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Abstract 

We consider the validity of Gaussian and Beta closure schemes as a function of time for the 
logistic map with stochastic initial conditions. This is done by comparing cumulants and probabil
ity distributions generated by direct simulation with predictions based on evolution equations for 
moments derived by assuming a certain closure approximation. All initial conditions assume a 
Gaussian distribution with a mean value near an unstable fixed point and a small dispersion. The 
control parameter for the logistic map is chosen to be in either one of two regimes: Il < 3 in which 
case there exists a stable attracting fixed point or Il = 4 which is fully chaotic. We find for either 
regime, the system exhibits · behavior characterized by three different time periods (called initial, 
transient and final). The initial time interval is characterized by the Gaussian closure being very 
accurate and the evolution of the system dominated by the evolution of the mean. The transient 
time interval is characterized by rapid growth in all cumulants. For Il < 3, the Gaussian closure 
approximation breaks down (but only weakly, as the growth of the cumulants remain perturbative 
to the mean evolution). We identify this transient period as a manifestation of the Kubo fluctua
tion enhancement theorem. The amount of enhancement and the location of the transient period is 
computed both theoretically and numerically. For Il = 4, the Gaussian closure approximation 
breaks down during the transient period with rapid growth of all cumulants. Unlike the Il < 3 
case, the fluctuations do not remain perturbative to the evolution of the mean. We identify this 
period as the Suzuki scaling regime. We compare his theory with our experimental results and 
find good agreement. The transient period eventually evolves into the final equilibrium state. For 
Il < 3, this is characterized by the decay of all cumulants to zero and the Gaussian closure approx
imation becoming accurate again. For Il = 4, a non-Gaussian steady state is reached. A new clo
sure scheme based on the Beta distribution is introduced in the chaotic regime. We find that the 
evolution equations for the mean and dispersion based on a Beta distribution closure give very 
accurate predictions over all three time periods. This new type of closure assumes nothing about 
the vanishing of higher order cumulants (in fact cumulants of all order are non-vanishing). The 
possible relevance of these results to clump kinetics is also addressed. 

i 



I. Introduction 


The statistical closure problem [1] arises whenever one is attempting to solve a non-linear sto
chastic equation. The infinite hierarchy of moment equations generated by stochastic equations 
for few or many degrees of freedom (e.g. Brownian oscillator versus the stochastic Navier-Stokes 
equation) are only tractable if some relation exists between higher and lower order moments. The 
net effect being that the evolution equations governing low order moments are decoupled from the 
hierarchy. Of course, one can always try to solve the corresponding evolution equation for the 
probability distribution and thus obviate the closure problem. Unfortunately, even for stochastic 
systems with a few degrees of freedom where linear equations of the Fokker-Planck type govern 
the distribution function, time dependent solutions are hard to come by for all but the simple har
monic oscillator [2]. Evolution equations for the probability distribution in systems with infinitely 
many degrees of freedom (e.g. the Hopf equation in turbulence [3]) are usually complicated func
tionals of some field variable and hence their solution can be very difficult if not impossible to 
obtain. Numerical methods applied to non-linear stochastic systems are in many cas~s the only 
recourse left Unfortunately even here there are problems. In turbulence for example, how do 
unresolved degrees of freedom (sub-grid scale modes) effect resolved degrees of freedom? In 
radiation transport, the diffusion approximation to the photon transport equation [4] arises as the 
result of a closure based on relating the radiation pressure tensor to the radiation energy density. 
The transport equation itself is usually so difficult to solve numerically that many times the diffu
sion approximation is invoked in regimes [4] where it ordinarily wouldJ:t't be valid. The above 
examples brings up the barrier to simply solving any non-linear stochastic system numerically, 
computational memory and speed are many times not adequate to solve a given problem at the 
required resolution. Evolution equations based on closure relations offer such a drastic simplifica
tion over the full stochastic description that in many cases such as in turbulence modelling [5] 
they are used to provide the infonnation on the dynam:ical properties of the system. 

The wide use of closure relations in statistical models raises the issue of their validity as · a sto
chastic system evolves in time. That is, given a closure relation at time zero, does the closure rela
tion remain valid for all time? It is of course only possible to answer this question definitively for 
models which can be solved exactly (either numerically or if one is lucky, analytically).It is only 
for these class of problems that a direct comparison can be made between the true probability dis
tribution and a distribution based on an expansion in moments derived from the closure evolution 
equations. Usually a set of evolution equations based on a given set of closure relations will 
exhibit unphysical behavior if they no longer give a faithful representation of the stochastic pro
cess. An example from turbulence modelling is the existence of negative e.nergy spectra that 
appear when using the quasi-normal expansion [5]. In radiation transport it is the acausal propaga
tion of radiation fronts, when the diffusion approximation is invoked, that signals a breakdown of 
the assumed closure relation [4]. 

Non-linear maps with either external noise [6] or stochastic initial conditions offer an excel
lent arena for testing the viability of closure relations. They exhibit complicated dynamics while 
at the same time being amenable to numerical calculation. In particular, the logistic map [7] pos
sesses much of the structure of more complicated maps including fixed points, period doubling, 
and chaos. Because of some rather strong analogies with turbulence [8], non-linear maps provide 
an excellent testing ground for looking at the validity of closure approximations in more realistic 
situations such as fluid instability. In this paper we will concern ourselves with the statistical clo
sure problem as it relates to the logistic map with stochastic initial conditions (in particular, Gaus
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sian initial conditions). The specific problem we wish to address is, given a Gaussian distribution 
of initial values centered near an unstable fixed point, how does this probability distribution 
evolve when each point of the function evolves according to the logistic map? In particular, how 
well do the evolution equations for the moments (which are based on a given closure relation) do 
in predicting the correct dynamics.? In what regimes and under what circumstances do the closure 
relations work? For future reference, we will call a given set of closure relations (valid at an initial 
time) stable if the deviations from this set of closure approximations is small as a function of time 
and the final state is characterized properly by the closure relations. Otherwise, the closure is 
called unstable. Our choice of Gaussian initial conditions is purely arbitrary and done for ease of 
analysis (the evolution equations for the moments are easy to derive for a Gaussian closure) and 
besides, there is no a priori reason for choosing any other set of stochastic initial conditions. The 
questions which we address in this paper constitute an admittedly restricted set of parameter 
space, but we feel that something can be learned by studying the closure stability issue in the con
text of a well understood dynamical process (i.e. the logistic map). 

The well studied logistic map is defined by 

(1.1) 

where Jl is the usual control parameter and xn = 0 is chosen at random from a Gaussian probabil
ity distribution with a mean centered at or near an unstable fixed point and a narrow width which 

. . is an input parameter. We will sometimes refer to the iteration index n as a "time". Because this 
problem can be numerically solved on the computer, we can compare the exact evolution with 
evolutions based on closure approximations. The two we study here are based on a Gaussian clo
sure scheme (that is further approximated by linearizing in the dispersion) and a closure based on 
the Beta distribution (when Jl =4) [12]. In this paper, the range of the control parameter is cho
sen so that we are either in the stable regime (1 <Jl<3) where the fixed point at zero is unstable but 
the fixed point at 1 - l/Jl is stable or in the chaotic regime (Jl = 4) where both zero and.75 are 
unstable. In this paper we will not be concerned with the period doubling regimes for Jl > 3. 

The above problem presents a nice toy model for understanding clump kinetics in turbulent 
plasmas and fluids [9]. A group of particles (initially close together in phase space) exposed to a 
turbulent flow will exhibit correlated behavior. This behavior, often referred to as clumping, is due 
to the fact that the turbulent potential field that the particles are moving in, is itself correlated. 
Hence, even though mixing forces tend to make neighboring particle trajectories diverge, there is 
a cooperative effect that results in the particles staying together and forming a coherent structure. 
Eventually however, the turbulent processes continue and the clump is destroyed. Typically, this 
problem is modelled by looking at the relative diffusion of a group of nearby particles which are 
under the influence of a turbulent flow. The logistic map provides an elementary environment in 
which to study not only the closure problem mentioned previously but also this problem of how a 
group of particles under some kind of chaotic influence evolve. Thus we can view our simple 
model as providing insight into how tightly packed group of Gaussian distributed particles con
tained in the interval [0,1] evolve under the influence of a non-linear map. Recently, Sommerer 
and Ott [10] have looked at the behavior of an aggregate of tracer particles on the surface of an 
unstable fluid. Although they were primarily interested in determining the fractal dimension of an 
experimentally observed process, the theoretical basis of their work relied on characterizing the 
evolution of a particle at a specific time in the aggregate via a random map. Therefore, although it 
might seem that the use of non-linear maps to describe clump kinetics in turbulent fluids and plas
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mas is merely an abstraction, there does seem to be some basis for using the mathematics devel
oped in modem dynamical systems theory as a way of gaining insight into this problem. 

Our reason for looking at both the stable and chaotic regimes is in order to differentiate the 
types of behavior exhibited by the relative diffusion (essentially the dispersion) and higher order 
cumulants. Qualitatively, the behavior of our initial Gaussian distribution and the stability of the 
closure relations can be addressed by looking at the Lyapunov exponent of the map (A.). In the sta
ble regime where (A. < 0) all initial points will be attracted to the fixed point and hence we would 
expect the closure relation to be stable and the Gaussian clump to remain intact. However, in this 
paper we are also interested in the behavior of the closure relation over the whole time interval 
and hence we need quantitative information about the evolution of the initial Gaussian probability 
distribution. This is information that the Lyapunov exponent just doesn't provide. For example, as 
we will see, even in the stable regime there is a period when the Gaussian behavior breaks down. 
In the chaotic regime it is well known that there is a non-Gaussian stationary distribution associ
ated with finding an iterate in the interval [x,x+dx] as n -7 00 • This distribution, the invariant dis
tribution is given by 

1 
p (x) = (1.2) 

reJx(l-x) 

Hence, we would expect a breakdown of the initial Gaussian probability distribution. Exactly how 
this occurs and when can only be addressed by numerically following the time evolution of the 
system. Again, the Lyapunov exponent in the chaotic regime where A. > 0 provides the qualitative 
information regarding stability of the closure relations and the Gaussian clump of particles but it 
does not provide detailed temporal information that is needed if we wish address the problem of 
when and how the initial Gaussian closure breaks down. 

A keen test of the stability of closure relations is provided by unstable systems relaxing 
towards equilibrium. As an introduction to the closure issues raised above, we consider the evolu
tion of a continuous one dimensional system from an initially unstable equilibrium. Consider a 
particle with a single degree of freedom x (t) under the influence of a potential 

2 . 4 
V (x) = _ yx + gx (1.3)

2 4 

where "( and g are both positive. Assume the initial conditions are stochastic and drawn from a 
Gaussian distribution with mean 0 and dispersion d- (0) . Since x=Q is an instability point, 0 is a 
measure of the instability of the initial state. That is, for 101 - Jy/ g the initial state is near equilib
rium but for 181 « Jy/g, the initial state is highly unstable. If one performs an expansion about the 
deterministic path (the so called van Kampen expansion [11]) so that x (t) is decomposed into a 
mean part plus a small remaining fluctuating part then it is found to first order in smallness that 
the fluctuations are Gaussian distributed about the mean trajectory. The evolution of the mean 
~ (t) and dispersioncl- (t) are given by 

1ft (t) + ( (- y+ 3g~ (t) ) ~ (t) + g~3 (t)) = O. (1.4) 

(1.5) 
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where D is the diffusion coefficient (technically, eqn. [1.4] with the dispersion set to zero is usu
ally called the van Kampen expansion but we will refer in this paper to moment equations linear
ized in the dispersion to be the van Kampen expansion). It is easily shown [12] that if- (t) rises to 
a value proportional to 1/B2 in a time proportional to log ( 1/B) (this is an example of the so 
called Kubo fluctuation enhancement theorem [13]) before it drops to its stationary value. It is 
important to realize that as Bapproaches zero (that is, as the instability point is approached), the 
dispersion can grow to a value larger than the mean and thus invalidate the expansion. In fact, for 
oeq~al to zero the dispersion grows indefinitely at a rate which is exponential in time. This is 
known to be unphysical since the stationary state fluctuations are easily calculated and found to be 
equal to r/g Analyzing Eqns. [1.4] - [1.5] further, it becomes apparent that the van Kampen 
expansion to first order is merely a linearized Gaussian closure scheme and the Kubo theorem is 
telling us that as we approach the instability point, the linearized Gaussian closure is breaking 
down.·A better closure is one based on a Gaussian with non-linear fluctuations. That is all cumu
lants greater than second order are assumed to be zero.This fact allows one to relate all moments 
to the mean and dispersion. If for simplicity we take B to be zero, then the equation for the disper
sion becomes 

(1.6) 

This non-linear equation.for the fluctuations which is based on a full Gaussian closure yields a 
fluctuation which grows exponentially in time and then approaches a fixed value equal to 113 of 
the true value·of the stationary state dispersion [12]. Both the van Kampen and Gaussian closure 
equations will eventually breakdown since the stationary state distribution function possesses 
double peaks each centered about ±Jrlg. The breakdown of the Gaussian closure is realized by 
the fact that the dispersion never attains the true stationary state value. In fact, it can be shown 
[12] . that the 1/3 value of the stationary state fluctuation can be interpreted as the largest width of 
the distribution function before it starts to develop double peaks. To deal with the relaxation and 
fluctuation near an instability point and with it the breakdown of initial Gaussian behavior, Suzuki 
developed what has become known as the scaling theory of transient phenomena [14. Simply put, 
Suzuki's method is an asymptotic technique valid for small values of the random force that can be 
applied to three qualitatively different time regimes that are characteristic of any nonlinear sto
chastic process relaxing towards equilibrium from an initially unstable state. Initially, diffusive 
forces dominate and the evolution of the stochastic system is approximately a Wiener process [2]. 
This is typically where the initial probability distribution retains a Gaussian like behavior. The 
intermediate regime is dominated by non-linear drift forces that give rise to exponenti.al growth of 
the initial fluctuations and it is here that the Gaussian behavior breaksdown. Finally, the system 
settles into its stationary or long time behavior. Scaling theory interpolates the behavior between 
the initial diffusive and intermediate non-linear regimes. Suzuki performs a non-linear transfor
mation of the Langevin or Fokkei-Planck equation. This transformation converts the system to an 
Omstein-Uhlenbeck process in the transformed variable and hence it can be solved analytically. 
For the above anharmonic oscillator Suzuki finds that the probability distribution P(x,t) is given 
by 
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-3 
(1.7)

1 Y 22 2. Y 2
P (x, t) = J (y/g) (- - X) exp (-X / (2J (t) (- - X ))) (1.8) 

2rr.j (t) g g 

Where jet) is the so called scaling variable and it is defined by 

j (t) = ~ (ci (0) + D) exp (2yt) (1.9)
y y 

It is important to notice that the scaling function is merely the solution to the dispersion equation 
based on the van Kampen expansion (Eqn. [1.6]).The scaling variable jet) is typically small «<1) 
for the initial regime and order one in the intermediate regime. In fact where j (t) - 1 signals the 
appearance of double peaks in the probability distribution function. An important implication of 
Eqn. [1.8] for closure, is that all moments can be written as a product of the stationary state fluctu
ations and a function Z(j(t)) [17]. That is, 

(1.10) 

Hence, the evolution of an initial Gaussian closure scheme can be seen to be accurate up to a time 
defined by t - J 1 (1) . After this, the closure breaksdown. It is not apparent from Eqn. [1.9] that 
any closure relation is valid once jet) is order one. Any long time behavior of this system based on 
closure relations, would have to be modelled on a parameterization of the steady state distribution 
function which is of course non-Gaussian. Therefore, we would say that the Gaussian closure 
scheme in this problem was unstable.It is only valid over a certain interval of time defined by the 
where the scaling function is small. 

The Suzuki scaling theory has been applied to the fully chaotic logistic map [14,15~. In particu
lar the relative diffusion of two nearby trajectories. If we define the relative diffusion by 

(1.11) 

where 8 is the RMS of the initial separation and ( ... ) denotes an ensemble average then the claim 
is, that 

y (n, 8) = 1 - cos (2n
8) (1.12) 

provided 8 ~ 0 and n ~ while holding 8exp (nA) fixed (A is the Lyapunov exponent). This 00 

defines the regime in which scaling theory is to be applied. When A is log2, this is nothing more 
than the scaling function mentioned earlier. That is, the relative diffusion can be written as a sin
gle function of a scaling variable 't = 2n8 The scaling variable is based on the fact that initially, 
the relative diffusion shows an exponential growth based on the Lyapunov exponent being log2. 
This is analogous to Eqn. [1.8] above.It should be noted that the relative diffusion of two statisti
cally independent trajectories can be viewed as the dispersion of a single trajectory given a distri
bution of initial conditions. That is r (n, 8) = 2(J~ where (J~ = (x~) - (xn )2. Hence, scaling 
theory predicts 
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2 (I - cos (2"B) )
a - --------::----

" 2 

The dispersion is just the steady state value multiplied by a function of the scaling variable (see 
the analogous result Eqn. [1.9]). In this instance the ensemble average refers to taking different 
starting values for the iteration of the map. In addition, for B«' 1 we have B- 2a" =o. The exist
ence of a scaling regime and the application of scaling theory to relative diffusion in turbulent flu
ids and plasmas has been investigated by a number of people including Misguich and Balescu ,[9], 
Suzuki [15], and Grossman and Procaccia [9]. 

In section II, we derive the van Kampen and Gaussian closure relations for the logistic map 
with stochastic initial conditions in the stable regime and compare our results with solving the 
problem numerically. We look at both the time evolution of the probability distribution and all 
cumulants less than or equal to four.In addition, we compute the magnitude and time of the fluctu
ation enhancementIn section Ill, we consider the application and subsequent failure of the van 
Kampen and Gaussian closure relations to the logistic map with stochastic initial conditions in the 
fully chaotic regime. In addition, we are able to come up with a successful closure scheme which 
is based on the Beta' distribution function. Comparisons with Suzukis' predictions for the relative 
diffusion in the logistic map are also made. 

II.Statistical Closure and the Approach to a Fixed ~oint 

A. Theory 

Consider the logistic map Eq. [1.1] with stochastic initial conditions drawn from a Gaussian 
distribution. In this section we will consider how an initial Gaussian distribution evolves in the 
stable regime when the initial mean is near the unstable fixed point and the initial dispersion is 
much less than one. Because of our initial conditions, at n = 0 all moments can be related to first 
and second order moments by the condition that all cumulants greater than two vanish. The start
ing point for the analysis is to consider the ensemble average of Eq. [1.1]. That is 

(2.1) 

where I < J..L < 3. Thus, we have an unstable fixed point at 0 and a stable fixed point at 1 - 1/J..L. 
The ensemble average used here is defined in the normal sense. That is, it is merely the average of 
a given stochastic variable which has been sampled over its realizations. It is obvious that Eqn. 
[2.1] will generate an infinite hierarchy of moment equations. Because of our choice of initial 
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conditions we choose to close the hierarchy for all n using a Gaussian. For example, the third 
order and fourth order moments must obey the following equations 

(2.2) 

(2.3) 

It is convenient to define the me~ ~d dispersion by Mn and O"~. Using Eqns.[2.2] -)[2.3] and 
Eqn. [2.1], we arrive at the two parameter description of the dynamics, 

(2.4) 

(2.5) 

This set of equations constitutes a mean field approach to the dynamics [22]. As was the situation 
for the non-linear potential considered in the introduction, we now have a set of non-linear equa
tions for the mean and dispersion. This set of equations describes a two dimensional map in the 
space of the mean and the dispersion. In the limit of zero dispersion, this two dimensional map 
collapses to the usual one dimensional logistic map. It must be noted that this treatment will only 
remain valid so long as the dispersion remains small and the mean is not too close to the endpoints 
of the interval [0, 1] . For example, if we are too close to either zero or one and our dispersion is 
large, we will produce a mean for the next iterate outside the interval. Thus, the two dimensional 
map described above is in general unstable except in situations where the dispersion remains 
small for all n. Thus we expect the Gaussian closure scheme to be valid provided the, fluctuations 
about the mean do not get too large. Hence, it is possible to simplify Eqns. [2.4] - [2.5] by ignor
ing non-linear terms in O"~ . This we call the van Kampen expansion of Eqn. [2.1]. We have found 
in our numerical simulations that the solutions to the equations based on a full Gaussian closure 
(Eqn. [2.5]) are virtually identical to the solutions based on the van Kampen expansion, provided 
~ < 3. What happens in the chaotic regime will be mentioned in section ill. The set of equations 
which are linearized in the fluctuations are given by, 

(2.6) 

(2.7) 

As opposed to Eqns. [2.4] - [2.5], which are a coupled set of non-linear maps, the mean and dis
persion equations resulting from the van Kampen expansion (although still being two dimen
sional) are linear in the fluctuations and hence are amenable to analytic calculations. Of particular 
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interest are the fixed points and the existence of fluctuation enhancement.If we define the fixed 
P?ints by {Mf p, cr}p} then it is easy to show that there exist two sets of solutions. The first set are 
gIven by, 

(2.8) 

which are just the fixed points for the ordinary logistic map. In addition we obtain a new set of 
fixed points given by 

1 I 1 1 2
{ 2 ( 1 - jl) , -2 (1 - jl) } (2.9) 

{.!.(1 + .!. ) _1_(Jl+1) (Jl-3)} (2.10)
2 Jl ' 4Jl2 

T-he fixed point defined by Eqn. [2.9] is unphysical for all Jl due to the negative dispersion, while 
the fixed point defined by Eqn. [2.10] is physical only for Jl> 3. Hence, the only physically real
izable fixed point (in so far as the Gaussian closure is.concerned) is the set defined by the original . 
logistic map Eqn. [2.8]. 

Due to the linearity of the fluctuation equation (Eqn. [2.7]), we can immediately write the time 
dependent solution as 

n-l 
2 2

0 = 112n IT (1- 2M )20 (2.11)n ~ k n=O 
k=O 

Provided the initial dispersion is non-zero and the amplification factor Jl2 (1 - 2Mk ) 2 is greater 
than one, the dispersion will continue to grow. It is interesting to note that the logarithm of Eqn 
[2. 11], when time averaged, gives rise to the Lyapunov exponent for the logistic map. We are of 
course not calculating the exponent but rather we are calculating the maximum value of the dis
persion at a particular time.This is the fluctuation enhancement mentioned earlier. It is important 
to realize that not only the dispersion grows but also all higher order moments. In this scheme 
where we have assumed Gaussian closure, it might seem that this is a consequence of higher order 
moments being related to the dispersion in a simple way. As we will see in the next section, the 
enhancement of all fluctuations over the same transient time interval is in fact independent of 
Gaussian closure and is a universal feature of the logistic map. A critical value of n (call it nc) 

defined by when the dispersion reaches a maximum can be approximated by when the amplifica
tion factor is one. The mean value at n c is then given by 

1 1
M --(1--) (2.12) 

nc 2 Jl 

8 

http:enhancement.If


We refrain from using an equal sign in the above equation. This is because while it is certainly 
true that the factors in Eqn. [2.11] being greater than one cause the dispersion to grow, the con
verse is not necessarily true. All the factors need not be greater than one for the dispersion to be 
large: just their product. Typically, we find that Eqn. [2.12] gives an excellent estimate of when 
fluctuation enhancement occurs. In the cases we have run, the exact value of n where the enhance
ment occurs is given by nc + 1. This is because even though the amplification factor at nc + 1 is 
less than one, its product with the amplification factors from all the previous iterates is still greater 
than one. Hence, Eqn. [2.12] gives a lower bound for nco We find that by the time iterate nc + 2 is 
reached, the dispersion drops precipitously. Another technical point is that since n must be inte
gral, Mn need not be exactly equal to 0.5 (1 - 1Ill) . Instead, it will likely bracket this value. 
Hence Eq~. [2.12] tells us the approximate n value where fluctuation enhancement will occur.Un
fortunately, Eqn. [2.12] can not be solved analytically except for 11 = 2. However, in the next 
section where we perfonn numerical calculations of the evolution of the moments exactly and via 
Gaussian closure, we will see that Eqn. [2.12] gives a reliable prediction of when the fluctuations 
reach a maximum. For 11 = 2, the solution to the mean equation is approximately just the solu
tion without the fluctuations. This is because, in the stable regime of the map (as we will see in the 
next section), the fluctuations are only a perturbation to the mean dynamics. Therefore, our calcu
lations may be considered first order in the fluctuations. The analytic solution is just 

(2.13) 

where it is assumed that Mn = 0 < 0.5.Substituting Eqn. [2.13] into Eqn. [2.12], we obtain 

(2.14) 

This equation is analogous to the In (1 18) for the occurrence of fluctuation enhancement in the 
unstable anhannonic oscillator of section I. In the next section, we compare the predictions of 
Eqn. [2.14] with numerical results. An order of magnitude estimate yields nc - 5 and 15 for 
Mn = 0 equal to 10-2 and 10-5 respectively. Note that the critical value of n depends only on the 
initial mean and not the initial dispersion. This is a result of approximating the solution to the 
mean equation by ignoring the fluctuations. A more exact treatment would include the initial dis
persion. 

The magnitude of the enhanced fluctuation (that is the maximum amplitude of the dispersion) 
can now be estimated.First, we define the amplification exponent An by 

(2.15) 
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We evaluate Eqn. [2.15] at n=n using Eqn. [2.14] and Eqn. [2.13]. We obtain e 

(2.16) 

We can compute the amplification of the initial dispersion and find for M _ 0 - 0.01 that cr n- n 
. reaches a maximum value of approximately 300 times its initial value. In Figs. [1] and [2] we 
Show plots of ne and An versus M no=o' Care must be taken in reading amplification exponents 
off of Fig. [2]. At small mitial mean values where the amplification is very large, it must be 
remembered that the width of the Gaussian must be small enough that it is effectively contained in 
the [0,1] interval (a quantitative description of this statement will be given in the next section). We 
will compare these theoretical results with our numerical experiments in the results section. 

What about higher order moments and cumulants? Since we have assumed Gaussian closure, 
all cumulants greater than second order are zero and thus all moments greater than second order 
can be related simply to the mean and dispersion. We will see in the next section that by evaluat
ing higher order cumulants numerically and locating any deviations from zero we will have a 
diagnostic tool for looking at the stability ofthe closure approximation.In conclusion; Egns. 
[2.14] and [2.16] are examples of the Kubo fluctuation enhancement theorem applied to the logis
tic map. 

In the large time limit (i.e n » n )' the system approaches the fixed point That is, all fluctuac 
tions go to zero and Mn -70.5 (1 - 1/ 11) . Effectively, the initial distribution has contracted to a 
delta function centered at the fixed point. 

B. Numerical 

The numerical simulation of our problem is carried out in a straightforward manner. We gener
ate independent Gaussian distributed random deviates using the Box-Muller method [23]. These 
deviates·are characterized by their mean and standard deviation. For a given value of the control 
parameter 11 the logistic map is iterated using these random numbers as initial conditions. Given 
that we are constrained not to exceed the edges of the unit interval, we always choose the mean 
and width of the Gaussian such that the mean is at least 5 standard deviations away from an end
point. While in theory there is a non-zero probability of finding an initial point far from the mean, 
we never actually encounter this situation since the probability is vanishingly small. The map is 
iterated for 100 steps for each of 105 initial starting points. At every iterate, n, the averages of
-< are calculated for k=1, ... ,4. We then compute the first through fourth order cumulants. We note 
that the first order cumulant gives us the mean and the second order cumulant is simply the disper
sion. The results obtained using a direct numerical simulation are then compared with those 
obtained by numerically solving the analytic Egns. [2.4] and [2.5] in the preceding section. All 
computations were perfonned in double precision on an SGI workstation. 

In Figs.[3a - d] - Figs. [4a - c], our numerical results for 11 = 2 are shown. The phenomenon 
of fluctuation enhancement is clearly visible. In the last section we showed that the van Kampen 
expansion predicted that the fluctuation enhancement should be a maximum when the mean is 
approximately one-half of the stable fixed point value, i.e.M = 0.25. The results presented in e 
Figs.[3a - d] - Figs.[4a - c] are consistent with the analysis of section II A. Iterates zero through 

10 

http:approximation.In


five show a continually growing dispersion finally peaking at iterate six. Beyond iterate six, the 
dispersion drops rapidly and eventually reaches zero. The maximum value of the enhancement 
factor for an initial mean of 0.01 and an initial dispersion of 0'6 = 4 x 10-6 is approximately 
300. For an initial mean of 10-5 and an initial dispersion, 0'6 = 10-14 the maximum value of the 
enhancement factor is approximately 3 x 108 

• These results are in excellent agreement with the 
theoretical predictions. In the latter case the critical iterate is pushed out to approximately 15. The 
third order and fourth order cumulants for the above initial conditions are presented in Figs.[3c 
d] and [4c]. Both cumulants are zero everywhere except for a transient regime centered about nco 
As advertised in section II A, the enhancement of fluctuations occurs not only for the dispersion 
but also for higher order cumulants and hence is a universal feature of the logistic equation and 
the specific stochastic initial conditions. Figures [5a- d] - [6a - c] show our numericaI results for 
~ = 2.5. Unlike, the above case, no analytic solution to the location and size of the fluctuation 
enhancement can be obtained solely. in terms of the initial mean. This is because no known ana
lytic solution exists for the value of the nth iterate of the mean of the logistic map with 
~ = 2.5. The best prediction that can be made for when fluctuation enhancement occurs is given 
by where the mean has reached one - half of its fixed point value. Figures [Sa - d] - [6a - c] for dis
persion, third and fourth order cumulants all show fluctuation enhancement at values of nc e~ual 

6
to five and twelve for Mn::O = O.Ol,O'~=o = 4x10- andM =o = 10-7,O'~=o = 10-

1 
n 

respectively. Both values for nc are consistent with Eqn. [2.12]. 
Instead of looking at the time evolution of the moments, an alternative approach to investigat

ing the dynamics of the logistic map with stochastic initial conditions is to look at the time evo1v
ing 'probability distribution Pn (x) defined by 

Nc 

Pn(x) = (o(x-xn» = ~ I,0(x-xn(i» (2.17) 
c i == 1 

Where as usual, the average is sampled over the number of realizations N c ' For clarity, we have 
explicitly inserted the realization index i in x . In performing the numerical evaluation of Eqn.n
[2.17] we approximate the delta function by a rectangle of width a and height lIa. The interval 
between zero and one is partitioned into 1000 equal size bins. At each "time" step we store the 
values of xn appropriate for a particular bin and average over 100,000 initial starting points. The 
probability is nonnalized to one at each "time" step. 

In Fig. [7] we present the probability distribution as a function of "time" for ~ = 2 and 
M0 = 10-2 and O'~ = 4 X 10-6

• We notice that the distribution is attracted toward the stable 
fixed point at X= 112. During the first several iterates the distribution spreads and maintains its 
Gaussian shape. An asymmetry, i.e. a deviation from Gaussian behavior, is very noticeable at iter
ate six where the dispersion and higher order cumulants have reached their maximum value. After 
iterate six, the distribution begins to narrow and a gross asymmetry appears as a result of mem
bers of the ensemble having reached the stable fixed point By iterate nine, the distribution has 
become, for all intents and purposes, a delta function centered at X= 112. The results shown in Fig. 
[8] for ~ = 2.5 with the same initial conditions are similar except, of course, for the fact that the 
distribution function is attracted to a fixed point value of 0.6. The numerical simulation of the 
evolving probability distribution function for the other initial conditions, M0 = 10-5 and 
0"6 = 10-14

, are also consistent with the moment calculations in section II A. 

11 




c. Discussion 

f 

What are the implications of the theoretical and numerical results presented in sections IT A 
and B for statistical closure and clump kinetics? In so far as the statistical closure problem is con
cerned, it is apparent that the Gaussian closure approximation of the logistic map does an excel
lent job of describing the dynamics provided we are approaching a stable fixed point. The only 
deviation from Gaussian that appears is in the transient regime defined by where fluctuation 
enhancement occurs. The importance of the fluctuation enhancement regime lies in the observa
tion that it is the time regime where the Gaussian closure approximation is the weakest, as evi
denced by the deviation of third and fourth order cumulants from zero. By comparing the relative 
magnitudes of the first through fourth order cumulants, it is clear that the Gaussian closure of our 
stochastic logistic map satisfies the definition of stability as discussed in the Introduction. It is 
only in the transient fluctuation enhanced regime that any deviations occur and these deviations 
are small relative to the magnitude of the mean. Hence the van Kampen expansion gives an ade
quate description of the mean and fluctuations about that mean for the logistic map with Gaussian 
distributed initial conditions. In conclusion, it can be stated that the time evolution or relaxation of 
a system whose dynamics are governed by the logistic map possesses three distinct time regimes. 
An initial regime (n« n ) where the Gaussian closure approximation is almost exact, an intermec 
diate transient regime (n - nc) where all cumulants greater than first order grow and reach their 
maximum value. It is here that the Gaussian closure is only approximately valid. Finally, a final· 
regime (n »nc) where all cumulants attain their stationary values. The Gaussian clos\lre is almost 
exact in this regime but almost in a trivial way since the distribution function goes to a delta func
tion (all cumulants go to zero except for the mean).The multidimensional map defined by Eqns. 
[2.4] and [2.5] collapses to the standard one dimensional logistic map in the long time limit. 

What do the above results mean for clump kinetics? If the time evolving probability distribu
tion plots are interpreted as time evolving particle densities confined to the [0,1] interval it is clear 
what is going on. The initial conditions specify a tightly packed group ·of non-interacting point 
particles Gaussian distributed about some mean value. In the initial regime, this clump of particles 
gradually spreads out and drifts towards the stable fixed point. In the transient fluctuatiori 
enhanced regime, the clump has become somewhat non-Gaussian like and has spread to its maxi
mum extent. Finally, as the clump nears the fixed point, the particle distribution recollapses, form
ing a tight clump that eventually arrives at the stable fixed point. 

III. Statistical Closure and Chaos 

A. Theory 

In this section we study the approach to steady state of a stochastic system defined by the 

logistic map (with Jl = 4) whose initial conditions are drawn from a narrow Gaussian centered at 
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or near either one of two unstable fixed points (i.e xn = 0 = 0, 3/4).This situation is similar to the 
approach to equilibrium from an initially unstable state for the anharmonic oscillator that was dis
cussed in the introduction. Qualitatively, any closure scheme based on a Gaussian distribution is 
doomed to failure. We base this on two observations. First, the Lyapunov exponent is positive and 
hence any two initially nearby trajectories will diverge. The type of behavior shown in section II 
where the trajectories of nearby particles start to diverge but then converge on the fixed point is 
not present in the chaotic regime of the logistic map. Second, the steady state distribution also 
known as the invariant distribution has been solved analytically for this case [24] and is given by 

1 
(3.1)Pn~oo = 1tJx(l-x) 

This is the well known solution to the Perron-Frobenius equation [24]. Because we expect the 
Gaussian closure scheme to breakdown and hence invalidate the van Kampen expansion, the 
questions we wish to address are in what regime is the Gaussian closure valid, when does it break
down and does there exist a better closure model. 

The moment equations based on a Gaussian closure for the logistic map are simply given by 
Eqns. [2.4] and [2.5] with Il = 4. Likewise, the van Kampen expansion for the Logistic map 
yields Eqns. [2.6] and [2.7] with J.l = 4. A word should be mentioned concerning the van 
Kampen versus Gaussian closure equations for this map. As we saw in section ITA and B, the dif
ferences between the two schemes was slight due to the fact that the fluctuations remained small 
for all "time". However, in the chaotic regime of the logistic map we would not expect the fluctu
ations to remain small due to the positive Lyapunov exponent Hence we would expect differ
ences between van Kampen and Gaussian closure. In fact, as we will see in the next section, the 
Gaussian closure yields an instability in the sense that it leads to an iterate outside of the [0,1] 
interval. Detailed descriptions of the breakdown of the van Kampen and Gaussian closure approx
imations for the chaotic logistic map will be described in the numerical section that fpllows. The 
philosophy of this section is that the Gaussian closure represents a two variable parametrization of 
the evolving distribution function based on the initial distribution. What if we chose a closure 
scheme based on parametrizing the steady state distribution? We choose to base a closure scheme 
on a two variable parametrization of the invariant distribution given by 

:!n- 1 (l_x)qn- 1 

(3.2)
B (Pn, qn) 

This function, called the Beta distribution, has several interesting properties. It is normalized over 
the [0,1] interval. The mean and dispersion of Pn (x) are related to p and q by 

Mn = (3.3) 

As p and q approach 112, the steady state distribution is realized. For p, q » 1/2,the distribution 
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looks Gaussian (see Fig. [9a - b]). In fact, as p and q get large, all cumulants greater than second 
order go to zero. Like the Gaussian distribution, Pn (x) is parametrized by two variables. Hence 
we would not expect it to be an exact solution to the Perron-Frobenius equation and therefore 
Eqn. [3.2] would not be expected to be accurate for all cumulants for all time. However, Eqn. 
[3.2] should be a much better description of the dynamics for late time. In addition, because it 
looks Gaussian for large p and q, we would expect Eqn. [3.2] to give an approximate description 
of the dynamics in the initial and transition regions. 

Assuming the Beta distribution accurately describes the stochastic evolution of the logistic 
map for ~ = 4 with Gaussian distributed initial conditions, the Nh order moment at iterate n is 
simply 

(3.4) 

From Eqn. [3.3] we have 

M2 _M3 -M (52 (l-M ) (M _M2 - ( 2)
P = n n n n qn = n n n n (3.5) 

n 
~n a: 

From the recursive formula for the Gamma function (i.e.r (x + I) = xr (x) ) we oQtain the fol
lowing closure relation based on the Beta distribution 

(3.6) 

This forms the basis for what we call the Beta closure approximation. It is now straightforward to 
obtain a set of equations describing the evolution of the first and second order cumulants based on 
the Beta closure scheme (Eqn. [3.6]). For simplicity, the coefficient in Eqn. [3.6] is written as 

2eN (M n, an) . Hence, 

(3.7) 

The evolution equations for the mean and the dispersion are given by 

14 



2 2 2 2 2 2 2
O"n+l = ~ (I -2C3 (Mn'O"n) +C4 (Mn'O"n)C

3
(Mn'O"n)) (O"n+ Mn ) 

2 
(Mn (1 - Mn) - O"~) ~2 (3.8) 

The above equations constitute a two parameter description of the stochastic behavior of the 
logistic map under study. It is important to realize that, unlike the Gaussian closure approximation 
discussed earlier, higher order cumulants within the Beta closure approximation are not -zero. 
Because of Eqn. [3.7], all cumulants are defined in tenns of the mean and dispersion and their 
dynamics is therefore known once the evolution of the mean and dispersion is known. Equation 
[3.8] is an admittedly more complicated set of equations than those encountered earlier (Eqn. 
[2.4] - [2.5]), but as we shall see, itgives a remarkably accurate description of the stochastic 
behavior of the logistic map. 

B. Numerical 

The numerical procedure used to simulate the chaotic logistic map with stochastic initial con
ditions, is exactly the same as described in section IT B. The only exception is that now ~ = 4. 
We again study the evolution of the map with a Gaussian distributed set of initial conditions ini ... 
tially centered near one of the unstable fixed points (in this case, 0 and 3/4). We present in this 
section a comparison of the results ofEqns. [2.4] - [2.5], Eqns. [2.6] - [2.7] and Eqns. [3.8] with 

5 14
exact simulation for initial conditions given by M n =0 = 10- O"~ =0 = 10- as well as for 

6Mn =0 = 0.75 O"~ =0 _= 4 X 10- • Other sets of initial values for the mean and dispersion were 
all run with initial means near the unstable fixed points but with varying dispersions. The results 
we present here offer a representative sample. 

Figures [lOa - d] show the mean as a function of iterate for the initial parameters 
14Mn =0 = 10-5 and O"~ =0 = 10- as calculated both by the Beta distribution, Gaussian closure, 

van Kampen expansion and direct simulation. To begin with, the Gaussian closure equations are 
unstable (se Figs. [lla - b] for all the initial conditions we have looked at in the sense that eventu
ally the iterate lies outside of the [0,1] interval. It is clear that the van Kampen expansion and 
direct simulation agree only initially. In particular, whereas direct simulation shows a definite 
steady state, van Kampen looks random. We can trace this observation to the fact that the fluctua
tions over the course of time no longer remain a small perturbation to the evolution of the mean 
(see Fig [12]), hence invalidating the linearization assumption used in deriving Eqn. [2.7]. Finally, 
the Beta closure approximation yields very accurate results for the mean and dispersion over the 
whole time interval. In particular, the correct steady state is reached. It is evident from the direct 
simulations that there are three distinct time regimes. An initial regime where the cumulants 
slowly grow or remain small, a transient regime where the cumulants increase rapidly and a final 
regime (by about iterate twenty) where the cumulants reach a steady state value. In the case of the 
third order cumulant it is zero while for the fourth order cumulant it is -0.023. Both values are 
consistent with the invariant distribution. As was seen in the Gaussian closure approximation in 
section II, the Beta closure approximation is weakest (for higher order cumulants) in the transient 
regime. 

Figures [13a - d] show the mean as a function of iterate for the initial parameters . 
= 10-10Mn = 0 = 0.75 and O"~ = 0 as calculated via the van Kampen expansion, Beta closure and 
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numerical simulation. Again, we see the excellent agreement between Beta closure and direct 
simulation for the mean and dispersion whereas the higher order cumulants have problems in the 
intermediate transient regime. In addition the van Kampen expansion handles the initial regime 
correctly but breaksdown in the intermediate regime and looks random in the final regime. Fig
ures [14a - d] show the mean as a function of iterate for the initial parameters Mn = 0 = 0.75 and 

6(J~ =0 = 4 X 10- • The results presented are consistent with our previous calculations. Note the 
fact that the intennediate transient regime where the linearized Gaussian closure scheme (van 
Kampen) breaks down occurs earlier for larger initial dispersion. . ) 

The evolution of the exact time dependent probability distribution beautifully illustrates the 
approach to steady state. While this set of initial conditions would require fine binning of the unit 
interval, we can obtain qualitatively similar results with initial conditions M n = 0 = 0.0 I and 

6(J~ = 0 = 4 x 10- . The probability distribution obtained from this particular experiment clearly 
shows the initial .narrow Gaussian distribution spreading in time as more of the phase space of the 
map is explored. Eventually, the distribution loses its Gaussian character as the iterates accumu
late at the ends of the interval. Finally, the invariant distribution is attained as steady state has 
been reached. Since we have predictions for the mean and dispersion based on the Beta closure 
approximation as a function of time, it is possible it compute numerically Pn, qn and get a predic
tion for the Beta probability distribution Eqn. [3.2]. A comparison can then be made between the 
probability distribution based on direct simulation versus Beta closure. Figure [15] shows the 
result of that comparison. Note the excellent agreement (within statistical errors) for all time. 

Suzuki [19] has analyzed theoretically the behavior of the relative diffusion (in our case the 
dispersion) for the logistic map ( J.! = 4) using his scaling theory. We wish to compare our numer
ical results with his predictions. As mentioned in the Introduction, scaling theory predicts that 
the dispersion should behave in the initial and transient regimes like 

(J2 _ (l-cos(2n8)) 
(3.9) 

n 2 

In Fig. [16] we show comparisons between the experimental results for the dispersion versus the 
scaling theory prediction. The results show good qualitative agreement in the initial and transient 
regimes where the scaling theory applies. The agreement is completely wrong in the final steady 
state regime. However, this is to be expected since the theory is not relevant in the steady state. Of 
particular interest is the fact that the time at which the transient regime occurs and hence when the 
Gaussian and van Kampen expansions are breaking down is predicted to be where the scaling 
function is order one. That is 

-in (8) 
(3.10)nc - in (2) 

An estimate based on Eqn. [3.10] yields times of 7 for an initial dispersion of 4 x 10-
6 

and 15 
for an initial dispersion of 10-10

. Both agree with the experimental results. This expression is 
analogous to Eqn. [2.14] for the logistic map with a stable fixed point in that they both signify 
rapid growth of the initial fluctuation and hence identify the transient or fluctuation enhanced 
regime. 
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c. Discussion 


Again, we ask, what are the implications of the above theoretical and numerical results for sta
tistical closure and clump kinetics? It is obvious that the Gaussian statistical closure scheme (both 
in the full and linear sense) is by our definition unstable. The evolution of the logistic map with 
stochastic initial conditions for Jl = 4 can be characterized by three time regimes~The linear 
Gaussian closure gives the approximate early "time" (n « nc) evolution of the logistic map but 
breaksdown after a certain number of iterations. The breakdown occurs when the fluctuations rap-

f 

idly grow and become comparable to the mean. This is to be contrasted with the approach to a 
fixed point where the fluctuations grow but remain perturbative to the mean. This is the transient 
regime identified by Suzuki scaling theory (n - n ). Unlike the approach to a stable fixed point, c 
the transient regime is the first indication of a complete breakdown of the Gaussian closure 
scheme for all time. Finally, the stochastic system enters a steady state regime characterized by 
the invariant distribution (n » n ). Interestingly enough, by basing a closure scheme on the steady c 
state distribution instead of the initial distribution, we have been able to come up with a closure 
scheme, albeit not perfect, that gives very accurate results for the mean and dispersion over all 
three time regimes. In addition, higher order cumulants are calculated properly in the initial and 
final time regimes. However, any closure scheme based on a two variable parameter set is not 
going to get everything right and the evidence for this is the differences between theory and 
experiment in the transient regime of the higher order cumulants. It is important to realize that 
what we have introduced, is a different type of closure scheme than is typically encountered. The 
Beta' closure scheme is non-perturbative in the sense thatit assumes nothing about the relative 
magnitudes of higher to lower order moments. Instead, it only assumes that they can be related to 
the mean and dispersion in a straight forward way. In turbulence modelling for example, one usu
ally states a priori that any cumulant beyond a certain order is zero. In a sense, this isa perturba
tive approach to closure where one assumes that higher order cumulants have less of an 
importance than 'lower order cumulants. This may be a particularly dangerous thing to do if the 
stochastic system under study is in some sense far from equilibrium. For example, in the stochas
tic anharmonic oscillator discussed in the Introduction, as the initial state gets closer to the insta
bility point, the notion of fluctuations and higher order cumulants being a perturbation to the mean 
evolution becomes less and less accurate.For the logistic map, it is only when the fixed points are 
stable that the higher order cumulants behave as a perturbation to the mean evolution and hence 
preserve the closure scheme. In the chaotic regime, this statement is no longer accurate and we 
have come up with a closure scheme that successfully interpolates the cumulants between the ini
tial and final time regimes. Whether or not these results have direct bearing on turbulence model
ling is at present unknown. However, the idea of using closure schemes based on ignoring the 
effects of higher order cumulants especially when a stochastic system is far from equilibrium 
should be used with caution. 

In so far as the dynamic evolution of a clump of Gaussian distributed particles is concerned, 
the above results can be easily interpreted. The three time regimes are characterized by the clump 
behaving initially like a coherent object whose dispersion or width remains small while its mean 
evol yes according to the logistic map without fluctuations. The second time regime is character
ized by the particles in the clump diverging exponentially from each other. This is the transient 
regime described by the Suzuki scaling theory. Finally, the clump distribution settles to a final 
state defined by its filling the [0,1] interval with accumulations near the end points. 
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IV. Conclusion 


We have considered the validity of Gaussian and Beta closure schemes as a function of time for 
the logistic map with stochastic initial conditions. This was done by comparing cumulants and 
probability distributions generated by direct simulation with predictions based on evolution equa
tions for moments derived by assuming a certain closure approximation. All initial 'conditions 
assumed a Gaussian distribution with a mean value near an unstable fixed point and ~ small dis
persion. The control parameter for the logistic map was chosen to be in either one of two 
regimes: I-l < 3 in which case there exists a stable attracting fixed point or I-l = ~ which is fully 
chaotic. We found for either regime, that the system exhibited behavior characterized by three dif
ferent time periods (called initial, transient and final). The initial time interval was characterized 
by the Gaussian closure being very accurate and the evolution of the system dominated by the 
evolution of the mean. The transient time interval was characterized by rapid growth in allcumu
lants. For I-l < 3, the Gaussian closure approximation broke down (but only weakly, as the growth 
of the cumulants remained perturbative to the mean evolution). We identified this transient period 
as a manifestation of the Kubo fluctuation enhancement theorem. The amount of enhancement 
and the location of the transient period was computed both theoretically and numerically. During 
the transient period for I-l = 4, the Gaussian closure approximation broke down with rapid 
growth of all cumulants. Unlike the I-l < 3 case however, the fluctuations did not remain perturb a
tive to the evolution of the mean. We identified this period as the Suzuki scaling regime. We com
pared scaling theory with our experimental results and found good agreement. The transient 
period eventually evolved into the final equilibrium state. For I-l < 3, this was identified by the 
fluctuations decaying away and the Gaussian closure approximation becoming accurate again. For 
I-l = 4, a steady state was reached which was non-Gaussian. In order to describe the stochastic 
evolution of the logistic map for I-l = 4 using a closure scheme we introduced a closure based on 
the Beta distribution (basically a time dependent parametrization of the invariant distribution). We 

~ 

found that the evolution equations for the mean and dispersion based on a Beta distribution clo
sure gave very accurate predictions over all three time periods. This new type of closure assumes 
nothing about the vanishing of higher order cumulants (in fact cumulants of all order are non-van
ishing). ' 

The relevance of these results to clump kinetics was also addressed. Similar to the results of 
Misguich and Balescu [18], Suzuki [19], and Grossman and Procaccia [20] we found that the 
clump dispersion exhibited first a coherent behavior followed by a rapid growth of the width of 
the clump. Quantitative estimates were made of when this rapid growth occurred. If we were in a 
regime of the control parameter that possessed a stable fixed point, then the maximum width of 
the clump never washed out the Gaussian shape (the clump as an entity was easy to identify) and 
we could predict the time or iterate of this maximum growth by using the van Kampen expanded 
stochastic equations. Numerical simulations confirmed our results. This was considered an exam
ple of the Kubo fl uctuation enhancement theorem. For the chaotic regime, the dispersion grew to 
become comparable to the mean and the clump disintegrated. Quantitative estimates of when this 
growth occurred have been shown numerically to be consistent with Suzuki scaling theory. 
Finally, the system in both regimes settled to an equilibrium. As expected, for I-l < 3, the state was 
characterized by all particles accumulating at the fixed point. For I-l = ~ the equilibrium or steady 
state was characterized by the invariant distribution. 
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Figure Captions 


Fig. 1. Value of the iterate at which the fluctuations are maximum vs. the initial mean: equation 
2.14. 

Fig. 2. Amplification factor vs. the initial mean: equation 2.16. 

Fig. 3. ~ = 2, Mn =0 = 10-2
, a~ =0 = 4 X 10-6 (a) mean vs. iterate (b) dispersion vs. iterate. 

Circles represent the results of simulation, crosses represent the analytic results of equations 2.6 
and 2.7. Lines are a guide to the eye. (c) Numerical simulation of the third order cumulant (d) 
Numerical simulation of the fourth order cumulant. Both (c) and (d) are identically zero in the 
anal ytic theory. 

Fig. 4. ~ = 2, Mn = 0 = 10-5
, a~ == 0 = 1 X 10-14 (a) mean vs. iterate (b) dispersion vs. iterate. 

Circles represent the results of simulation, crosses represent the analytic results of equations 2.6 
and 2.7. Lines are a guide to the eye. (c) Numerical simulation of the third order cumulant. 

Fig. 5. ~ = 2.5, Mn = 0 = 10-2
, a~ = 0 = 4 X 10-6 (a) mean vs. iterate (b) dispersion vs. iterate. 

Circles represent the results of simulation, crosses represent the analytic results of equations 2.6 
and 2.7. Lines are a guide to the eye. (c) Numerical simulation of the third order cumulant (d) 
Numerical simulation of the fourth order cumulant. 

Fig. 6. ~ = 2.5, Mn = 0 = 10-5
, a~ = 0 = 1 X 10-14 (a) mean vs. iterate (b) dispersion vs. iterate. 

Circles represent the results of simulation, crosses represent the analytic results of equations 2.6 
and 2.7. Lines are a guide to the eye. (c) Numerical simulation of the third order cumulant. 

Fig. 7. Probability distribution Pn (x: vs. x for ~ = 2, Mn = 0 = 10-2
, a~ = 0 = 4 X 

; 

10-6
, equa

tion 2.17. (A) iterate 2 (B) iterate 3 (C) iterate 4 (D) iterate 5 (E) iterate 6 (F) iterate 7 (G) iterate 
8. 

Fig. 8. Probability distribution Pn (x) vs. x for ~ = 2.5, Mn =0 = 10-2
, a~ =0 = 4 X 10-6

, 

equation 2.17. (A) iterate 1 (B) iterate 2 (C) iterate 3 (D) iterate 4 (E) iterate 5 (F) iterate 6 (G) 
iterate 7. 

Fig. 9. (a)Third order cumulant as a function of p and q for the Beta distribution. (b) Fourth order 
cumulant as a function of p and q for the Beta distribution. 
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5
Fig. 10. Jl = 4 Mn = 0 = 10- , cr~ = 0 = 10-

14
, (a) mean vs. iterate (b) dispersion vs. iterate (c) 

third order cumulant (d) fourth order cumulant. In (c) and (d) the circles represent the results of 
numerical simulation and crosses represent the results of the Beta closure equations. The lines are 
a guide to the eye. 

Fig. 11. Breakdown of the Gaussian closure. (a) mean vs. iterate: circles represent numerical sim
ulation, crosses represent results of equations 2.4 and 2.5. The lines are a guide to the eye. (b) dis
persion vs. iterate. All else is the same as in (a). The results of the Gaussian approximation lie 
outside the interval [0,1] and hence go off of the scales shown in the plots. 

Fig. 12. Comparison of the two terms in equation 2.5 for the chaotic logistic map. The point at 
which these curves become equal indicates where the breakdown of the van Kampen expansion 
occurs. 

Fig. 13. Jl = 4 Mn =0 = 0.75, cr~ =0 = 10-10
, (a) mean vs. iterate (b) dispersion vs. iterate (c) 

third ordercumulant vs. iterate (d) fourth order cumulant vs. iterate. In (c) and (d) the circles rep
resent the results of numerical simulation and crosses represent the results of the Beta closure 
equations. The lines are a guide to the eye. 

Fig. 14. Jl = 4 Mn = 0 = 0.75, ~n = 0 = 4x 10-6 
, (a) mean vs. iterate (b) dispersion vs. iterate 

(c) third order cumulant vs. iterate (d) fourth order cumulant vS. iterate. In (c) and (d) the circles 
represent the results of numerical simulation and crosses represent the results of the Beta closure 
equations.The lines are a guide to the eye. 

6
Fig. 15 Probability distribution for Jl = 4 M n =0 = 10-

2
, ~n =0 = 4 X 10- : numerical simula

tion vs. Beta function for p and q obtained analytically (a) iterate 2 (b) iterate 4 (c) iterate 5 (d) 
iterate 15. 

Fig. 16. Dispersion vs. iterate for various means and an initial dispersion of 4x 10-
6 

. The result of 
the Suzuki scaling fonnula is shown for comparison. 
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