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The POWER Codes for
Estimating Reflected Light
into an Off-Axis Optical Fiber

Abstract

We give a calculation for estimating the amount of laser light collected by an off-axis
optical fiber for velocimetry applications. It is assumed that laser light emanating from
a single optical fiber is transported to a Lambertian reflector by a two-element lens
composed of three spherical surfaces; an off-axis optical fiber adjacent to the laser fiber
collects the light used for velocimetry. Four Symphony spreadsheets—POWER,
POWERE, POWERX, and POWERX8—are available to trace rays from the laser fiber
through the compound lens onto the Lambertian surface to calculate the blur due to
spherical aberration and to being out of focus. POWER uses the most approximations
and is the fastest, while POWERXS is the most accurate and slowest.

POWER assumes that the light distribution on the Lambertian reflector due to a
point source within the laser fiber is flat out to either a maximum radius or an effective
radius determined by the ray-tracing routine. This flat distribution is then convolved in
two dimensions with the round shape of the laser fiber to provide an analytic formula
for light incident on the reflecting surface vs radius. Tracing rays in reverse through the
lens provides the size of the illumination at the fiber plane containing all of the light due
to a point source at the reflector, as well as a smaller effective size. The radial
distribution within this circle is assumed to be flat. The result is convolved with the
radial distribution on the reflector to estimate how much light enters the collection fiber
as a function of the position of the reflector.

POWERE calculates the actual radial distribution of light on the reflector due to a
point source at the laser fiber in ten radial bins. However, the distribution at the fiber
plane due to a point source at the reflector is still assumed to be flat, as in the POWER
code.

POWERX relaxes the assumption for POWERE by using ten radial bins at the fiber
plane.

POWERXS is the same as POWERX, except that there are 20, rather than 10, bins at
both the reflector and the fiber plane, and a fiber-plane illumination distribution is also
calculated.

Introduction

Laser velocimetry has been used at Lawrence
Livermore National Laboratory (LLNL) and else-
where for many years to provide detailed
velocity-time data for rapidly moving surfaces.!
We originally used a single-field lens to transport
a laser beam to and from a test surface, because
that method is very light-efficient if the distance

between the velocimeter and the surface is not
too great. As that distance increases, however,
vignetting losses become great unless a
complicated optical train is used in place of a
single field lens. Under these conditions, fiber-
optic transport becomes as efficient as air
transport via a single field lens, and the fiber




technique is easier to use. Fiber-optic transport
has a disadvantage relative to air transport in that
the brightness of the beam (power per unit area
per unit solid angle) is usually degraded.
Degradation can occur if either the spatial size or
the numerical aperture of the fibers is underfilled.

We plan to use the new striped interferome-
ters?3 because they transmit more light than
conventional ones, even when finite surface
travel is included. Under these conditions, it
appears from calculations that little power gain
can be realized from using more than one
collection fiber. In addition, multiple collection
fibers would increase complexity. Accordingly,
we consider here only two fibers, one to bring the
laser light to the field lens and one to collect some
of the Doppler-shifted light.

Figure 1 shows our optical configuration.
The compound lens is azimuthally symmetric,
and the index of refraction of either piece may be
set equal to unity to simulate a single lens. One
problem with this geometry is that the collection
fiber and laser fiber cannot be on the same axis if
they are located in the same plane. If the reflector
were in perfect focus (for an aberration-free lens),
all the collection light would miss the collector
fiber! Consequently, the curve of collection light
vs reflector position would dip severely as the
reflector moved through focus. Real lens aberra-
tions fill in the dip somewhat, however.

The present codes allow the collection fiber
to be off axis by any amount, including zero.
Thus, simulations of the geometry shown in
Fig. 1 can be estimated, but one can also put the
collection fiber on axis.

Ray Tracing from the Laser Fiber to the Reflector

We first consider only the light emanating
from a point on axis within the laser fiber.
Figure 2 defines the parameters. The origin of
coordinates is defined as a distance T/2 to the
right of the leftmost surface of the compound
lens; that is, at the middle of the biconvex part.
A ray leaving the laser fiber on axis at point 7 and
angle &’ traverses the lens and crosses the axis at
point 2 with angle 6. Since point 7 is on the axis,
only meridional rays need be traced. From the
triangle n-g-m, we have

r3’ - sings
% =Xt e
neg sind

(1

and

Moving
Lambertian
reflector

¢s = sin~! I:(jf_n__xé,)s‘_na} ) 2)

Snell’s law implies that

¢4 = sin-1 (Sm‘?s) . 3)
np

The relations

tang’=—2m - Ym 4)

Xy=%m  Xnm

and

Laser fiber

Collection fiberS

Lens

Figure 1. An optical fiber illuminates a two-element lens of radial aperture Rad;,, which trans-
ports the light to a moving Lambertian reflector. Some of the reflected light is collected by the
lens and is transported into the collection fiber, which may be either off or on axis in the code.
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Figure 2. The ray-tracing geometry being considered. Light from an on-axis point of the laser
fiber at point n crosses the axis at point a4 on the reflector side of the lens. All radii and angles
shown are positive. The left section of the lens of thickness T has index of refraction n. The right
section has thickness T;" and index n;". See the Appendix for definitions of r1”, r;", and r3".

Ym? + Xmg? = (132 &)

allow determination of the intersection point m.
We define

Xmg = Xm— Xg - (6)
Equations (4) through (6) then imply that
Xmn? (1 + tan?8”) + xmp Qxng + Baigt”

-(?=0, (7
from which we obtain x, by using the positive

solution and y, from Eq. (5).
From Fig. 2, we see that

(= sin"1 % (8)
and
S =1 ¢4 9
and
Xee + Y2 = (1P . (10)

Figure 2 implies that

Yme = tand - Xy , (11

from which one can construct the quadratic
relation

Xem? (1 + tan?&) + Xem (2Xme + 2Ym- tandy)
+Xme® + Yol = (=0 . (12)
Equation (12) determines the x coordinate of the

intersection point ¢, and its y coordinate is ob-
tained from Eq. (11):

Ye=Ym— Yme - (13)

From Fig. 2 we then see that

—ain-1Yc

B =sin vy (14)
and

9" =B-5&, (15)
so that

¢” = sin-! ("2—5”‘“’—) (16)

n
and
alp=¢"-p . (17)



To find xp, we see from Fig. 2 that

X2 + yp? = (11)? (18)
and
Ybe = Xcb - tanalp , (19)

which can be combined to give the quadratic
in Xpe,

xpe? (1 + tanZalp) + xpe (2xcf
—2yc - tanalp) + x5 +y 22— (12 =0 . (20

Then, from Eq. (19),

Yb =Yc — Xbe - tanalp . 21
Since

o=sin 22, 22)
¢'=o-alp, (23)
and

¢=sinl (n-sin¢) , (24)

we can use the relation
0=¢-o (25)

to finally determine the x coordinate of the
crossing point a as

r1’ - sing

sin@ (26)

Xfa =

The y coordinate of this final ray crossing an
arbitrary plane whose x coordinate = xpjane
is then

offset = |(l’p1ane—l’a) tan@ | . Q27

This gives the radial offset distance of the ray
that intercepts the moving reflector. By running
a set of rays of increasing 8, one can determine
the maximum size and radial distribution of light
within the blur spot on the reflector due to an on-
axis point source from the laser fiber. In the
POWER code, we approximate this distribution
by a distribution that is assumed flat out to
radius r;, which can be either the maximum
radial offset of the set of rays or a smaller value
determined by weighting each offset value by the
number of rays launched with the corresponding
value of 6.

The error introduced by assuming a flat blur
distribution is probably greatest when the reflec-
tor is closest to the circle of least confusion, or “in
focus.” As the reflector moves away from this
point, the blur is dominated not by spherical
aberration but by being out of focus. Here the
distribution tends to be flat. The ray-tracing rou-
tine that calculates the radial offsets includes both
aberration and the out-of-focus effects togcether.
Monte Carlo programs could include the exact
blur distribution, but the assumption of flatness
allows the calculation to proceed without any
further approximations by a very rapid and
convenient personal computer (PC) spreadshect
method.

We assume that the diameter of the laser
fiber is very small compared with the diameter of
the lens, and the blur distribution on the reflector
due to an off-axis point within the laser fiber is
therefore nearly identical to that due to an on-
axis point. This is because the difference between
ray angles for the off- and on-axis source points is
very small. Thus, coma distortion is neglected.

Ray Tracing from the Reflector to the Fiber Plane

By using formulas similar to those given
above, the codes run a set of rays of different 0
values from an on-axis point on the reflector to
the plane of the collection fiber. The resultis a
blur distribution named r, which, in the POWER
code, can represent either the maximum size of

the blur or a weighted value. In POWER, the
distribution is assumed to be flat, and coma is
neglected. POWER also increases, by a term, the
value of the blur determined by ray-tracing to
allow for diffraction, although the latter is almost
always negligible.



Calculating Light vs Radius on the Reflector

Figure 3 shows light from a single off-axis
point on the laser fiber illuminating a circular
region of radius rf on the reflector. The center of
this illumination is at a radius

Sla + Hleft
n=n-|\— 1. (28)
0=n (1 lf"Hright)

We now add at the reflector the
contributions from all the possible source points
of the laser fiber. Figures 4(a) to 4(c) illustrate the
three possibilities for the total light at radius r on
the reflector. In each of these figures, the shaded
overlap region represents the position of all
possible rj, positions (illumination centers from
unique points at the laser fiber) that lie with a
distance r; of the test point on the reflector at
radius r. Here we have defined

S1a+ Hieft ) 9)
t

0= Rigiv (Llf ~ Hrigh

In Fig. 4(a), ry may be smaller or larger than
ro, but the two circular boundaries intersect at a
distance x;” from the axis along the line joining
their two centers. It is easy to show that

2+ rg2 —r?

2y . (30

’
X =r="T-n=

where 7, is defined by

S1a

r-Xx1
= - (31)

Let P denote the watts of light emitted by the
entire laser fiber that is intercepted by the lens.
Then, a very small area of that fiber, dAf, emits P -
dA¢/ A¢ watts, which illuminate an area 7r¢? at the
reflector. The power per unit area on the
reflector due to this one area d A¢ is

P - dAs
Armord (32)
The number of separate surface elements dA; on
the fiber that contribute to the light on the reflec-
tor at radius r is just

F- - Ry’

dA; , (33)
where F is the fractional area of the fiber that has
"o points within a distance 7, of the point 7, as
shown in Fig. 4(a). Since F can be written

shaded area
F= e (34)
we can combine Egs. (32) through (34) to deduce
the power per unit area on the reflector as a
function of radius:

x=0 Lq¢

Reflector

 _
l{" VRifib <

Laser fiber

H left Hrig ht

Figure 3. Light from a single point on the laser fiber illuminates a spot of radius r (determined by ray
tracing) at the reflector. The left and right principal points H are shown. S1, and L{fare measured to
the origin of coordinates, which is midway between the two leftmost surfaces of the lens.
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Figure 4. Three possibilities for the overlap at
the reflector of the blur circle of radius r; and
the circle of radius rg, which contains the
centers of illumination due to all source points
from the laser fiber. These figures are used in
calculating the intensity at radius  on the
reflector.

shaded area /7- Ryip2\ /P dA¢
= () =)

- 12 dA¢ Xf T 12

P - shaded are
= ﬁé. (35)
VR L A Y

The overlap area in Fig. 4(a) can be
determined by noting from Fig. 5 that the
fractional shaded area is given by

N1 - n? _sinly

1
total 2~ 7« T

= g(m . (36)

Then the overlap area in Fig. 4(a) is obtained as
the sum of a fraction of the area of the rg circle
and another fraction of the area of the r; circle.

The two cases illustrated by Figs. 4(b) and
4(c) have an overlap area equal to the area of the
smaller of the two circles. Thus, all three cases
can be combined into the following relations for
the power per unit area on the reflector:

P

"~ 7 [max (rg, 1)]? (37)
ifo<r<| ro— Tt |
and
Ir= . g(ng) + — g (ny (38)
if | ro— 1t | <r<| ro+ 1y | , where we have
defined

_x
o = o ’ (39)

and 7t and x{” were defined by Egs. (30) and (31),
respectively.

Figure 5. The shaded area divided by the total
circular area is given by Eq. (36).



The above result shows that unless rg and r,
are equal, the illumination on the reflector will be
flat from r = 0 out to a finite radius. It then drops
off smoothly and becomes zero atr = rg + r;. One
must keep in mind, however, that these results
assume a flat blur function (from ray tracing) due
to light from a single point on the laser fiber. The

ray-tracing routine also assumes that light from a
single point on the laser fiber has an angular
distribution that is flat out to some angle and
then is zero for larger angles. If the cutoff angle
occurs within the lens, then the routine limits the
angle of the rays to stay within that cutoff.

Calculating Reflected Light Entering the Collection Fiber

Figure 6 shows a collection fiber off axis by
an amount Sy that may be zero. Each small area
dA, on the reflector at radius r has an illumina-
tion energy I,- dA,. The fraction intercepting the
lens that can make exit rays within the numerical
aperture of the collection fiber is approximately

FQ =

{min[Rad]a, (L1f—T/2 -Ty ) tan(sin"'NA.)] }2
51a

(40)

for a perfectly reflecting Lambertian surface.
The energy per unit area at the fiber plane
due to this single spot on the reflector is

_I,-dA, FQ

This energy is distributed over a circle of radius
r¢’ (determined by the second ray-tracing part)
whose center is at a radius ry’. Figures 7(a)
through 7(c) show, for the three possible cases,
how this illumination overlaps an off-axis
collection fiber of radius Refp. The energy
entering the fiber from this one spot on the
reflector is di.. times the overlap area of Fig. 7(a).
The integration over all contributions from spots
on the reflector is complicated by the fact that the
collection fiber is off axis in general. To do the
calculation, we nced to know the distance w as a
function of ry” and ¢. The result is

w=\/(r0’)2—2ro’- S¢- cos¢ + S¢2 . 42)

Then we can determine the overlap area by

- fini
dl. pays 41) defining
. S1a ol
| Ly o
Iy | < >
L |
L I
r [
I |
|
ERY |
. ¥ Iy
: : | I’ i
[ ; Y
' | n d_i_-_
I | Collection
Reflector Hefy H right fiber

Figure 6. A point source at radius r on the reflector makes a circle of illumination at the fiber plane of
radius ry. This is partially intercepted by a collection fiber of offset S¢(which may be zero).



_ w? + Rcﬁb2 - (rt,)z

xq” 2 g (43)
X'l 4
fi= ) (44)
e Refib
and
w e x 7
=5 (45)

The overlap areas for Figs. 7(a) to 7(c) are

overlap = 7+ min [Rcﬁbz,(r{)z] (46)

if 0<w<| Rgip—r¢’ |,and

overlap = 7+ (rt')* - g(n) + - Regiv? - g(no) ~ (47)
if I Regib — 1t | <w<r +Reip -

To do the integration over all source
spots on the reflector for the case of Fig. 7(a),
we let r vary from zero to rg + r¢. If S¢=0,
the maximum value of ¢ is 7; otherwise, it is
less. Figure 8 is drawn for the largest value
of ¢ that can make overlap, since rg’, Refip,
and ry" are fixed. For an off-axis collection
fiber, S¢ is not equal to zero, and @nax is just

Pmax =

. [(ro')2 + 52— (ry "+ Rcﬁb)zil}
min , 2 A rO, p Sf .

(48)

Thus, the range of ¢ values in the
integration changes as the radial position of
the source spot on the reflector increases.

Figure 9 shows that the minimum
value of gy’ to be considered is

70'min = max (S¢ - Regip — 7, 0) . (49)

The maximum value of ry" needed is, from
Fig. 10,

’
70 max =
- H,

L1g — Hright
min | S¢+ Regip + 15 (r0+r)——g— ,
[ t ° Y S1a + Hieft

(50)

(a)

Retib

(b)

Retib

c

N

(c)

Figure 7. Three possibilities for the overlap at

the fiber plane of the blur circle of radius ;" and
the collection fiber, for a fixed value of 7y’ at the
fiber plane (or a fixed value of r at the reflector).
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Figure 8. A special case of Fig. 7 from which
¢ max is determined, given that ry’, r, Rcfib,
and Sy are fixed.

S |
< ! —

Figure 9. A special case of Fig. 7 from which the

minimum value of ry’ is determined.

Figure 10. A special case of Fig. 7 from which

the maximum value of ry’ is determined.

cfib

where the second term arises from the fact
that illumination at the reflector (see Fig. 3)
does not exist for r larger than rg + 7.
Thus, the center of illumination ry” at the
fiber plane (see Fig. 6) cannot exceed

(L~ Hright )/(S1a + Hjeft times that limit,
where Hyjght and Hieft are the positions of

the right and left principal points of the lens.

At the reflector plane (see Fig. 11), the
energy entering the collection fiber from an
annulus of thickness dr and width d¢ is

I - d¢ -1, -rdr- FQ -overlap
. 7 (ry')?

In the POWER code, values for Eq. (51)
are summed over ten values of ¢ for a given
value of ry” to give the quantity called I,
and then summed over ry’ to give the
quantity called “power” in the code. This
double summation is done by filling a two-
dimensional area of the spreadsheet and
using the “calculate” command, rather than
by using macros because the latter would
increase computation time significantly.

(51

Figure 11. Radial and angular integration

elements at the reflector plane.




Inputs for the POWER Code

The Appendix explains the inputs of the
POWER code. Figure 12 and Figure A-1 show a
curve of collected light vs reflector position
calculated with POWER. For comparison, results
of a Monte-Carlo code written by C. McMillan*
are also shown. The deviation between the two
curves should be treated as being the result of the
approximations in the POWER code.

Figure 12. The collected light vs reflector
travel position as estimated by POWER
and McMillan’s Monte Carlo calculation.
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POWERE, the Next Better Code

Although POWER is fast (about 25 s for nine
reflector positions), its accuracy is limited. Thus,
the code POWERE was written, which is slower
but calculates the radial dependence of the power
distribution on the reflector from a point source
at the laser fiber much better than POWER does.

A point source on the laser fiber makes a
uniformly illuminated circular illumination at the
reflector in the POWER code, whose diameter is
the smallest circle containing all of the light, or a
smaller value, weighted by the numbers of rays
launched. In POWERE, the fan of ten ray angles
6" launched from an on-axis point at the laser
fiber to the reflector intercepts the reflector at
ten different radii ry; . These intercept radii do
not necessarily increase monotonically with
the launch angle 6°. For many situations, as
&” increases from zero to its maximum value, ry;
first increases from zero, reaches a maximum,
and then decreases.

This not-flat radial distribution of illumina-
tion is incorporated into the POWERE code
in a fairly simple way. Rays with angle 6" are
launched in ten angular bins, making ten annular

10

bins at the reflector. Each of the ten annular bins
has a value of rymin and 7tmax, and a known
fraction F; of the rays launched. In Fig. 4 for
POWER, a uniformly illuminated circle of radius
r¢ was convolved (analytically) with a source fiber
of radius rq (referred to the target), producing
the simple result of Egs. (37) through (39). In
POWERE, we convolve each annular bin by
treating it as the difference between two circu

lar bins of radius rymax and rymin, respectively.
The weight of each of these two circular bins is
adjusted to match the weight per unit area of the
original annular bin.

Figure 13 shows the decomposition of the
annular bin into the two circular bins. The
fractions Fy1 and Fp; of rays needed in the two
bins are given by

Fr

2
~ T'tmin

_b_“

2
Ttmax

Frp

o
Ttmin

(52)

7tmax2

The same routine used in POWER to con-
volve the two circles together is used twice in



Nmin rlmax

tmin

rlmax

Figure 13. The decomposition of the annular
illumination at the reflector into two circles.

POWERE to convolve the required annulus with
the laser fiber size.

The quantity I, of Egs. (37) through (39) is
evaluated in POWERE for rnay and for rypin-
Then the power per unit area at the reflector due
to the one annular bin is

Ey

.2, 7
tmax~ ~ Ttmin
Ur(remax) - 7tmax2 — I (remin) - rtm'mzl . (53)

1 rsetnet =

Irsetnet 18 calculated for each of the ten
annular bins and summed to give the proper
value for I; for Eq. (61), which is still used to
determine the collected light in POWERE. Asin
POWER, the illumination at the reflector, I; is
calculated only for values of r that could possibly
contribute to the light entering the collection
fiber.

User input to POWERE is slightly different
than for POWER. Figure A-2 shows the input/
output area of POWERE. In the latter, using
“maximum blurs” in the appropriate cell will
affect only the r,” distribution at the fiber plane,
since the ry distribution at the reflector is auto-
matically binned. Also, instead of Rjower and
Rupper , POWERE uses R(Ipax ) and R(I = 0),
which are the radii at the reflector for maximum
and zero intensity, respectively.

11

Figure 14 shows the POWERE prediction vs
McMillan’s Monte Carlo calculation for the same
situation as illustrated in Fig. 12 for POWER. The
agreement is better. Figure 14 also shows the
radius Rp,f at which the illumination on the
reflector is half its maximum value as calculated
by POWERE and the Monte Carlo code. Itis
important for certain experiments with velocime-
try to keep the value of Rp,f small. A special
version of POWERE was written using 20 blur
bins rather than 10, but no significant improve-
ment in accuracy resulted. Like POWER,
POWERE uses ten ¢ and ten radial bins in calcu-
lating what fraction of the fiber-plane illumina-
tion enters the collection fiber. Nine reflector
positions are calculated in about 60 s. A simple
macro is used to vary Sy,, but the rest of the
calculations are done without macros to mini-
mize computation time.

10_4_ T T T T M T T T T T

1073 4 2 E
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« Monte Carlo
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Figure 14. Collected light vs reflector travel
position as estimated by POWERE and the
Monte Carlo calculations (L.H. scale). The
largest radius at which the illumination on
the reflector is half its maximum value vs
reflector position, as determined by POWERE
and Monte Carlo (R.H. scale).



POWERX, a Better Code

Finally, the assumption of a flat distribution
of light at the fiber plane due to a fixed point on
the reflector is relaxed. In POWERX, light from
an on-axis reflector source point is put into ten
annular r;” bins (determined by ray tracing) at the
fiber plane. We assume that coma is negligible.
Thus the binned r;” blur distribution at the fiber
plane due to an off-axis point at the reflector has
the same shape as that due to an on-axis point,
but is shifted in position.

POWERX uses the formalism of the preced-
ing codes to first calculate how much reflected
light in a specific r¢” bin summed over all contri-
buting positions at the reflector enters the collec-
tion fiber. It then sums over the ten r;” bins to
determine the total light collected.

Figure 15 shows the annular illumination at
the fiber plane due to light leaving an small area
r-dr-d¢ of the reflector (see Fig. 11) due to just
one of the ten 7" bins. The annulus has outer and
inner radii rt"yp and rt’jow , respectively. The
shaded area in Fig. 15 is calculated to determine
how much of that annulus of light enters the
collection fiber. Figure 15 is analogous to Fig. 4

I't'up

for the POWER code, except we have an annulus
rather than a circle.

In POWERX, the shaded area is calculated by
taking the difference between the overlap of the
t up @and r'jow circles. POWERX evaluates the
overlap of the "yp and ry'jow circles by using
the formalism of the preceding codes. For a
given ry” bin, a range of ry” values is determined
by equations analogous to Eqgs. (49) and (50),
except that r” there is replaced by rt"yp O 7t Jow ,
depending on which circular overlap is being
calculated. This range of ry” values determines a
range of r values at the reflector by multiplying
by the magnification.

For each ;" bin, the relevant area on the
reflector that can contribute is divided up into
ten radial bins times ten ¢ bins. This binning is
done efficiently in order to not waste bins on
areas than cannot contribute. The light from the
100 combinations of radial and ¢ bins is summed,
both for the r"yp and rtjow circles. Then, equa-
tions analgous to Eqs. (52) and (53) are used to
determine the weighted difference due to the
1 'up and 1t low contributions.

Now

Rib

12

Figure 15. The illumina-
tion at the fiber plane due
to light from a specific
small area on the reflector
and due to a particular r’
bin. The light in the
shaded area can enter the
off-axis fiber.



The result of the above is a quantity called
power and represents the collected light due to
just one ;" bin. A macro drives the POWERX
spreadsheet, varying the ;" bin boundaries, and
putting the 10 values of power into a table called
“powertable.” Powertable is then summed to
give the collected light for a given reflector tra-
vel. Figure A-3 shows the input-output part
of POWERX, which takes about ten minutes to
calculate nine reflector travel positions. Revised
versions run in 4 minutes. Figure 16 shows our
standard problem estimated by POWERX. The
agreement with the Monte Carlo results of
McMillan is better.

Figure 16. The collected light vs reflector
travel position as estimated by POWERX
and Monte Carlo.
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POWERX8—the Most Accurate Code

Finally, POWERX8 was written to improve
upon POWERX in two ways. First, the accuracy
was to be increased by (1) doing the summations
in finer steps and (2) providing to the user a
printout of illumination at the fiber plane vs
radius. POWERX will not do the latter. Second,
POWERXS is written using a formalism different
from POWERX so that the two codes can be used
to verify in some sense the accuracy of the other,
with a minimum of common sources of error.

POWERXS calculates the power distribution
on the fiber plane over the region where the col-
lection fiber resides, and then integrates it over
the off axis fiber. Figure 17 shows the boundary
of the collection fiber, which may be on- or off-
axis. Since the laser fiber and the lens are cen-
tered on the axis, the illumination at the fiber
plane depends only upon the radius r".
POWERXS chooses 20 values of r” from

7"min = max(0, S¢ — Rcfib) (54)
to

7 max = )
min(Sf + Refib, 7t max + Ttmax /mag + Rifip) -
(55)
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The second term in Eq. (55) is there because no
illumination exists at the fiber plane for r” greater
than this value. Thus the r” values are

" =7"min+dr - (j-0.5) , (56)
where j varies from 1 to 20, and
dr’ = (r'max — 7 'min)/20 . (57)

The length of the circular arc at radius ;" is

(58)

G2 4 72 Rogn2
L(rj)=2 1" cos‘l( £ ! ctib ] ,

2-rj'-5f

if 15f—Refib| <7;"; otherwise,

L(rj") = 2r - r;" if Refip > S¢ ; otherwise,

L(ri" =0 .

The collected power is the sum over the 20 bins of

the product of the power per unit area, dI(r;")/dA
times the length L(r;") times dr".



Sy
< ’éo (a)
.
.\\
__/
\'_é

fmin + St ~Repib (b)

120
.
8 i
R¢tio

Figure 17. (a) Arcs of constant intensity at the
fiber plane that intercept the off-axis collection
fiber of radius Rgp, and offset S¢, such that the
axis is within the fiber. (b) The case where the
axis is outside the fiber.

To evaluate dI/dA on the fiber plane at a
specific radius i ", note from Fig. 18(a) that the
minimum radius at the reflector, Tjmin , that can
contribute is

Tjmin = max[0, mag - (r;" = t'max)] - (59)

This is because light reflected from radius rjmin
emitted into the largest-diameter r;" bin just
reaches the radius r/-’ at the fiber plane. Also, the
maximum radius at the reflector, Timax- that can
contribute is

fimax = min[mag - (r;" + rt'max),
mag - Rygip + Ttmax | - (60)
Here, the first term arises from Fig. 18(b), and the

second from the limited extent of illumination at
the reflector.

(a)

mag
(b)
I'j max
!
v
rj"+ n'max
T Reflector T Fiber
plane plane

Figure 18. Illustration of the origins of Egs. (59)
and (60). (a) Rjmiy is the smallest radius at the
reflector that makes an illumination at the fiber
plane that can include the particular radius ;"
(b) Rjmax is the maximum radius making
illumination at 7;".

Thus, for each r]-’ on the fiber plane,
POWERXS choses 20 values of rjion the reflector
defined by

tji = rjmm+dr}--(i70.5) ,for1<i <20 . (61)
and where
dr]- = (rjmax - r}-mm)/ZO . (62)

These radial bins at the reflector are as in Fig. 19.

We need to evaluate dI(r;;) /d A, on the
reflector at radius rji, as well as the overlap area
at the fiber plane for each i, given a particular r;’
bin. For now, we fix S1,, the ry and r;” bins, and
the 20 rj" values. Consider one annular source of
reflected light from the bin whose average radius
is 7ji, as shown in Fig. 20(a). Light leaving a very
small shaded area 7;; - dr; - d¢ = dA fromone r’
bin makes on the fiber plane an illumination of
intensity

I(r,’,') -dA - FQ
1 = ) , . 63
U= (ry up2 ~ 7 low?) )

over an annulus shown in Fig. 20(b).
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Figure 19. Locations of the radii rj; at
the reflector for a given j value.
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Figure 20. (a) A small shaded area at the
reflector. (b) The illumination at the fiber
plane made by the shaded area.
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Given rj"on the fiber plane, we must
determine what fraction of the rj; annulus above
makes an annular pattern due to one ;" bin that
illuminates one specific ;" point. The entire 7j;
annulus of Fig. 20(a) makes a collection of
illumination centers on the fiber plane, which is
the demagnified annulus shown in Fig. 21. Here,
we have

rii_dri/z _ rimin+drj'(i—])

70 low = mag mag (64)
and
70"up = 70 low + drj /mag . (65)

Both r(jow and rg’yp depend on jand i.

Still considering only one ;" bin and one Tji
annulus, the point 7;" on the fiber plane is illumi-
nated by all points within the 7;; annulus whose
corresponding illumination centers in the ry’
annulus of Fig. 21 lie a distance from r;" between
7t lower and 7t upper - This is illustrated in Fig. 22,
where all illumination centers within the shaded
area can illuminate point A at radius r;".

Figure 20(a) showed that an area dA on the
reflector made an illumination power per unit
area on the fiber plane equal to Illum of Eq. (63).
The number of contributing areas on the reflector
of area dA that correspond to the shaded area in
Fig. 22 is equal to that shaded area divided by dA
multiplied by the magnification squared. Each r,’
bin at the fiber plane has a certain weight, which
is defined as the fraction of all the rays traced
through the lens which end up in that bin. Now
we can state that the power per unit area at
radius 7;” due to only one 7" bin of weight w(r)
and to only one rj; annulus at the reflector is

di(ri",r,13) _

dA

I(rjp) - FQ - weight(r,") - (Fig. 22 shaded area)
- (ry ’upz - llowz) ’
(66)

The shaded area of Fig. 22 is determined by
four applications of the results of Egs. (36)
through (39) and Fig. 4. The quantity r there
is replaced by r;" now; r; is replaced by either
7t 'up OF 't low ; and rq is replaced by either rpyp
or rg'low - The two overlap areas calculated by
using 19 up With 710w and 7910w with ‘up both



Figure 21. The locus of all illumination centers Figure 22. The shaded area is the locus of all

at the fiber plane made by the 7j; annulus of illumination centers that can illuminate the r;’
Fig. 20(a). point labeled A.
subtract from the two areas determined by using 10-4 : : ' ; y

70 up With rt'yp and 7910w with 7t'j0w to deter-
mine the overlap area of Fig. 22. The latter can i
have many shapes different from that of Fig. 22, I A
but the net overlap is still calculated the same
way. This is easily confirmed by drawing pic-
tures of all the shaded area shapes that can occur
for Fig. 22 when varying the thicknesses of the
annuli and the spacing between their centers.

The resulting dI(r;")/dA is then multiplied by
L(r;") - dr’ [see Eq. (58)] and then summed over j
to give the total light entering the collection fiber
within its numerical aperture.

POWERXS takes over two hours to run, and
the result is shown in Figs. 23 and A-4 compared
with McMillan’s Monte Carlo results. The agree-
ment is the same as with POWERX. POWERX8
calculates the power distribution on the reflector
in 30 radial bins and uses macros heavily. The
latter increases computing time, but otherwise
the code is too large for many PC memories.

-t
2
e
¢

A A

» Monte Carlo| |
A POWERX8

Collected light/laser light

—
o‘\l
Ty
—o—[>
I

1 L L Il

17 16 15 14
S1a(cm)

Figure 23. POWERXS8 results vs McMillan's
Monte Carlo calculation.
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Summary

The agreement of POWERXS8 with the approximate calculations for a new configuration
Monte Carlo result confirms our assumption that at reasonable computation time. POWERX8
coma is negligible. The near agreement between presently is best suited for use on a PC for
POWERX and POWERXS is satisfying because overnight runs, with parameters inferred from
the mathematical approach to the two codes is previous POWERE or POWERX runs. Recently
quite different. POWERX8 was expected to be available programs for Symphony spreadsheets
more accurate than POWERX because of its finer that allow them to run them in a compiled mode
binning. In practice, however, POWERE or may decrease computation time significantly.

POWERX is probably the most useful for initial
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Appendix: Format of the POWER Code

User inputs are listed in natural order from the fiber end through the lens to the reflector (in mm).
Figure A-1is a sample output from the code.

Ry Radius of laser fiber.

NA) Numerical aperture of laser fiber.

Refib Radius of collection fiber.

NA. Numerical aperture of collection fiber.

S¢ Distance from collection fiber center to axis—may be zero.

ry’ Radius of curvature of rightmost lens surface—positive for Fig. 2.
ny’ Index of refraction of right part of lens.

Ty Separation on axis between rightmost two lens surfaces.

r’ Radius of curvature of mid-lens surface—positive for Fig. 2.

n Index of refraction of left part of lens.

T Separation on axis between leftmost two lens surfaces.

r’ Radius of curvature of leftmost lens surface—positive for Fig. 2.
Lyf Distance from fibers to midway between leftmost two lens surfaces.
Rad, Maximum radius of aperture at the lens.

Fia Paraxial focal length of lens—for reference only; not used.

A Wavelength of light used for diffraction contribution to blur.
Hiest x coordinate of the left principal point of lens.

Hyight x coordinate of the right principal point of lens.

(For biconvex lenses (ny” = 1), formulae for Hief, Hright, and Fi, may be substituted for user input
numbers.)

Start Distance along the axis from reflector to midway between the leftmost two surfaces of the
lens at start of reflector travel.

1417

Travel Travel distance—the macro “s” varies 51, (Fig. 3) from “start” to (start-travel) in equally
spaced steps.

Blurs Enter “yes” if maximum blurs are wanted; any other entry produces a calculation for
weighted blurs.
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The following quantities are calculated by the code (listed as a function of reflector position Si,:

Riower Radius out to which reflector illumination is uniform.

Rupper Radius out to which reflector illumination is nonzero.

Rhalf Average Of Rjower and Rypper -

Power Watts entering collection fiber within its numerical aperture per watt emitted by the laser

fiber (lossless Lambertian reflector).

Tt Radius of illumination on reflector as a result of a point source from the laser fiber.
re Radius of illumination at fiber plane due to a point source from the reflector.
10 nfib - (S1a + Hiet)/(L1f — Hright ) -

At the right in Figure A-1 are single values of the following quantities:

Xe Center of curvature of leftmost lens surface = T/2 - ry’.

Xf Center of curvature of mid lens surface = -T/2 +ry’.

Xg Center of curvature of rightmost lens surface = T/2 + T~ r3’.

Xp x coordinate of point & = [(r1)2 — (r2’ P — (xp)? + (xe)?1/[2 - (xe — x¢)].

Y y coordinate of point h = \[(r1" )2 - (x, — x0)2].

Ratio Ratio of maximum to minimum of the collected power table.

Lsize Radius of laser illumination at the right end of the lens if no aperture were present
=(L1f-T/2-T2) - tan[sin"I(NA})].

Rin INlumination radius at lens = Min(Rad1,, Lsjze).

Powf Fraction of laser power that hits the lens with aperture Rady, = Min[1, (Rad1,/ Lsize )2].

S1af Paraxial conjugate to Lif = [F1a™" = (Lig — Hight )11 - Hyegt (printed only for reference, not
used in code).

TEST Equals unity if T is large enough for desired Rady, value.

Tty Minimum value of T= A—-B-\[(A-B)2-2-A-(r{/ - B)], where A = r{’+ ry’ and
B =I[(ry )2 - Rad1,2].

mag Magnification from fiber to reflector = (S1a + Hieft) / (L1f — Hright )-

RefRad Radius of reflected illumination used. Ensures that rays entering collection fiber are within
its numerical aperture, which is the smaller of (Rad1,) or (L1s—~T/2~-T5’) - tan[sin /(N AJ)].

F Solid angle factor for lens = (RefRad / S1,)? = fraction of Lambertian that is intercepted by

aperture of radius RefRad.
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This code takes 25 s to calculate the power at nine reflector positions when run on an IBM XT with an
Intel Inboard PC 80386 processor.

Fower

R1fib
04035

5
10.948

Sla
17000
166.32
162.5
158.8
155.0
1913
147.5
143.8
140.0

phi and ten radial bins
Origin 1s T/2 mm to the right of

NAC S

O 22 0.125

Takes 25 seconds to calc

Ten
NAL Rcfib
0.1 0.05
L1+ Radla
28..3 4
Rlower Rupper
0.054 0.533
0.117 0.457
0.180 0.381
Qs 225 0.323
0.181 0.354
0.128 0.394
0.068 0.441
0.000 0.495
0.07S5 0.S58

Fla 1l ambda
24.59 O
Rhal f Fower

0294 2.35E-05

287 1.358E-05
0.280 7.17E-06
0.274 1.30E-06
0.267 1.20E-07
Q.261 1.33E-06
0.254 6.79E-06
0.248 1.75E-05
0.316 3.29E-0S

r3°
136.95

Hlett

—1.45

rt
0.239
0.170
0.100
0.049
0.087
0.133
g.187
0.248
0.316

S5/17/90- 2 element lens— see page 1a2 of
Enter yes 1f you want maximum blurs

left (reflector)

n2’

1.649

Hright
~0.413

rt’

0.084
0.069
0.054
0.038
0.021%
0.025
0. 037
Q.049
0.064

T2"
1
Sla
Start
170

ro

0.293
0.286
0.280
0.273
Q.267
0.260
0.254
0.247

-.241

r2’
10.908

Travel
30

xe
-B8.908
xh
-0.004
LSize
2.59427
Sla+f
172.6
Mag
4.8

12/22/89 notes
(off axis fiber)

edge of lens

n T
1.517 4
Maximum
Blurs?
ves

X+ xg
8.248 —-133.

yh Ratio

b6.3202 274
Rill PowF
2.54 1
TEST Tmin

1 1.52

RefRad F

4 BE-04

Figure A-1. Sample output from the POWER code. The reflector travels from 170 to 140 mm from the
origin of coordinates. Input quantities are displayed in the upper two numeric lines. The lower nine
lines are results. Definitions are found on pages 18 and 19. The spot radius at the reflector, Ry,j¢, stays
below 0.32 mm, and the collected power dips near S1, =155 mm. See also Fig. 12,

Fowere

= 10/309/90~
Ten r and ten

Dont set S+=0

Uses ray—tracing determined reflector i1ntensity

rebin rt-’
phi bins,

Rl1fib NA1 Rcfib NAC S+ r3’ n2’
0.05 0.1 0.05 0.22 0.123 136.94 1.649
Input matches McM’'s 4/2/90 calculation
ri”’ L1if Radla Fla 1l ambda Hleft Hright
10.95 28.= 4 24.59 O —-1.45 —-0.413
Sla R{(Imax)R(I=0) Rhalf FPower rtmax rt’
170.0 Q0.000 0.533 0.280 1.78E-03 0.239 0.075
166.2 0.000 0©.457 0.280 1.02E-05 0.170 0.061
162.5 0.000 0.381 0.279 3.60E-0&68 ©0.100 0.046
158.8 0.000 0.323 0.273 Z.51E-07 0.049 0.031
155.0 0.000 0.354 0.260 4.Z2E-08 0.087 0.016
151.3 0.000 0.394 0.239 2.3Z2E-06 0.133 0.025
147.5 0.000 0.441 0.2046 9.97E-06 ©0.187 0.036
14Z.8 0.000 0.495 0.155 2.29E-05 0©0.248 0.049
140.0 0.127 0.55B 0.360 3I.8B4E-05 0.316 Q.064

fan angles for better weighting
and ten blur bins

distribution

T2 r2’ n T

1 10.91 1.517 4
Sla Max1mum

Start TravelBlurs? FRavg
170 20 vyes 0.006

ro xe »t %g
0.29% —8.90 B.248 —-133.9
0.286 xh yh Ratio
0.280 —-0.00 6.302 894.99
0.273 LS8ize Rill PowfF
0.267 2.542 2.54 1

0.260 Staf TEST Tmin
0.254 172.6 1 1.52

0.247 Mag RetfRad F
0.241 4.83 4 0.0008

Figure A-2. Input and partial output from POWERE. The Rp,)¢ values here are more accurate than
those in POWER because of radial binning in POWERE. See also Fig. 14.
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Fowersx - Z/8/91

Invoke macro called s" to start

RKlfib NAl Rctib NAC St r>’ nz’ T2 r2’
0.05 0.1 .05 Q.22 0.125 1326.95 1.649 1 10.921
Sla

ri’ L1+ Radla Fla 1 ambda Hleft Hright Start Travel
10.95 8.3 4 24359 O -1.45 -0.413 170 30
Slta RKRi{lImax)R(I=Q) Rhal+ Fower rtmax rt max ro “e
170.0 ©.000 9.5Z3Z 0.280 1.37E-05 0.229 0.084 0.293 —-8.91
166.2 (Q.000 0.457 0.284 7.45E-06 ©9.170 0.069 0.286 »h
162.5 0.000 0.381 0.279 2.70E-06 ©0.100 0.054 0.280 —-0.00
158.8 0.000 O.327 0.272 4.25E-Q07 0.049 0.038B 0.273 LSize
155.0 O.000 0.2Z54 0O.26% B.463E-08 0.087 0.021 0.267 2.3542
151.2  0.000 0.394 0.240 2.3BE-06 0.133 0.025 0.260 Slaf
147.5 O.000 ©0.441 0.206 1.21E-05 0©0.187 0.037 0.254 172.6
147.8 0.000 0.495 0.156 2.82E-05 0.248 0.049 0.247 Mag
140.0 0.092 0.55 0.257 4.32E-05 0.216 0.064 0.241 4.83

n T
1.517 4
2t ®g
8.948 —-1Z3.9
vh Ratio
&H.302 532.01
Rill FowF
2.54 1
TEST Tmin

1 1.52
RetRad F
4 0.0008

Figure A-3. Input and partial output from POWERX. See also Fig. 16.

Fowerx8 — S5/18/90—- rebin rt’° fan angles for better weighting—-but rt

Setting S+=0 masks out radius=Rill +ftor return light
and modifies F— also calculates radial dist on fiber
20 radial, phi, rt, and rt’ bins with macros

R1+f1ib NA1 Rcfib NAC S+t r3’ na’ T2 r2’
0.05 0.1 Q.05 0.22 0.125 136.95 1.649 1 10.908
Sti11ll could ray trace to better define Refrad Sla

b L1+ Radla Fla lambda Hleft Hright Start Travel
10.95 28.32 4 24,59 0O —-1.45 -0.41%3= 170 30
takes 15 minutes per Sla value-

Sla R((Imax)R(I=0) Rhal+f Fower rtmax rt max ro xe

170.0 0.000 0.533 0.282 1.37E-05 0.239 0.084 0.293 -8.908
166.2 0.004 0.457 0.28B7 7.27E-06 0.170 0.069 0.286 *h
162.5 0.013 0.381 0.279 2.64E-06 0.100 0.054 0.280 -0.004
158.8 0.021 0.323 0.273 4.00E-07 ©0.049 0.038 0.273 LSize
155.0 0.029 0.354 0.2592 8.40E-08 0.087 0.021 0.267 2.5427

151.2  0.026 0.3294 0.237 2.40E-06 0.133 0.025 0.260 Slaf
147.5 0.020 0.441 0.205 1.21E-05 0.187 0.03Z7 0.254 172.6
143.8 0.014 0.496 0.219 2.83E-05 0.248 0.049 0.247 Mag
140.0 0.100 0.558 0.358 4.61E-05 0.316 0.064 0.241% 4.87=

L .alZ

£
8.948

vh
6.202
K111
2.54
TEST
1

RefRad

4

binning

FRavg
0.008

xg
-1332.9
Ratio
548.12
FowF
1
Tmin
1.52
F
8E—04

Figure A-4. Input and partial output from POWERXS. See also Fig. 23.
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