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ABSTRACT 

A pedagogical introduction is given to the quantum mechanics 
of closed systems, most generally the universe as a whole. Quantum 
mechanics aims at predicting the probabilities of alternative coarse
grained time histories of a closed system. Not every set of alternative 
coarse-grained histories that can be described may be consistently as
signed probabilities because of quantum mechanical interference be
tween individual histories of the set. In "Copenhagen" quantum me
chanics, probabilities can be assigned to histories of a subsystem that 
have been "measured". In' the quantum mechanics of closed systems, 
containing both observer and observed, probabilities are assigned to 
those sets of alternative histories for which there is negligible inter
ference between individual histories as a consequence of the system's 
initial condition and dynamics. Such sets of histories are said to de
cohere. We define decoherence for closed systems in the simplified 
case when quantum gravity can be neglected and the initial state is 
pure. Typical mechanisms of decoherence that are widespread in our 
universe are illustrated. 

Copenhagen quantum mechanics is an approximation to the more 
general quantum framework of closed subsystems. It is appropriate 
when there is an approximately isolated subsystem that is a partici
pant in a measurement situation in which (among other things) the 
decoherence of alternative registrations of the apparatus can be ide
alized as exact. 

Since the quantum mechanics of closed systems does not posit 
the existence of the quasiclassical domain of everyday experience, the 
domain of the approximate aplicability of classical physics must be 
explained. We describe how a quasiclassical domain described by 
averages of densities of approximately conserved quantities could be 
an emergent feature of an initial condition of the universe that implies 
the approximate classical behavior of spacetime on accessible scales. 

• To appear in the festschrift for C.W. Misner, ed. by B.L. Hu, M.P. Ryan 
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Charlie Misner was one of the pioneers of quantum cosmology 

the effort to understand the universe as a whole as a quantum me

chanical system. The minisuperspace models that he introduced and 

analysed with such characteristic elegance and clarity remain stan

dard arenas in which to test ideas of the subject [1,2]. As he was 

well aware, in the applications of quantum mechanics to cosmology 

one must confront the characteristic features of quantum theory in a 

striking and unavoidable manner. A central problem is simply obtain

ing a coherent formulation of quantum mechanics for closed systems 

such as the universe. This essay on the occasion of his 60th birthday 

is a pedagogical summary of the efforts of Murray Gell-Mann and 

myself to provide such a formulation [3,4]. 

I. Introduction 

It is an inescapable inference from the physics of the last sixty 

years that we live in a quantum mechanical universe - a world in 

which the basic laws of physics conform to that framework for predic

tion we call quantum mechanics. We perhaps have little evidence of 

peculiarly quantum mechanical phenomena on large and even famil

iar scales, but there is no evidence that the phenomena that we do 

see cannot be described in quantum mechanical terms and explained 

by quantum mechanical laws. If this inference is correct, then there 

must be a description of the universe as a whole and everything in it 

in quantum mechanical terms. The nature of this description and its 

observable consequences are the subject of quantum cosmology. 

Our observations of the present universe on the largest scales are 

crude and a classical description of them is entirely adequate. Pro

viding a quantum mechanical description of these observations alone 

might be an interesting intellectual challenge, but it would be unlikely 

to yield testable predictions differing from those of classical physics. 

and C.V. Vishveshwara, Cambridge University Press, Cambridge (1993). Today, however, we have a more ambitious aim. We aim, in quan
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tum cosmology, to provide a theory of the initial condition of the 

universe which will predict testable correlations among observations 

today. There are no realistic predictions of any kind that do not 

depend on this initial condition, if only very weakly. Predictions of 

certain observations may be testably sensitive to its details. These 

include the large scale homogeneity and isotropy of the universe, its 

approximate spatial flatness, the spectrum of density fluctuations that 

produced the galaxies, the homogeneity of the thermodynamic arrow 

of time, and the existence of classical spacetime. Recently, there has 

been speculation that even the coupling constants of the effective in

teractions of the elementary particles at accessible energy scales may 

be probabilistic ally distributed with a distribution which may depend, 

in part, on the initial condition of the universe [5,6,7]. It is for such 

reasons that the search for a theory of the initial condition of the uni

verse is just as necessary and just as fundamental as the search for a 

theory of the dynamics of the elementary particles. They may even 

be the same searches. 

The physics of the very early universe is likely to be quantum 

mechanical in an essential way. The singularity theorems of classical 

general relativity suggest that an early era preceded ours in which even 

the geometry of spacetime exhibited significant quantum fluctuations. 

It is for a theory of the initial condition that describes this era, and all 

later ones, that we need to spell out how to apply quantum mechanics 

to cosmology. Recent years have seen much promising progress in the 

search for a theory of the quantum initial condition. However, it 

is not my purpose to review these developments here. * Rather, I 

shall argue that this somewhat obscure branch of astrophysics may 

have implications for the formulation and interpretation of quantum 

mechanics on day-to-day scales. My thesis will be that by looking at 

the universe as a whole one is led to an understanding of quantum 

mechanics which clarifies many of the long standing interpretative 

difficulties of the subject. 

* For a recent review of quantum cosmology see [8]. 

The Copenhagen frameworks for quantum mechanics, as they were 

formulated in the '30s and '40s and as t hey exist in most textbooks to

day, are inadequate for quantum cosmology. Characteristically these 

formulations assumed, as external to the framework of wave func

tion and Schrodinger equation, the quasiclassical domain we see all 

about us. Bohr [9] spoke of phenomena which could be alternatively 

described in classical language. In their classic text, Landau and 

Lifschitz [10] formulated quantum mechanics in terms of a separate 

classical physics. Heisenberg and others stressed the central role of 

an external, essentially classical, observer. * Characteristically, these 

formulations assumed a possible division of the world into "obsever" 

and "observed", assumed that "measurements" are the primary fo

cus of scientific statements and, in effect, posited the existence of an 

external "quasiclassical domain". However, in a theory of the whole 

thing there can be no fundamental division into observer and ob

served. Measurements and observers cannot be fundamental notions 

in a theory that seeks to describe the early universe when neither ex

isted. In a basic formulation of quantum mechanics there is no reason 

in general for there to be any variables that exhibit classical behavior 

in all circumstances. Copenhagen quantum mechanics thus needs to 

be generalized to pr?vide a quantum framework for cosmology. 

In a generalization of quantum mechanics which does not posit 

the existence of a quasiclassical domain, the domain of applicability 

of classical physics must be explained. For a quantum mechanical 

system to exhibit classical behavior there must be some restriction on 

its state and some coarseness in how it is described. This is clearly 

illustrated in the quantum mechanics of a single particle. Ehrenfest's 

theorem shows that generally 

Md
2
(x) = / _ av). (1.1)

dt2 \ ax 

However, only for special states, typically narrow wave packets, will 

* For a clear statement of this point of view, see [11]. 
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this become an equation of motion for (x) of the form 

Md2(x) _ aV((x)) 
(1.2)

dt2 - ax 

For such special states, successive observations of position in time will 

exhibit the classical correlations predicted by the equation of motion 

(1.2) provided that these observations are coarse enough so that the 

properties of the state which allow (1.2) to replace the general relation 

(1.1) are not affected by these observations. An exact determination 

of position, for example, would yield a completely delocalized wave 

packet an instant later and (1.2) would no longer be a good approx

imation to (1.1). Thus, even for large systems, and in particular for 

the universe as a whole, we can expect classical behavior only for 

certain initial states and then only when a sufficiently coarse grained 

description is used. 

If classical behavior is in general a consequence only of a certain 

class of states in quantum mechanics, then, as a particular case, we 

can expect to have classical spacetime only for certain states in quan

tum gravity. The classical spacetime geometry we see all about us 

in the late universe is not property of every state in a theory where 

geometry fluctuates quantum mechanically. Rather, it is traceable 

fundamentally to restrictions on the initial condition. Such restric

tions are likely to be generous in that, as in the single particle case, 

many different states will exhibit classical features. The existence of 

classical spacetime and the applicability of classical physics are thus 

not likely to be very restrictive conditions on constructing a theory of 

the initial condition. 

It was Everett who, in 1957, first suggested how to generalize 

the Copenhagen frameworks so as to apply quantum mechanics to 

cosmology.* Everett's idea was to take quantum mechanics seriously 

and apply it to the universe as a whole. He showed how an observer 

* 	The original reference is [12]. For a useful collection of reprints see 
[13]. 

5 

could be considered part of this system and how its activities - mea

suring, recording, calculating probabilities, etc. - could be described 

within quantum mechanics. Yet the Everett analysis was not com

plete. It did not adequately describe within quantum mechanics the 

origin of the "quasiclassical domain" of familiar experience nor, in an 

observer independent way, the meaning of the "branching" that re

placed the notion of measurement. It did not distinguish from among 

the vast number of choices of quantum mechanical observables that 

are in principle available to an observer, the particular choices that, 

in fact, describe the quasiclassical domain. 

In this essay, I will describe joint work with Murray Gell-Mann 

[3,4] which aims at a coherent formulation of quantum mechanics 

for the universe as a whole that is a framework to explain rather 

than posit the quasiclassical domain of everyday experience. It is an 

attempt at an extension, clarification, and completion of the Everett 

interpretation. It builds on many aspects of the, so called post-Everett 

development, especially the work of Zeh [14], Zurek [15,16]' and Joos 

and Zeh [17]. At important points it coincides with the, independent, 

earlier work of Bob Griffiths [18] and Roland Omnes (e.g., as reviewed 

in [19]). 

Our work is not complete, but I hope to sketch how it might 

become so. It is by now a very long story but I will try to describe 

the important parts in simplified terms. 

II. Probabilities in General and 

Probabilities in Quantum Mechanics 

Even apart from quantum mechanics, there is no certainty in this 

world and therefore physics deals in probabilities. It deals most gener

ally with the probabilities for alternative time histories of the universe. 

From these, conditional probabilities can be constructed that are ap

propriate when some features about our specific history are known 

and further ones are to be predicted. 
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To understand what probabilities mean for a single closed sys

tem, it is best to understand how they are used. We deal, first of all, 

with probabilities for single events of the single system. When these 

probabilities become sufficiently close to zero or one there is a definite 

prediction on which we may act. How sufficiently close to 0 or 1 the 

probabilities must be depends on the circumstances in which they are 

applied. There is no certainty that the sun will come up tomorrow at 

the time printed in our daily newspapers. The sun may be destroyed 

by a neutron star now racing across the galaxy at near light speed. 

The earth's rotation rate could undergo a quantum fluctuation. An 

error could have been made in the computer that extrapolates the mo

tion of the earth. The printer could have made a mistake in setting 

the type. Our eyes may deceive us in reading the time. Yet, we watch 

the sunrise at the appointed time because we compute, however im

perfectly, that the probability of these things happening is sufficiently 

low. 

Various strategies can be employed to identify situations where 

probabilities are near zero or one. Acquiring information and consid

ering the conditional probabilities based on it is one such strategy. 

Current theories of the initial condition of the universe predict almost 

no probabilities near zero or one without further qmditions. The "no 

boundary" wave function of the universe, for example, does not pre

dict the present position of the sun on the sky. However, it will predict 

that the conditional probability for the sun to be at the position pre

dicted by classical celestial mechanics given a few previous positions 

is a n,umber very near unity. 

Another strategy to isolate probabilities near 0 or 1 is to con

sider ensembles of repeated observations of identical subsystems in 

the closed system. There are no genuinely infinite ensembles in the 

world so we are necessarily concerned with the probabilities for devi

ations of the behavior of a finite ensemble from the expected behavior 

of an infinite one. These are probabilities for a single feature (the 

deviation) of a single system (the whole ensemble). 

The existence of large ensembles of repeated observations in iden

tical circumstances and their ubiquity in laboratory science should 

not, therefore, obscure the fact that in the last analysis physics must 

predict probabilities for the single system that is the ensemble as a 

whole. Whether it is the probability of a successful marriage, the 

probability of the present galaxy-galaxy correlation function, or the 

probability of the fluctuations in an ensemble of repeated observa

tions, we must deal with the probabilities of single events in single 

systems. In geology, astronomy, history, and cosmology, most predic

tions of interest have this character. The goal of physical theory is, 

therefore, most generally to predict the probabilities of histories of 

single events of a single system. 

Probabilities need be assigned to histories by physical theory only 

up to the accuracy they are used. Two theories that predict probabil

ities f~r the sun not rising tomorrow at its classically calculated time 

that are both well beneath the standard on which we act are equiva

lent for all practical purposes as far as this prediction is concerned. It 
is often convenient, therefore, to deal with approximate probabilities 

which satisfy the rules of probability theory up to the standard they 

are used. 

The characteristic feature of a quantum mechanical theory is that 

not every set of alternative histories that may be described can be as

signed probabilities. Nowhere is this more clearly illustrated than in 

the two slit experiment illustrated in Figure 1. In the usual "Copen

hagen" discussion if we have not measured which of the two slits the 

electron passed through on its way to being detected at the screen, 

then we are not permitted to assign probabilities to these alternative 

histories. It would be inconsistent to do so since the correct proba.

bility sum rule would not be satisfied. Because of interference, the 

probability to arrive at y is not the sum of the probabilities to arrive 

at y going through the upper or lower slit: 

p(y) :f- PU(y) + PL(Y) (2.1) 
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Fig. 1: The two-slit experiment. An electron gun at right 
emits an electron traveling towards a screen with two slits, its 
progress in space recapitulating its evolution in time. When 
precise detections are made of an ensemble of such electrons 
at the screen it is not possible, because of interference, to as
sign a probability to the alternatives of whether an individual 
electron went through the upper slit or the lower slit. How
ever, if the electron interacts with apparatus that m'easures 
which slit it passed through, then these alternatives decohere 
and probabilities can be assigned. 

because 

I1/JL(Y) + 1/JU(y)12 =l-11/JL(y)12 + l1/Ju(y)12 (2.2) 

If we have measured which slit the electron went through, then 

the interference is destroyed, the sum rule obeyed, and we can mean

ingfully assign probabilities to these alternative histories. 

A rule is thus needed in quantum theory to determine which sets of 

alternative histories may be assigned probabilities and which may not. 

In Copenhagen quantum mechanics, the rule is that probabilities are 
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assigned to histories of alternatives of a subsystem that are measured 

and not in general otherwise. 

III. Probabilities for a Time Sequence of Measurements 

To establish some notation, let us review in more detail the usual 

rules for the probabilities of time sequences of ideal measurements of 

subsystem using the two-slit experiment of Figure 1 as an example. 

Alternatives for the electron are represented by projection opera

tors in its Hilbert space. Thus, in the two slit experiment, the alter

native that the electron passed through the lower slit is represented 

by the projection operator 

3
Pu = E, !u d x Ii, s}(i,-I (3.1) 

where Ii, s) is a localized state of the electron with spin component 

s, and the integral is over a volume around the upper slit. There is 

a similar projection operator PL for the alternative that the electron 

goes through the lower slit. These are exclusive alternatives and they 

are exhaustive. These properties, as well as the requirements of being 

projections, are represented by the relations 

PLPU = 0, Pu + PL = I, pi = PLJ P6 = Pu . (3.2) 

There is a similarly defined set of projec~ion operators {Py } repre

senting the alternative positions of arrival at the screen. 

We can now state the rule for the joint probability that the elec

tron initially in a state 11/J(to)) at t = to is determined by an ideal 

measurement at time tt to have passed through the upper slit and 

measured at time t2 to arrive at point y on the screen. If one likes, 

one can imagine the case in which the electron is in a narrow wave 

packet in the horizontal direction with a velocity defined as sharply 

as possible consistent with the uncertainty principle. The joint prob

ability is negligible unless tt and t2 correspond to the times of flight 

to the slits and to the screen respectively. 
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The first step in calculating the joint probability is to evolve the 

state of the electron to t he time t l of the first measurement 

11fJ(td) = e-iH(tl-tO)/hl1fJ(to)) . (3.3) 

The probability that the outcome of the measurement at time tl IS 

that the electron passed through the upper slit is: 

(P robability of U) = Il p ul1fJ(tl))11 2 (3.4) 

where II . II denotes the norm of a vector in the electron's Hilbert 

space. If the outcome was the upper slit, and the measurement was 

an "ideal" one, that disturbed the electron as little as possible in 

making its determination, then after the measurement the state vector 

is reduced to 
Pu 11fJ(tl)) (3.5)

II Pu 11fJ(tt)) II 
This is evolved to the time of the next measurement 

11fJ(t2)) = e-iH(t:J-td/h Pul1fJ(tt)) (3.6)
II Pu 11fJ(tt)) II 

The probability of being detected at point y on the screen at time t2 
given that the electron passed through the upper slit is 

2
(Probability of y given U) = IIPyl1fJ(t2))11 , (3.7) 

The joint probability that the electron is measured to have gone 

through the upper slit and is detected at y is the product of the con

ditional probability (3.7) with the probability (3.4) that the electron 

passed through U. The latter factor cancels the denominator in (3.6) 
so that combining all of the above equations in this section, we have 

(Probability of y and U) = II Pye-iH(t2-td/hPu e-iH(tt-to)/hl 1fJ( to)) 112 

(3.8) 
With Heisenberg picture projections this takes the even simpler form 

(Probability of y and U) = Ilpy(t2)PU(td 11fJ(to)}112 (3.9) 

where, for exa.mple, 

Pu(t) = eiHt/hPue-iHt/h . (3.10) 

The formula (3.9) is a compact and unified expression of the two la.ws 

of evolution that characterize the quantum mechanics of measured 

su bsystems - unitary evolution in between measurements and re

duction of the wave packet at a measurement.* The important t hing 

to remember about the expression (3.9) is that everything in it 

projections, state vectors, Hamiltonian - refer to the Hilbert space 

of a subsystem, in this example the Hilbert space of the electron that 

is measured. 

In "Copenhagen" quantum mechanics, it is measurement that de

termines which histories of a subsystem can be assigned probabil 

ities and formulae like (3.9) that determine what these probabili 

ties are. We cannot have such rules in the quantum mechanics of 

closed systems. There is no fundamental division of a closed sys

tem into measured su bsystem and measuring apparatus. There is no 

fundamental reason for the closed system to contain classically be

having measuring apparatus in all circumstances. In particular, in 

the early universe n~ne of these concepts seem relevant. We need a 

more observer-independent, measurement-independent, quasiclassical 

domain-independent rule for which histories of a closed system can 

be assigned probabilities and what these probabilities are. The next 

section describes this rule. 

IV. Post-Everett Quantum Mechanics 

To describe the rules of post-Everett quantum mechanics, I shall 

make a simplifying assumption. I shall neglect gross quantum fluctu

ations in the geometry of spacetime, and assume a fixed background 

spacetime geometry which supplies a definite meaning to the notion 

* 	As has been noted by many authors, e.g., [20] and [21] among the 
earliest. 
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of time. This is an excellent approximation on accessible scales for 

times later than 10-43 sec after the big bang. The familiar appara

tus of Hilbert space, states, Hamiltonian, and other operators may 

then be applied to process of prediction. Indeed, in this context the 

quantum mechanics of cosmology is in no way distinguished from the 

quantum mechanics of a large isolated box, perhaps expanding, but 

containing both the observed and its observers (if any). 

A set of alternative histories for a closed system is specified by 

giving exhaustive sets of exclusive alternatives at a sequence of times. 

Consider a model closed system initia:lly in a pure state that can be 

described as an observer and two slit experiment, with appropriate 

apparatus for producing the electrons, detecting which slit they passed 

through, and measuring their position of arrival on the screen (Figure 

2). Some alternatives for the whole system are: 

1. 	 Whether or not the observer decided to measure which slit the 

electron went through. 

2. 	 Whether the electron went through the upper or lower slit. 

3. 	 The alternative positions, Yl, ... T YN, that the electron could have 

arrived at the screen. 

This set of alternatives at a sequence of times defines a set of histories 

whose characteristic branching structure is shown in Figure 3. An 

individual history in the set is specified by some particular sequence 

of alternatives, e.g., measured, upper, yg. 

Many other sets of alternative histories are possible for the closed 

system. For example, we could have included alternatives describing 

the readouts of the apparatus that detects the position that the elec

tron arrived on the screen. If the initial condition corresponded to 

a good experiment there should be a high correlation between these 

alternatives and the position that the electron arrives at the screen. 

In a more refined model we could discuss alternatives corresponding 

to thoughts in the observer's brain, or to the individual positions of 

the atoms in the apparatus, or to the possibilities that these atoms 
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Fig. 2: A model closed quantum system containing an ob
server together with the necessary apparatus for carrying out 
a two-slit experiment. Alternatives for the system include 
whether the observer measured which slit the electron passed 
through or did not, whether the electron passed through the 
upper or lower slit, the alternative positions of arrival of the 
electron at the screen, the alternative arrival positions regis
tered by the apparatus, the registration of these in the brain 
of the observer, etc., etc., etc. Each exhaustive set of exclusive 
alternatives is represented by an exhaustive set of orthogonal 
projection operators on the Hilbert space of the closed sys
tem. Time sequences of such sets of alternatives describe sets 
of alternative coarse-grained histories of the closed system. 
Quantum theory assigns probabilities to the individual alter
native histories in such a set when there is negligible quantum 
mechanical interference between them, that is, when the set 
of histories decoheres. 

A more refined model might consider a quantity of matter 
in a closed box. One could then consider alternatives such as 
whether the box contains a two-slit experiment or does not as 
well as alternative positions of atoms. 
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reassemble in some completely different configuration. There are a 

vast number of possibilities. 

Characteristically the alternatives that are of use to us as ob

servers are very coarse grained, distinguishing only very few of the 

degrees of freedom of a large closed system. This is especially true if 

we recall that our box with observer and two-slit experiment is only 

an idealized model. The most general closed system is the universe 

itself, and, as I hope to show, the only realistic closed systems are of 

cosmological dimensions. Certainly, we utilize only very, very coarse-

grained descriptions of the universe as a whole. 

I would now like to state the rules that determine which coarse

grained sets of histories may be assigned probabilities and what those 

probabilities are. The essence of the rules I shall describe can be 

found in the work of Bob Griffiths [18] . The general framework was 

extended by Roland Omnes [19] and was independently, but later, 

arrived at by Murray Gell-Mann and myself [3]. The idea is simple: 

The failure of probability sum rules due to quantum interference is 

the obstacle to assigning probabilities. Probabilities can be assigned 

to just those sets of alternative histories of a closed system for which 

there is negligible interference between the individual histories in the 

set as a consequence of the particular initial state the closed system 

has, and for which, therefore, all probability sum rules are satisfied. 

Let us now give this idea a precise expression. 

Sets of alternatives at one moment of time are represented by sets 

of orthogonal projection operators. Employing the Heisenberg picture 

these can be denoted {P!k(tkH. The superscript k denotes the set 

of alternatives being considered at time tie (for example, the set of 

alternative position intervals {Yb··· I YN } at which the electron might 

arrive at the screen at time t3), ale denotes the particular alternative 

in the set (for example Y9) and tk is the time. The set of P's satisfy 

L P!Ie(tk) = 1 , P!k(tk)P!~ (tk) = Salea~ P!,,(tk) (4.1 ) 
ale 

showing that they represent an exhaustive set of exclusive alternatives. 
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Fig. 3: Branching structure of ~ set of alternative histories. 
This figure illustrates the set of alternative histories defined by 
the alternatives of whether the observer decided to measure or 
did not decide to measure which slit the electron went through 
at time tb whether the electron went through the upper slit or 
through the lower slit at time t2, and the alternative positions 
ofarrival at the screen at time t3. A single branch correspond
ing to the alternatives that the measurement was carried out, 
the electron went through the upper slit, and arrived at point 
Y9 on the screen is illustrated by the heavy line. 

The illustrated set of histories does not decohere because 
there is significant quantum mechanical interference between 
the branch where no measurement was .carried out and the 
electron went through the upper slit and the similar branch 
where it went through the lower slit. A related set of histories 
that does decohere can be obtained by replacing the alterna
tives at time t2 by the following set of three alternatives: (a 
record of the decision shows a measurement was initiated and 
the electron went through the upper slit); (a record of the 
decision shows a measurement was initiated and the electron 
went through the lower slit); (a record of the decision shows 
that the measurement was not initiated). The vanishing of 
the interference between the alternative values of the record 
and the alternative configurations of apparatus ensures the 
decoherence of this set of alternative histories. 
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Sets of alternative histories are defined by giving sequences of sets 

of alternatives at definite moments of time, e.g., {P~l (td}, {p~2(t2n! 
'" , {P~n (tnn· Different choices for {P~l (tIn, {p~2(t2n, etc. de

scribe different sets of alternative histories of the closed system. An 

individual history in a given set corresponds to a particular sequence 

(a1, ... , an) == a and, for each history, there is a corresponding chain 

of projection operators 

Ca == P~ (tn )··· P~ (td . 	 (4.2)
n 1 

For example, in the two slit experiment in a box illustrated in Figure 2! 

the history in which the observer decided at time tl to measure which 

slit the electron goes through, in which the electron goes through the 

upper slit at time t2, and arrives at the screen in position interval Y9 

at time t3, would be represented by the chain 

P:9(t3)P~(t2)P~eas(tl) 	 ( 4.3) 

III an obvious notation. The only difference between this situation 

and that of the "Copenhagen" quantum mechanics of measured sub

systems is the following: The sets of operators {p;,.(tkn defining 

alternatives for the closed system act on the Hilbert space of the 

closed system that includes the variables describing any apparatus, 

observers, and anything else. The operators defining alternatives in 

Copenhagen quantum mechanics act only on the Hilbert space of the 

measured su bsystem. 

When the initial state is pure, it can be resolved into branches 

corresponding to the individual members of any set of alternative his

tories. The generalization to an impure initial density matrix is not 

difficult [3], but for simplicity we shall assume a pure initial state 

throughout this article. Denote the initial state by l'lt) in the Heisen

berg picture. Then 

l'lt) =" Cal'lt) = " P;: (tn )·,· P~ (tl)I'lt) . (4.4)~a ~ n 1 

all···lan 

This identity follows by applying the first of (4.1) to all the sums over 

ak in turn. The vector 

Cal'lt) 	 ( 4.5) 

is the branch conesponding to the indi vid ual history a and (4.4) IS 

the resolution of the initial state into branches. 

When the branches corresponding to a set of alternative histories 

are sufficiently orthogonal the set of histories is said to decohere. More 

precisely a set of histories decoheres when 

('It\C!,Cal'lt) ~ 0, for any a~ =I- ak . ( 4.6) 

We shall return to the standard with which decoherence should be 

enforced, but first let us examine its meaning and consequences. 

Decoherence means the absence of quantum mechanical interfer

ence between the individual histories of a coarse-grained set. * Proba

bilities can be assigned to the individual histories in a decoherent set 

* 	The term "decoherence" is used in several different ways in the lit
erature. Therefore, for those familiar with other work, a comment is 
in order to specify how we are employing the term in this simplified 
presentation. We have followed our previous work [3], [4] in using the 
term "decoherence" to refer to a property of a set of alternative time 
histories of a closed system. A decoherent set of histories is one for 
which the quantum mechanical interference between individual his
tories is small enough to guarantee an appropriate set of probability 
sum rules. Different notions of decoherence can be defined by utiliz
ing different measures of interference. The weakest notion is just the 
consistency of the probability sum rules that was called "consist.ency" 
by Griffiths [18] and Omnes [19] and that term is used by some to 
refer to all measures of interference. Vanishing of the real part of 
(4.6) is a sufficient condition for the consistency of the probability 
sum rules called the "weak decoherence condition". We are using the 
stronger condition (4.6) because it characterizes widespread and typi
cal mechanisms of decoherence. Eq (4.6) has been called the "medium 
decoherence condition". "Decoherence" in the context of this paper, 
thus, means the medium decoherence of sets of histories. 
In the literature the term "decoherence" has also been used to refer 
to the decay in time of the off-diagonal elements of a reduced density 
matrix defined by tracing the full density matrix over a given set of 
variables [22]. The two notions of "decoherence of reduced density 
matrices" and "decoherence of histories" are not generally equivalent 
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of alternative histories because decoherence implies the probability 

sum rules necessary for a consistent assignment . The probability of 

an individual history a is 

p(a ) = IICa l'l1)112 (4.7) 

To see how decoherence implies the probability sum rules, let us 

consider an example in which there are just three sets of alternatives 

at times tl, t2, and t3. A typical sum rule might be 

L p(a3,a2,al) =p(a3,al) . ( 4.8) 
a2 

We show (4.6) and (4.7) imply (4.8). To do that write out the left hand 

side of (4.8) using (4.7) and suppress the time labels for compactness. 

'""" p (a3, a2, al) = L (WIP~l P~2P~3P~3P~2P~1Iw). (4.9)~a2 a2 

Decoherence means that the sum on the right hand side of (4.9) can 

be written with negligible error as 

p(a3,a2,al) ~ L, (WIP~lP~'P~3P~3P~2P~1Iw). (4.10)a2 a2 a2 2 

the extra terms in the sum being vanishingly small. But now, applying 

the first of (4.1) we see 

La2P(a3,a2,al) ~ (WIP~lP~3~3P~1IW) =p(a3,ad (4.11) 

so that the sum rule (4.8) is satisfied. 

Given an initial state I'll) and a Hamiltonian H, one could, in 

principle, identify all possible sets of decohering histories. Among 

these will be the exactly decohering sets where the orthogonality of 

the branches is exact. Indeed, trivial exam pIes can be supplied by 

but also not unconnected in the sense that in particula.r models cer
tain physical processes can ensure both. (See, e.g. the remarks in 
Section II.6A of [23]) . 

resolving I'll) into a sum of orthogonal vectors at time tl, resolv

ing those vectors into sums of further vectors such that t he whole 

set is orthogonal at time t2, and so on. However, such sets of ex

actly decohering histories will not, in general, have a simple descrip

tion in terms of fundamental fields nor any connection, for example, 

with the quasiclassical domain of familiar experience. For this rea

son sets of histories that approximately decohere are of interest. As 

we will argue in the next two Sections, realistic mechanisms lead to 

the decoherence of histories constituting a quasiclassical domain to 

an excellent approximation. When the decoherence condition (4.6) is 

approximately enforced, the probability sum rules such as (4.8) will 

only be approximately obeyed. However, as discussed earlier, these 

probabilities for single systems are meaningful up to the standard 

they are used. Approximate probabilities for which the sum rules are 

satisfied to a comparable standard may therefore also be employed 

in the process of prediction. When we speak of approximate deco

herence and approximate probabilities we mean decoherence achieved 

and probability sum rules satisfied beyond any standard that might 

be conceivably contemplated for the accuracy of prediction and the 

comparison of theory with experiment. 

Decoherent sets -of histories of the universe are what we may uti

lize in the process of prediction in quantum mechanics, for they may 

be assigned probabilities. Decoherence thus generalizes and replaces 

the notion of "measurement", which served this role in the Copen

hagen interpretations. Decoherence is a more precise, more objective, 

more observer-independent idea and gives a definite meaning to Ev

erett's branches. For example, if their associated histories decohere, 

we may assign probabilities to various values of reasonable scale den

sity fluctuations in the early universe whether or not anything like a 

"measurement" was carried out on them and certainly whether or not 

there was an "observer" to do it. 
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v. The Origins of Decoherence in Our Universe 

What are the features of coarse-grained sets of histories that de

cohere in our universe? In seeking to answer this question it is impor

tant to keep in mind the basic aspects of the theoretical framework 

on which decoherence depends. Decoherence of a set of alternative 

histories is not a property of their . operators alone. It depends on the 

relations of those operators to the initial state I'll), the Hamiltonian 

H, and the fundamental fields. Given these, we could, in principle, 

compute which sets of alternative histories decohere. 

We are not likely to carry out a computation of all decohering 

sets of alternative histories for the universe, described in terms of the 

fundamental fields, anytime in the near future, if ever. It is therefore 

important to investigate specific mechanisms by which decoherence 

occurs. Let us begin with a very simple model due, in its essen

tial features to Joos and Zeh [17]. We consider the two-slit example 

again, but this time suppose that in the neighborhood of the slits 

there is a gas of photons or other light particles colliding with the 

electrons (Figure 4). Physically it is easy to see what happens, the 

random uncorrelated collisions can carry away delicate phase correla

tions between the beams even if the ·trajectories of the electrons are 

not affected much. The interference pattern will then be destroyed 

and it will be possible to assign probabilities to whether the electron 

went through the upper slit or the lower slit. 

Let us see how this picture in words is given precise meaning in 

mathematics. Initially, suppose the state of the entire system is a 

state of the electron 11fJ > and" N distinguishable "photons" in states 

I<PI), 1<P2), etc., viz. 

I'll) = 11fJ)I<pI)I<p2 > . ··I<PN) . (5.1) 

Suppose further that 11fJ) is a coherent superposition of a state in which 

the electron passes through the upper slit IU) and the lower slit ~L). 

Explicitly: 

11fJ) = o:IU) + .8IL) . (5.2) 
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Fig. 4: The two slit experiment with an interacting gas. Near 
the slits light particles of a gas collide with the electrons. Even 
if the collisions do not affect the trajectories of the electrons 
very much they can still carry away the phase correlations be
tween the histories in which the electron amved at point y on 
the screen by passing through the upper slit and that in which 
it amved at the _same point by passing through the lower slit. 
A coarse graining that described only of these two alterna
tive histories of the electron would approximately decohere as 
a consequence of the interactions with the gas given adequate 
density, cross-section, etc. Interference is destroyed and prob
abilities can be assigned to these alternative histories of the 
electron in a way that they could not be if the gas were not 
present (cf. Fig. 1). The lost phase information is still avail
able in correlations between states of the gas-and states of the 
electron. The alternative histories of the electron would not 
decohere in a coarse graining that included both the histories 
of the electron and operators that were sensitive to the corre
lations between the electrons and the gas. 

This model illustrates a widely occuring mechanism by which 
certain types of coarse-grained sets of alternative histories de
cohere in the universe. 

Both states are wave packets in x, so that position in x recapitulates 
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history in time. We now ask whether the history where the electron 

passes through the upper slit and arrives at a detector at point y on 

the screen, decoheres from that in which it passes through the lower 

slit and arrives at point y as a consequence of the initial condition 

of this "universe" . That is, as in Section 4, we ask whether the two 

branches 

Py(t2)PU(tl )1'11) Py (t2)PL(tl)lw) (5.3) 

are nearly orthogonal, the times of the projections being those for the 

nearly classical motion in x. We work this out in the Schrodinger 

picture where the initial state evolves, and the projections on the 

electron's position are applied to it at the appropriate times. 

Collisions occur, but t he states IU) and IL) are left more or less 

undisturbed. The states of the "photons", of course, are significantly 

affected. If the photons are dilute enough to be scattered once by the 

electron in its time to tra.verse the gas the two branches (5.3) will be 

approximately 

aPylU)Su \<Pl)SU IIP2) ... Su lIPN) , (5.4a) 

and 

(3 Py/L)SLI<pl)SLI1P2)'" SLIIPN) . (5.4b) 

Here, Su and SL are the scattering matrices from an electron in the 

vicinity of the upper slit and the lower slit respectively. The two 

branches in (5.4) decohere because the states of the "photons" are 

nearly orthogonal. The overlap of the branches is proportional to 

(<plIS&SLIIP1)(<P2IS&SLI<p2)'" (<pNIS&SL I<PN) . (5.5) 

Now, the S-matrices for scattering off the upper position or the lower 

position can be connected to that of an electron at the orgin by a 

translation 

Su = exp(-ik . XU)S exp( +ik . XU) (5.6a)j 

SL = exp(-ik . XL)S exp(+ik . XL) . (5.6b) 
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Here, hk is the momentum of a photon, XU and XL are the positions 

of the slits and S is the scattering matrix from a.n electron at t he 

OrIgm. 

(k'ISlk) = S(3)(k - k') + -l-f (k, k')S(Wk - w~) , (5.7)
27rWk 

where f is the scattering amplitude and Wk = Ikl. 

Consider the case where initially all the photons are in plane wave 

states in an interaction volume V, all having the same energy hw, but 

with random orientations for their momenta. Suppose further that 

the energy is low so that the electron is not much disturbed by a 

scattering and low enough so the wavelength is much longer than the 

separation between the slits, klxu - xLI < < 1. It is then possible to 

work out the overlap. The answer according to Joos and Zeh [17] is 

1- (klxu - XL/)2 u)N (5.8)( 87r 2V 2/3 

where u is the effective scattering cross section and the individual 

terms have been averaged over incoming directions. Even if u is small, 

as N becomes large this tends to zero. In this way decoherence be

comes a quantitative phenomenon. 

What such models convincingly show is that decoherence is fre

quent and widespread in the universe for histories of certain kinds of 

variables. Joos and Zeh calculate that a superposition of two positions 

of a grain of dust, 1mm apart, is decohered simply by the scattering 

of the cosmic background radiation on the timescale of a nanosecond. 

The existence of such mechanisms means that the only realistic iso

lated systems are of cosmological dimensions. So widespread is this 

kind of phenomena with the initial condition and dynamics of our 

universe, that we may meaningfully speak of habitually decohering 

variables such as the center of mass positions of massive bodies. 
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VI. The Copenhagen Approximation 

What is the relation of the familiar Copenhagen quantum me

chanics described in Section III to the more general "post-Everett" 

quantum mechanics of closed systems described in Sections IV and 

V? Copenhagen quantum mechanics predicts the probabilities of the 

histories of measured subsystems. Measurement situations may be 

described in a closed system that contains both measured su bsystem 

and measuring apparatus. In a typical measurement situation the 

val ues of a variable not normally decohering become correlated with 

alternatives of the apparatus that decohere because of its interactions 

with the rest of the closed system. The correlation means that the 

measured alternatives decohere because the alternatives of the appa

ratus with which they are correlated decohere. 

The recovery of the Copenhagen rule for when probabilities may 

be assigned is immediate. Measured quantities are correlated with de

cohering histories. Decohering histories can be assigned probabilities. 

Thus in the two-slit experiment (Figure 1), when the electron inter

acts with an apparatus that determines which slit it passed through, 

it is the decoherence of the alternative configurations of the apparatus 

that enables probabilities to be assigned for the electron. 

There is nothing incorrect about Copenhagen quantum mechanics. 

Neither is it, in any sense, opposed to the post-Everett formulation 

of the quantum mechanics of closed systems. It is an approxima

tion to the more general framework appropriate in the special cases 

of measurement situations and when the decoherence of alternative 

configurations of the apparatus may be idealized as exact and instan

taneous. However, while measurement situations imply decoherence, 

they are only special cases of decohering histories. Probabilities may 

be assigned to alternative positions of the moon and to alternative 

values of density fluctuations near the big bang in a universe in which 

t,hese alternatives decohere, whether or not they were participants in 

a measurement situation and certainly whether or not there was an 

observer registering their values. 

VII. Quasiclassical Domains 

As observers of the universe, we deal with coarse-grained histories 

that reflect our own limited sensory perceptions, extended by instru

ments, communication and records but in the end characterized by 

a large amount of ignorance. Yet, we have the impression that the 

universe exhibits a much finer-grained set of histories, independent of 

us, defining an always decohering "quasiclassical domain", to which 

our senses are adapted, but deal with only a small part of it. If we 

are preparing for a journey into a yet unseen part of the universe, 

we do not believe that we need to equip ourselves with spacesuits 

having detectors sensitive, say, to coherent superpositions of position 

or other unfamiliar quantum variables. We expect that the familiar 

quasiclassical variables will decohere and be approximately correlated 

in time by classical deterministic laws in any new part of the universe 

we may visit just as they are here and now. 

Since the post-Everett quantum mechanics of closed systems does 

not posit a quasiclassical domain, it must provide an explanation of 

this manifest fact of everyday experience. No such explanation can 

be provided from the dynamics of quantum theory alone. Rather, like 

decoherence, the existence of a quasiclassical domain in the universe 

must be a consequence of both initial condition of the universe and 

the Hamiltonain describing evolution. 

Roughly speaking, a q uasiclassical domain should be a set of al

ternative histories that decoheres according to a realistic principle of 

decoherence, that is maximally refined consistent with that notion of 

decoherence, and whose individual histories are described largely by 

alternative values of a limited set of quasiclassical variables at dif

ferent moments of time that exhibit as much as possible patterns of 

classical correlation in time. To make the question of the existence of 

one or more quasiclassical domains into a calculable question in quan

tum cosmology we need measures of how close a set of histories comes 

to constituting a "quasiclassical domain". A quasiclassical domain 

cannot be a completely fine-grained description for then it would not 
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decohere. It cannot consist entirely of a few "quasiclassical variables" 

repeated over and over because sometimes we may measure some

thing highly quantum mechanical. Quasiclassical variables cannot be 

always correlated in time by classical laws because sometimes quan

tum mechanical phenomena cause deviations from classical physics. 

We need measures for maxim~lity and classicality [3]. 

It is possible to give crude arguments for the type of habitually 

decohering operators we expect to occur over and over again in a set 

of histories defining a quasiclassical domain [3]. Such habitually deco

hering operators are called "quasiclassical operators". In the earliest 

instants of the universe the operators defining spacetime on scales well 

above the Planck scale emerge from the quantum fog as quasiclassical. 

Any theory of the initial condition that does not imply this is simply 

inconsistent with observation in a manifest way. A background space

time is thus defined and conservation laws arising from its symmetries 

have meaning. Then, where there are suitable conditions of low tem

perature, density, etc., various sorts of hydrodynamic variables may 

emerge as quasiclassical operators. These are integrals over suitably 

small volumes of densities of conserved or nearly conserved quanti 

ties. Examples are densities of energy, momentum, baryon number, 

and, in later epochs, nuclei, and even chemical species. The sizes of 

the volumes are limited above by maximality and are limited below 

by classicality because they require sufficient "inertia" resulting from 

their approximate conservation to enable them to resist deviations 

from predictability caused by their interactions with one another, by 

quantum spreading, and by the quantum and statistical fluctuations 

resulting from interactions with the rest of the universe that accom

plish decoherence [24]. Suitable integrals of densities of approximately 

conserved quantities are thus candidates for habitually decohering 

quasiclassical operators. These "hydrodynamic variables" are among 

the principal variables of classical physics. 

It would be in such ways that the classical domain of familiar 

experience could be an emergent property of the fundamental de
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scription of the universe, not generally in quantum mechanics, bu t as 

a consequence of our specific initial condition and the Hamiltonian 

describing evolution. Whether the universe exhibits a quasiclassical 

domain, and, indeed, whether it exhibits more than one essentially in

equivalent domain, thus become calculable questions in the quantum 

mechanics of closed systems. 

VIII. Conclusion 

Quantum mechanics is best and most fundamentally understood 

in the context of quantum mechanics of closed systems, most generally 

the universe as a whole. The founders of quantum mechanics were 

right in pointing out that something external to the framework of 

wave function and the Schrodinger equation is needed to interpret the 

theory. But it is not a postulated classical domain to which quantum 

mechanics does not apply. Rather it is the initial condition of the 

universe that, together with the action function of the elementary 

particles and the throws of the quantum dice since the beginning, is 

the likely origin of quasiclassical domain(s) within quantum theory 

itself. 
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