting operators Oi, i = 1, ... ,n, 

(17) 

where the system may be described by an arbitrary wave function and where f 
denotes any functional relation. the KS theorem follows from the observation that 
for certain sets of operators one can write down a number of relations among subsets 
of mutually commuting operators, which can be shown to violate the assumption 
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(17). Since commuting observables can be measured simultaneously, the condition 
(17) is considered to be necessary to avoid conflicts with the predictions of quantum 
mechanics and it is concluded that it is not possible to ascribe values to all observables 
simultaneously. 

However, as was recognized already by Bell in refs. [2, 5], there is a hole in the 
net. Part of the assumption is that the system may be described by an arbitrary 
wave function but in fact the constraint (17) must only hold for a wave function 
during a measurement. If a measurement on the quantum system is performed, one 
has to consider the combined wave function, with arguments in the much larger space 
of degrees of freedom of the original system plus measuring device. For a success­
ful measurement, this combined wave function develops sharp peaks with negligible 
overlap and interference, around configurations which correlate an eigen state of the 
quantum system with a state of the measuring device showing the result of the mea­
surement, see e.g. ref. [25]. The BBB trajectory of the system follows one particular 
peak of the wave function. Since there is negligible overlap and interference from the 
other peaks these can be neglected for the evolution of the BBB trajectory, just as if 
the microscopic state has evolved into a mixture of eigenstates. See also ref. [28, 26] 
for a discussion of the measurement process in the causal interpretation. 

If one accepts the constraint that condition (17) must only hold for wave functions 
during measurement and for observables that commute with the observable being 
measured, the KS theorem looses its sting and one can use the BBB approach to assign 
definite values to all observables simultaneously. Thereto one simply applies the 
prescription given above to any chosen set of observables, some of which may mutually 
commute. In general the constraint (17) will fail to hold, even if the operators involved 
commute. However it was discussed above that during a measurement the wave 
function of the quantum system effectively evolves into an eigenstate of the observable 
being measured, and then the constraint (17) holds among any set of operators that 
commute with the one being measured. 

Connection with the causal and stochastic in­
terpretations 

To simplify the discussion, we consider a particle in one dimension. Following our 
assumption that all degrees of freedom must be discrete and finite, we restrict the 
positions to the sites of a one dimension lattice, x = an with n = 1, ... , N and a the 
lattice distance. The Schrodinger equation for wave functions 'ljJ (x) is a discretized 
version of eq. (1), 

ifi8t 'ljJ(x,t) = H'ljJ(x,t) 
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li2 

= ---2 [~(x + a, t) + ~(x - a, t) - 2~(x, t)] + V(x)~(x, t). (18)
2Ma 

Here we have chosen a simple discretization for the Laplacian, 

(19) 

with n = x/a, m = y / a and 8rn ,n the Kronecker delta. Notice that this discrete 
laplacian is hermitian, which is necessary for a unitary time evolution, i.e. to obtain 
the continuity equation (8) from the Schrodinger equation. The boundary condition 
on ~(x, t) will not be important, but to be specific we shall impose periodicity. 

Following the same steps as above, we define the probability density Pn and the 
matrix Jrnn as 

(20) 

Here we label P, J and the Hamiltonian H with the integer lattice sites and suppress 
the argument t. More explicitly we find for Jrnn, 

For small discretization step a, and wave functions that are smooth on this lattice 
scale, we can write for the shifted wave functions 

~(x+a) = ~(x)+a[R(x)'exp(ili-1S(x))+R(x)ili-1S(x)'exp(ili-1S(x))+O(a)], (22) 

where we use the polar decomposition ~ = R exp(iii -1 S) and derivatives defined by 
F(x)' = (F(x + a) - F(x))/a. To leading order in a it follows that 

Jmn = ~a [S(an)'PnOn,m-l - S(an)'pnon,m+ll· (23) 

At this point we have to choose a prescription to find the transition matrix T 
from J. First we consider Bell's choice specified in eq. (12). Then we find 

[S(an)'/Ma]8n,rn_1, S(an)' ~ 0, (24)
-[S(an)'/Ma] 8n,rn+1, S(an)'::; O. 

This shows that the nearest neighbor interactions in the Hamiltonian lead to tran­
sitions only between neighboring sites. For positive S( an)' the particle can jump 
from site n to n + 1 with probability IS( an )'Idt / M a and for negative S( an)' it can 
jump from n to n - 1 also with probability IS(an),ldt/Ma. Since each jump is over 
a distance a, the average displacement in a time interval dt is dx = S( x)' dt/M and 
since S' ~ 8x S for a ~ 0 this suggests that in the continuum limit, the particles 
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have an average velocity x = {)~5/ M, as is the case for the trajectories in the causal 

p rescription given in eq. (2). 
To show that the trajectories for a ~ 0 become smooth and therefore identical 

to those of the causal approach, we also have to verify that the dispersion vanishes 
in the limit that a ~ O. This is carried out in the appendix, where it is shown that 
the dispersion in the position vanishes ex a1

/ 
2 for a ~ O. On scales which are large 

compared to the discretization step a, the causal differential equation(2) provides 
a good description of the particle trajectories. However, on scales comparable to 
the lattice distance a, this description breaks down and the dynamics is seen to be 
discontinuous and stochastic. 

As discussed above, we can modify the transition matrix by adding an extra 
term TO of the form (15) to T. This extra term introduces transitions between 
more distant sites and it may lead to deviations from a smooth causal shape of the 
trajectories in the continuum limit. Let us assume that the width of the gaussian 
is sufficiently small, such that only jumps are likely for which we can approximate 
(log Pn -log Pm )/(an - am) by 2R( an)' / R( an). This also requires R to be sufficiently 
smooth on the lattice scale as before. Then the transition probability to go from n 
to m is given by, 

Here we have added Q.To to the T of eq. (24) with a free parameter Q. and assumed 
that 5' > 0 for definiteness. 

From this expression we find the expected value for the jump, 

(m - n) ~ dt[5(an)'/Ma + Q.O'aR(an)'/R(an)]. 	 (26) 

Taking into account also the dispersion due to the finite width of the gaussian distri ­
bution provided by TO, we arrive at a Langevin equation for the time dependence of 
the particle position x = an, 

x(t + dt) 	 = x(t) + (am - an) + ((am - an - ~(am - an)y)1/2dTf + O(a2), 

~ x(t) + (5(x)'/M + (Q.O'a2)R(x)'/2R(x))dt + ~(Q.O'a2)1/2dTf + O(a~~.7) 

Here dTf gives the (rescaled) gaussian fluctuations, (dTf2) = 2dt. This coincides with 
the stochastic equation (3) with Q.O'a2/4 = v equal to the diffusion constant. If 
Q.O'a2 vanishes when a ~ 0 then the causal trajectories are recovered; the value 
Q.O'a2 = 21i/M, which is finite for a ~ 0 but of the order of Ii, reproduces Nelson's 
stochastic dynamics, whereas still larger values for the dispersion lead to stochastic 
behavior on a macroscopic scale and are forbidden. This applies in particular to the 
extreem choice (16) for TO, where the particle can jump from a given position to any 
position with an appreciable value of R( x), even in the continuum limit. 
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Even though a large class of extensions with nonzero TO is possible it is not clear 
to us what a natural choice would be other than the most simple option TO = O. In 
the remainder we shall always use this minimal prescription in our illustrations. 

4 Some simple examples 

To illustrate how the BBB interpretation works in practise, we shall apply it to two 
simple quantum toy models. First we consider a free particle moving on a circle and 
second we look at the angular momentum of a heavy particle spinning in a magnetic 
field. 

4.1 Free particle on a circle 

For simplicity we consider a particle moving in one dimension. As discussed above, we 
discretize this system by restricting the positions to lattice sites. For convenience we 
shall impose periodic boundary conditions on the wave functions which implies that 
the particle moves on a circle. The main objective of this example is to show explicitly 
how the stochastic BBB trajectories turn into the causal Bohm trajectories in the 
limit of vanishing discretization a ~ 0, N ~ 00 for fixed volume L = N a. Therefore 
we have chosen to consider a free particle with V( x) = 0, for which solutions of the 
Schrodinger equation in the continuum limit and the associated causal trajectories 
in the Bohm approach can be found easily. From now on we shall use units in which 
n=1. 

In the continuum limit we can find solutions of the Schrodinger equation (1) with 
V = 0 which are of gaussian form, 

'lj;cnt(x, t) = C(t) L
00 

exp[-~A(t)(x + kL - vt)2 + iMv(x + kL)]. (28) 
k=-oo 

Here A( t) = (w 2 + it /M)-l and we have enforced periodicity by the summation over 
k. This solution represents a wave packet which moves with velocity v and has an 
initial width w (v and ware free parameters). The factor C( t) is a normalization 
constant which is irrelevant for the computation of the causal Bohm trajectories. 

To find these trajectories, one has to compute the phase of the wave function 
'lj;cnt, compute its gradient and solve the differential equation (2) for a set of initial 
positions Xo which are chosen with probability ex l'lj;cnt(x,0)1 2 • These steps can be 
carried out easily with the aid of a computer and a set of trajectories is shown in 
fig. 1 (dot ted lines). One recognizes the average velocity v of the particles, as well as 
their dispersion due to the spreading of the wave packet. 
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Figure 1: Trajectories for a free particle. Dotted lines are causal trajectories, com­
puted in the continuum limit; solid, jumpy, lines are discrete BBB trajectories. Figs. 
a-c have different lattice distance a = L/N, with N = 20, 100 and 500 respectively. 
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To find the trajectories in the BBB picture, we follow the steps outlined in the 
previous sections. Now the lattice distance is finite and we have to solve the dis­
cretized Schrodinger equation (18). Thereto we make a Fourier transformation to 
momentum space, 

i p¢(p, t) == L e- :r 1/;(x, t), p = 211r/ L, 1 == 0,···, N - 1. (29) 

In this representation the Hamiltonian is diagonal and has eigenvalues 

Ep = (1 - cos(ap))/a2 M, (30) 

which are the lattice equivalents of the familiar p2/2M. For a given initial wave func­
tion 1/;0 (x) the time dependent solution is 1/;(x, t) == N- 1 Lp exp[-i(xp + tEp)]¢o(p). 
In order to compare the discrete model with the version in the continuum limit, we 
shall use gaussian initial wave functions as in (28): 1/;0(x) ex: Lk exp[ - (x +kL )2/2w2+ 
ivM(x + kL)] with the same width wand initial velocity v. 

The (computer) algorithm to find the stochastic trajectories is straightforward: 
Suppose the particle is at site n; compute the wave function at the neighboring sites 
and from that the transition matrix Tn±l,n' Since the Hamiltonian couples only 
nearest neighbors, only transitions from n to n ± 1 are possible. Choose a small time 
step dt to find the probability to jump or to stay at the same site. These probabilities 
are given by dtTn±l,n and 1 - dt L± Tn±l,n respectively. To ensure that this last 
probability is non-negative, the time step has to be chosen sufficiently small but is 
otherwise arbitrary. In practise it is convenient to make the time step temporarily 
smaller if the particle happens to have jumped to an unlikely position, such that the 
transition density to move away is very big. Make the decision to jump or stay, using 
these probabilities and repeat the whole sequence as many times as desired. To start, 
choose an initial position x = na with probability a11/;0(x) 12. 

In fig. 1 we show a sample of these trajectories for different discretizations. The 
lattice size L = N a is used to set the scale and the continuum limit is obtained by 
taking N ~ 00 at fixed L. Figs. a-c are for N = 20, 100 and 500 respectively. In 
all cases the velocity v = 0.75, the width of the initial wave packet w / L = 0.15 and 
the particle mass M L = 5. The solid lines are the stochastic paths followed by the 
particle on the lattice, the dotted lines show the causal paths in the continuum limit 
which started from the same initial values. The classical trajectories in the continuum 
would be x = Xo +vt, which is approximately valid for the causal trajectories starting 
near the maximum of the gaussian wave packet, Xo = O. Trajectories which do not 
coincide with the path followed by the peak of the wave packet, feel the quantum 
potential (6) which drives the particles away from a linear path. 

In the stochastic BBB approach, the particle mayor may not jump to a neighbor­
ing site. The probability of jumping is guided by the wave functions, which follows 
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its deterministic evolution. In order for the particle to be able to keep up with this 
evolution, it m ust have sufficiently many opportunities to jump. This requires a 
sufficiently sm all time step. The paths in fig. 1 were computed with a time step 
dtl L = 5.10-5 1N. The scaling with liN is necessary to obtain the correct smooth 
continuum limit, cf. the computation in the appendix. 

On the coarse lattice, N = 20, the discreteness is clearly visible, and the deviations 
from the continuum curves are substantial. For increasing N, i.e. smaller lattice 
distance, it is seen that the particle follows more closely the continuum curves, in 
accordance with the discussion in the previous section. This illustrates how the 
paths which are stochastic on the lattice scale, actually resemble smooth and causal 
trajectories on much larger scales. 

Another aspect of the BBB interpretation we wish to emphasize in this paper is 
the possibility to give complementary (non-commuting) observables simultaneously 
a beable status. In the above example this means that we can also give trajectories 
for the momentum of the particle, or for arbitrary combinations of position and 
momentum like x +p. Actually the momentum trajectories are very simple for a free 
particle because the Hamiltonian is diagonal in this representation and consequently 
t here cannot be jumps in the value of the momentum, Tpq ex 8 pq . Hence, a figure with. 
momentum trajectories for the free particle whose position trajectories are shown in 
fig. 1, would show a set of constant values, distribute according to I,,);o(p) 12. 

Notice that almost never the classical correlation between momentum and posi­
tion, given by the equality p = M X, holds exactly. One obvious reason is that on the 
lattice scale the particle either is at rest or it jumps with infinite velocity. But also 
when one considers an average velocity, like in the continuum limit where the causal 
relation x = S( x)1M holds, the classical relation between momentum and change of 
position in general does not hold. This is clear in the above example, where x changes 
along the trajectories for almost all paths, cf. fig. 1, but where the momenta are 
constant. On the average the classical correlation x = piM holds as a consequence 
of Ehrenfest's theorem. If the approximation that the widths of the wave functions 
in position and momentum representation can both be neglected is valid, the usual 
classical correlations are approximately recovered for the most probable individual 
trajectories as well . 

4.2 Spinning particle in a magnetic field 

We shall further illustrate the possibility to simultaneously assign trajectories to 
non-commuting observables using a system for which it is not so obvious that any 
particular one has a preferred status. Thereto we consider a text book example of 
a system with discrete quantum numbers, which is provided by a spinning particle 
in a magnetic field . This example also serves to show that trajectories can be given 
for truly quantum mechanical, discrete, quantities like spin, or in this case, angular 
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momentum. 
In the approximation that the kinetic energy can be neglected (for large particle 

mass), the Hamiltonian for the spinning particle is given by 

(31 ) 

with the magnetic field chosen in the z direction and JL the magnetic moment. This 
Hamiltonian is diagonal in the Lz representation, 

(32) 

The integer eigenvalues m z of Lz range from -l to l, with l(l + 1) the eigenvalue of 
the total angular momentum L2 = L; + L~ + L~. 

With this Hamiltonian the trajectories for Lz are constant in time (the transition 
matrix for the m z values is diagonal). Therefore we focus on the components in 
orthogonal directions. A priory all orthogonal directions are equivalent, but the 
corresponding components of L do not commute. 

To find the trajectories we need the Hamiltonian and wave functions in an ar­
bitrary representation. It is a straightforward exercise to express Lz in a basis of 
eigenstates of a linear combination of Lx and Ly, 

LOt. = cos exLx + sin exLy, (33) 

which we shall call the ex representation. With the aid of a computer we can then 
again carry out the BBB prescription to compute trajectories of LOt.. As initial wave 
function we shall choose an eigenstate of Lx with eigenvalue m~. With this choice 
the initial value of Lx is always mx = m~ without uncertainty, but the initial values 
for other components LOt., ex =I- 0, is unknown. Only the probability for a particular 
value is known, PTna = 1(mOt.lm~) 12. 

First we consider a small value for the total angular momentum, l = 3. Only 
for large quantum numbers one expects classical behavior, and the system for l = 
3 should show strong quantum behavior. This is shown in fig. 2, where we plot 
trajectories of LOt. for ex = 0, 7r/4 and 7r/2 (LOt. = Lx, (Lx + Ly)/V2 and Ly). The 
initial value of Lx is m~ = 3. Initial values for other LOt. are chosen with probability 
PTn a In the point of view taken in this paper, the beable mOt. actually follows• a 
single trajectory, one from each figure, and also one for any other value of ex not 
shown here. Of course it is impossible to predict which particular trajectories will be 
realized. The discrete nature of LOt. is quite pronounced for this small value of land 
there is only a vague indication of the constraint mOt. = mx cos ex + my sin ex between 
the trajectories of the various components, which would classically be implied by the 
relation (33). The same lack of exact correlation would hold for operators which 
mutually commute (but do not commute with the Hamiltonian). For instance, we 
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Figure 2: Three BBB trajectories (for clarity two of the paths are shifted by ±0.2) 
for components of the angular momentum orthogonal to L z . The total angular mo­
mentum L2 = l( 1 +1) has 1= 3 and time is in units of the magnetic moment JL. Figs. 
a-c are for La = cos aLx + sin aLy with a = 0, 7r /4 and 7r /2 respectively. 
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Figure 3: The BBB trajectories for components of the angular momentum as in fig. 
2, but now for a larger value of the total angular momentum, 1 = 20. 
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Figure 4: Bifurcation of the BBB trajectories for L'J!' The dotted lines represent the 
classical paths m'J! = I cos(Jlt ± 8), 8 ~ 0.211", the full line is one of the quantum path 
from fig, 3c. 

could have shown trajectories for the operators L~, k = 2,3", '. As discussed in 
secL 2.2, we cannot impose the KS constraint v( L~) = v( La)k, k = 2,3", ' . The 
trajectories for all L~ follow from the same transition matrix Tmn, but for each of 
the L~ they follow from independently chosen transitions. Therfore it is clear that 
in general the actual trajectories do not obey the KS constraint. It holds only in the 
case that the wave function is an eigenstate of La. 

Next we consider a larger value for L2, such that we expect stronger signs of 
classical behavior. In the classical limit I ~ (X) , the components of the angular 
momentum should show Larmor precession with frequency VLarmor = Jl. Fig. 3 shows 
some trajectories for a system with I = 20, again starting from an eigenstate of L'J! this 
time with eigenvalue m~ = 16. Now one begins to sees that the trajectories become 
smoother and are concentrated round two oscillating paths ma ~ I cos(Jlt ± 8 - a). 

The phase shift 8 = acos(m~/ l) which characterizes the two bunches of trajectories, 
is such that L'J! assumes the initial value m~ = 16 for t = 0. The period 211"/Jl is 
characteristic of Larmor precession. 

In particular it is seen that the classical correlation between the (infinitely many) 
components La is getting restored: for all a the trajectories are concentrated around 
paths given by ma = I cos(Jlt ± 8 + a). These paths give the positions of the peaks 
in the wave function. Of course it is not surprising to find that quantum mechani­
cal averages approximate the correct classical behavior, since this is guaranteed by 
Ehrenfest's theorem. However, it is a virtue of the BBB interpretation that it can 
show how this comes about in a very explicit way. 
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It is a nice feature of the BBB dynamics, that it allows for a random bifurcation 
into two approximate classical trajectories starting from the same initial value. The 
wave function, e.g. in the L:/! representation is peaked along the two classical trajec­
tories, m:/! = 1 cos(lLt ± 8), where 8 = acos(m~/l) ::::::: O.27r in fig. 3. The paths followed 
by these peaks intersect at ILt = 7r /2 +k7r (integer k). Looking at the distribution of a 
large number of trajectories, one indeed recognizes this double peak structure of the 
wave function in the distribution of the paths and one would think from fig. 3 that 
the individual trajectories are like classical ones which are afflicted with quantum 
fluctuations. One would then expect that these fluctuations are getting suppressed 
for larger values of 1 such that the smooth classical oscillations are recovered for 
1 ~ 00. 

This is almost true, except that the trajectories can bifurcate when the wave 
packet guiding the jumps of m:/!, intersects with the second, empty, wave packet. 
Then they can interchange their role and the wave packet which previously was 
empty can become the guiding one. This is illustrated in fig. 4, where we plot a 
single trajectory, together with the two classical paths starting from the same initial 
value as the quantum path. One clearly sees that the particle path first follows one 
wave packet but switches to the second one at ILt ::::::: 3 ::::::: 7r, when the two packets. 
intersect. This unpredictability of the path is a salient feature of the stochastic BBB 
approach, which is absent in a causal description. 

Of course such a bifurcation should not occur for macroscopic observables. The 
reason we find it in the above example is that the wave function is very special: 
it has two peaks moving along classical paths, with strong interference and large 
overlap between these wave packets at ILt = (1/2 + k)7r when they intersect. This 
is a consequence of choosing an exact eigenstate of L:/! as initial state instead of 
an appropriate coherent state. When interference effects are strong, the particle 
trajectory may switch form one packet to the other. For Macroscopic wave functions 
interference and overlap between different wave packets is strongly suppressed and 
bifurcation of macroscopic trajectories is extremely unprobable. 

5 Discussion 

In this paper we have investigated a proposal for a realistic interpretation of quantum 
mechanics which is a generalization of Bell's beable approach sketched in ref. [24]. 
Contrary to the expectation based on the usual assertions that quantum mechanics 
is incompatible with classical concepts, beables, on a microscopic level, it was seen 
in sect. 2 that such beable interpretations are in fact very easy to give. The diffi­
culty is rather that the perspective offered in this section allows for too many beable 
interpretations which are compatible with quantum mechanics on the level of observ­
able, measurable, properties. The only guide line we then have, is that the beable 

18 




dynamics must reduce to classical dynamics in the appropriate limit. 
Even then various versions of a beable interpretation it la BBB are possible. In 

our preferred version we compute trajectories for a maximal set of commuting observ­
abIes; Bell only considers a subset. In the causal and stochastic interpretations one 
only considered position~like quantities, we propose to assume that trajectories are 
realized for all possible quantities, with simultaneously sharp values. Finally there is 
the freedom to extend the transition matrix T with a non-zero TO. This freedom is 
reflected in the known possibility [17] to interpolate between Bohm's causal and Nel­
son's stochastic interpretations. In our view the most natural strategy is to consider 
all possible maximal sets of commuting observables, with the minimal choice for the 
transition matrix, TO = O. Of course these choices are by no means compelling. 

A feature which is central to our approach is that on a fundamental level all physi­
cal quantities are assumed to be discrete. Starting from quite different considerations 
stemming from difficulties with black hole entropy, this point of view was also put 
forward in ref. [27] When all quantities are discrete, one would also expect that time0 

should be discrete. In fact one can further generalize the discussion of sect. 2 to a 
form which only assumes (discrete) unitary evolution of the wave functions. However, 
this introduces further ambiguities, which are only restricted by the requirement that. 
the the usual Schrodinger evolution is recovered in the continuous time limit. This 
seems to make a discrete time approach rather contrived and we have not pursued 
this interesting possibility in this paper. 

It is also worth stressing that, unlike the causal interpretation, the BBB inter­
pretation is not deterministic. Even though the evolution of the wave functions is 
strictly deterministic and time-reversible, the actual trajectories are stochastic on a 
fundamental level. This can lead to a strictly unpredictable time evolution. This 
happens for instance if the small stochastic jumps takes the particle to a 'neighbor­
ing' trajectory which deviates exponentially with time from the original one. This is 
the case e.g. if a wave packets splits up, or if it intersects with one (or more) other 
wave packets, leading to large interference effects. An example of this switching from 
one wave packet to another was shown in fig.4. 

It is often suggested that beable interpretations of quantum mechanics are in con­
flict with (general or special) relativity [11, 28, 29]. On the one hand the stochastic 
evolution of the beables singles out a frame in which the jumps to new values take 
place simultaneously. This singles out an absolute time and a three dimensional 
space, which is the border between 'past' space-time regions, where the beables have 
acquired their actual values, and the 'future' with only probabilities. This would 
obviously be at variance with special relativity. Recently a detailed argument has 
been presented in refs. [31] that a conflict between beable trajectories and Lorentz 
invariance is unavoidable. On the other hand the BBB approach is sufficiently general 
to make it applicable also to relativistic field theory in a Hamiltonian, Schrodinger 
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formulation. The fields should then be regularized on a finite lattice, and should take 
discrete values. Here the underlying dynamics of the wave functionals is relativis­
tically covariant (at least in the continuum limit) and one can speculate that only 
this relativistic covariance is relevant, whereas it is broken on the level of the actual 
trajectories which evolve in a preferred frame. 
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Appendix 

In this appendix it is shown in some detail that the stochastic trajectories with the 
minimal choice for the transition density T given in eq. (12) reduce to the causal 
trajectories of Bohm in the continuum limit a ~ O. 

We start from the approximate form of the transition matrix given in eq. (24) 
above, 

Tn+1n ~ dt5(an)'IMa, (A.l) 

which is valid for wave functions which are sufficiently smooth on the lattice scale a. 
For definiteness, consider a particle with position x = na at t = 0, for which 5(x)' > O. 
Then only Tn+1nand Tnn are non-zero. More precisely we shall assume that 5' is 
approximately constant on an interval (x, x + !::iL). This interval is very small on 
a macroscopic scale, but contains many lattice sites: N = !::iLia is big. We shall 
further more assume that 5' remains approximately constant in a macroscopically 
small time interval !::it, which however contains many time steps, dt = !::itlN. Notice 
the scaling of dt with IIN which was mentioned in the main text . 

Given these conditions we can compute the expected value for the position of the 
particle at t = !::it as well as the dispersion. Writing dtTn+1n = dt5( x)' I M a = p and 
dtTnn = (1 - p) for all na E (x, x + !::iL), the expected change in position after the 
time interval !::it is given by 

(ka) 

(A .2) 

This gives the result stated in the main text, that 

(!::ix) = Na(dt5(x),IMa) = !::it5(x)'IM, (A.3) 
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which is equal 	on the average to the velocity of the causal trajectories, (~x) / ~t ~ 
8:r: S(x) /M. The ~ sign is a reflection of the assumptions on S' we made in arriving 
at 	this result. 

Similarly we can compute the dispersion in the average displacement, 

disp(~x ) 	 (((ka)2) _ (ka)2)1/2 
a[N(l - p)P/2 = a1/2(~L _ (~x) )1/2< (A.4) 

The continuum limit must be taken such that a --+ 0 for a fixed macroscopic value of 
L, therefore it is seen that the dispersion in ~x indeed vanishes ex: a1

/ 
2

, as claimed 
in the main text. This completes the proof that the stochastic BBB trajectories 
(with the minimal choice for T) reduce to the deterministic Bohm trajectories in the 
continuum limit. 
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