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General expres ions are ven for the field its expansion 

in ial field at that effects of the 

of are discussed: rotation 

and error excitation of conductor, of conduct or , and 

modificat of the inside contour of the iron. des criterion is 

0 ze error fields associ of the 

shell relat to the conductor structure. sions for the 

force and on a conductor are derived both for the 

and Formulae exe ed that allO\·l convenient and fast 

evalua of ities ·with a er when the structure is too 

ted for tions. 
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l. 

With the of as a practical material for the 

, a considerable amount of work has been done over the 

last few years on whose fields are dominated not the iron con-

as in conventional iron magnets, but the conductor 

A number of theoretical papers have been , for instance those 

1 2 3 4 
Beth, ) Blewett, ) Asner, ) Meuser, ) that deal with two dimensional conductor-

dominated that are surrounded a circular iron shell. These papers 

discuss des considerations for c types of s. The t c 

of this paper is in a sense the opposite: it will be to give as 

a des of conductor-dominated two-dimensional as 

possible, and to discuss in icular the effects from deviations 

from the ideal des 

A good of these effects is not 

for reasonable tolerances, but is also 

for the design of a magnet. It will be shown, for instance, that 

it is ous to a certain criterion to make the 

insensitive to a particular very common kind of Besides caus 

unwanted fields or harmonics, can also substantial 

forces between the conductor structure and the iron shell, and these forces 

can lead to disastrous results if not and taken into 

account. In contrast to the discussion of effects in 

dominated effects are expressed to 

than first order of the however, this was 

not done here since the first order will be of 

sufficient accuracy in the of ical magnets. 
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In the des , an att 

introduce as few restrictions as possible. 

has been made to 

cal multipole 

are 

its 

ed, the 

to other of 

has been kept to also allow 

s. The only essential limitations 

are the restriction to two-dimensional magnets and the as that the 

between the iron shell and the inside of the magnet is a circular 

the latter restriction can in be 

cation of the conformal transformation, in view of 

the cations this does not seem be to 

time. The exact 

iron and the inside of the 

is extends to the 

at the 

between the 

, and the iron saturation effects are 

expressed in terms of the azimuthal field that is 

saturation effects at that boundary. The information necessary to obtain 

that field, or to design the outside contour of the shield, is ed. 

This was over the one the iron shield and 

constant of the iron: If the is small 

to be noticeable, the B curve is so nonlinear that the 

latter will s results. A drawback of the 

chosen here is that in the effect of of 

the conductor structure, the effect of the of saturation in the iron 

as a cons of the is not taken into account, 

this could be done with an iterative However, these s 

effects should be small unless the iron is driven hard, 

and seem to be difficult to describe no matter what basic 

is chosen. The des of iron-free is obtained 



the terms associated with the iron shell, or R see 

, 1 go to 

it is the main purpose of the des to 

a better of various effects, the formulae are 

to be evaluated hand for s structures, To make 

evaluation possible when the structures are more , sect, 7 

formulae that are evaluated a The 

thought is to convert all surface into contour to make 

both the of the program and to minimize execution time. In most 

of sect. 7 it has been assumed that the current in the conductor 

structure is not a continuous ion of the space coordinates, but is 

over finite cross sections of the conductors. this restric-­

time. tion could be lifted, it seems not worthwhile to do so at the 

In order to limit the of this paper, the author had to leave 

out many formulae that 

that the 

expressions needed for 

be of interest under some circumstances. It is 

is clear enough to allow the reader to derive 

c cations, and in some instances it is 

indicated how to obtain them. 



2. 

The coordinate system is chosen such that the fields are in the ~ 

of a Cartesian coordinate 

at ~ = n = 0. MKS units are used 

with the center of the iron shell 

All distances are normalized 

with the normalization p, which is most chosen to be the 

ities used to describe useful 

the 

z = x + = 

radius of the 

are the dimensionless 

This does not 

The actual 

x = ,y= and 

dimensional checks on formulae 

since at any a dimensional check can be as that p 

s dimensionless and one. 

The field and 

and iron-free from a scalar 

which needs to have 

to the x-y The field 

= 

The eqs. are of course 

Introduc the 

and indi the 

field s can because of eqs. 

iron-free from the 

can be derived in the conductor-

V, and from a vector 

in the direction 

s are obtained from the 

(la) 

lb) 

valid in conductor- and iron-free 

ities F( z) = + and H = + 

of a an asterisk, the 

(1), be obtained in a conductor- and 

ial F 

cular 



* = idF(z (2) 

If the can be into a series in z, 

00 

F(z) = 3) 

n=O 

the coefficients are called the mult coefficients. From 

eqs. (2) and 3) follows for the * series of H : 

* H = 

* H = 

00 

n=l 

00 

n=l 

* = , the series for H becomes 

In this paper the coefficients will be called the coefficients 

The cance of and the usefulness of p to 

the usable radius of the follows from eq. The absolute 

value of the contribution of the term to the total field at 

lzl = 1 and the expansion coefficients that will be intro-

duced below may sometimes be used to describe the effects result 

from one of the total structure. Whenever it is essential for the 

correctness of a formula that these coefficients describe the whole structure, 



the coefficient 

number of 

will be underlined. Since this paper contains a 

the numbers of those that are either 

very definitions or can be considered as an end result will be 

underlined. 

difference between 

will be indicated ~. 

this paper, n, m, N, M represent The 

des the and 



3, 

3 l. BASIC FORMULAE 

To describe the fields the conductor structure, it is 

convenient to consider first the fields a current filam.ent. 

If the of interest is enclosed an infinite iron shell 

with normalized inside radius R ( 1), the condition at the inside 

surface is that the al field is zero there. .An 

condition is the that the scalar is constant on that 

surface. This can obvious be satisfied if the current return for the 

filam.ent is also in the enclosed the iron. If the current filament 

-+ -+ 
with current I in the x x y direction is located at z and the current 

return at the coordinate , then it is easy to veri that the 

at is by 

F( = - ·in (z -z)(z 
2TI 0 o 

* )/ 

and that this satisfies the above stated condition. 

If every current filament ih the whole is in this 

manner, the s at :::: 0 since the sum of all currents 

of the whole system must vanish. One can therefore consider the contribution 

of the current I at z to the total to be 

F(z ) = 
0 2TI 

in ( -z) ( 5b) 



This can also be as the ial at < R produced 

I at z if the return current is distributed over the inside 

of the iron shell. From eqs. ) and (2 * follows for H : 

* H (6a) 

Introduc the normalized area element da = = ' and the current 

j) the fields distributed 

* ) dcr H = j + 
21T z-z 

0 

* When H inside a conductor, an 

disc around z has to be excluded from the 
0 

currents become 

small circular 

of the first 

the the contribution to the field from that circle is 

small, 

* effect that H is no 

result becomes even more 

that circle from the int has the 

cal function of This 

in eq. (53). 

of 

into a series in , with a convergence radius 

to the distance from the to its closest conductor, for 

the mult coefficients from eqs. ( ) and ( 

::::: z 
21T 

= jz 

= + 



The coefficients 

eqs. (7) describe 

are int 

the contribution of any 

not underlined since 

of the structure. 

If a of the structure is described eqs 7 , and if that is 

rotated about the coordinate 

coefficients the rotated 

a in the positive sense, the 

are obtained from eqs. (7 

z , and one obtains 

(a) 0 
-ina 

::: e 

(a) 0) -ina = . e 

(a 0) -ina = . e 

If one is with a 2N whose conductor structure 

is invariant under rotation ' with s 

the individual sectors, and if the reference sector of 

of excitation of 

extent 

is described , it then follows from eqs. 8 that the whole 

structure is described 

2N-l 

e (-1 
m=O 

If every term of this sum 

= c n 

2N-l 

e 

m=O 

one, the sum 

application of the summation formula for the 

sum vanishes, to the result: 

2N. Otherwise, 

c series shows that the 
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= = for n = 2m+l) 

= = = 0 for n :::/= N 2m+l) 

Since the odd of N are thus the harmonics that are possible 

in cal are called allowed harmonics If the 

reference sector has a and if this sector has such an orientation 

that it is cal with to the x-axis as is shown in . 1 for 

a it follows from eqs. (7 that the coefficients 

for that sector are Because of eq. (9 the same is then also true 

for the coefficients of the whole 

3.2. EFFECT OF BASIC PERTURBATIONS ON THE FIELD 

When one is 

reference section is 

with a 

in some way, 

and if all other sections have the same 

2N , and the 

in an effect described 

when rotated 

into the same as the reference section, it is clear that the eqs. 

(9) are valid also if all a, b, c in eq. (9 are 

For this reason the in the on the effects 

of of In the effects of 

are more when are not identical in all sections than when 

are. 

If a section of the has for some reason an incorrect 

excitation, its effect is of course described the coefficients 

that describe the contribution of that section to the field. 
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If a section, described , is rotated the 

small a, it follows from eqs. (8) that the effect of that 

rotation is to first order in a 

10 

For the discussion of the effect of a of the outside contour 

of a conductor, it is assumed for s th.at in the conductor block 

under consideration the current 

sh between two cases, 

and when j is not affected 

it follows from eqs. (7) that 

= 21T 

j is constant. One then has to 

when the total current is 

the contour In the latter case, 

= 
21T 

When the net current I is fixed, which will be the more occurence, 

one can j in eqs. (7) and obtains : 

:::: = 21T 

If, as it will be, the contour modification consists of the addition 

of a narrow of not nece constant thickness t, it is of course 

sufficient to calculate ~ f z s)ds, where ds is 

the line element. The same is for the calculation of 
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the most of to know is the 

of a conductor -n z in eq. 

and in 

the 

to first order 

2rr 
z 

, and 

* = nllz 

the same to 

3.3. EFFECTS OF DISPLACEMENT OF THE WHOLE CONDUCTOR STRUCTURE OF A SYMMETRICAL 

2N POLE RELATIVE TO THE SHELL 

From eqs, ( ), (9 and follows that for di 

conductor structure of a 2N 

described by 

= - Llz 2m+l -1 

* = 2m+l 

2m+l) 

2m+l 

If the coordinate of a 

the 

2m+l) 

2m+l) 

cal 2N 

without the , it follows from eqs. 

effect on is described 

(2m+l)-l 
::: 2m+l) 2m+l) 

is di 

of the 

harmonics are 

and 9 that the 



If one the coordinate with the conductor structure 

to the shell relative to the conductors 

with the coordinate at the center of the conductor structure, 

it follows from addition of eqs. ) and ) : 

2m+l -1 = !:.z 2m+l) 

* (2m+l +l = ~z (2m+l 2m+l) 

can be of for the de of It is 

sible to avoid of a dislocation of the 

shell relative to the conductor structure. But this kind of 

will also cause harmonics dire acent to the allowed harmonics unless 

the conductor structure is so des that not the usual 

ective 2m+l 
:::: 0 is satisfied for m > O, but that also 

- 'o - 0 ~or m > 0 2m+l) - -=N(2m+l) - ~ 

is fulfilled. When eq. is satisfied, the ion of 

dislocation of the shell can, at least in , be turned into an 

advantage. If the is 

, it can be 

the shell relative to the conductors. The associated of 

can then be eliminated an new choice of the coordinate 

Whether this is feasible of course on the 

magnitude of and , but is worth when the 

magnet is in the design stage. 



To eq. one needs twice as many free 

to s 2m+l) = O. However the process is 

s if one restricts oneself to conductor structures with radius-

current densities in the range r and = 0 outside 

that range. It follows then from eqs. ( ) that 2m+l) and (2m+l) 

in the same manner on the azimuthal current distribution, and 

vanish when one of them does. 1 a 

of such a des if = = = and j 

canst. and identical in all current blocks, eq. is satisfied for 

2m+l = 3, 5, 7. The above mentioned have to be divided N for 

a 



us express 

= 

2 



* H = 
n=l 

TIP 
z 

and (¢) = - V' ¢ 

e ¢) 

As one s, the coefficients are es the Fourier 

coefficients of the azimuthal field at the inside surface of the 

iron shell. For a cal 2N i.e., when :::: -

is valid, one obtains of course nonvanishing coefficients for n = N(2m+l) 

a....nd eq. (21) reduces to 

2m+l 

and if the structure is 

. L i.e., if = 

2m+l 

-iN(2m+l 
e 

with to the x-axis as shown in 

¢), eq. (22) becomes 

cos 2m+l) ¢) 



It is clear that in order to avoid 

cp) should be to 

of undesired harmonics, 

, unless the maximum value of 

is so small and R so that the undesired harmonics are not harmful. 

To know the solution to 's in nonlinear 

iron, which is not obtainable one can use 

one of the many 

should 

programs for that purpose, the 

of the iron shell for 

at a 

in the 

a reasonable des 

field level: From the in sect. 5 for the field 

acent to the iron shell, the flux the iron that 

results from the infinite solution is known. 

allows calculation of the associated flux the 

section. with a ,¢) there will in 

question that the convergence radius of the power series (eqs. 

( cp) 

in this 

be no 

and 20 

is than R, one have to solve where there is doubt about 

convergence. from eq. one can derive expressions that 

vector 

are not 

without use of a power series. Since these expressions 

to be used are without 

7T 
R, R, = 

If for a R, :::: - ,¢) is valid, one obtains 

tan 

TI 
(R,cp) • .Q.n A(R, ) - A(R, = 

tan 

the 
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The s es of the are of course and the 

is eas carried out 

With A(R,¢) thus known one is in a position to des 

the outside contour of the iron shell such that one obtains the specified 

on the inside. The cal method given 
4 

Meuser, ) if modified as 

stated above should result in a good 

.2. SHIMMING OF THE INSIDE IRON SURFACE 

small deviations of the inside iron surface from a circle 

are not very to occur, effects of such ons are of some 

interest. One for instance introduce additional iron at 

that surface to the fields of a magnet that does not produce te the 

desired fields. If one adds at R,¢ an iron sheet of normalized 

thickness h, its effect can be described to first order in h changing 

the scalar at the iron surface by 

¢) - - ( ¢) • (¢) (26) 

Us this expression in eqs. and ( ), and express the result 

from an extended sheet is 

f\ A) 'f' can be obtained from sect. 5. The expressions for 

a cal 2N pole with cal are eas 



obtained and will not be here. While eq. would be a 

if the additional iron has to be in a where 

is very , even this would allow a reasonable estimate 

of the effect of a shim. 
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of the 

-20- UCRI,-1 

eq. ( it is clear that an expansion of the first 

is in z is not yossible when 
0 

is than 

the distance from. the coordinate to the closest conductor. If 

is than the distance from the to the farthest conductor an 

expansion in is possible, with the contribution from 

tr1e second the ir1 eq,, 
?:· 

the Laurent expansion for H . 

this and b for n 0 
-n 

b = - j n > 0) 
-n 21T 

( 

* . ' the \ j_s in above 

co 

* H :::; 

n:::-CO 

Since, ac to eq. (28), = O, one can also set in this context 

::: 0 for any of the on of eq. ) with eq. 

* b ::::: n > 0 
-n 

eqs~ (30) and ( 29)' * H can be exuressed 

co 

* -1 )n * H = + (p 
\ -· 

n=l 

7 
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From this follows for the field at the iron surface: 

00 

R ,¢) = 2Re 

n=l 

The for the vector at the iron surface is 

00 

'cP) :::: Im 

n=l 
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6. 

One can obtain an expression for the force on a 

from Maxwell s stress tensor, the force a surf ace 

,7) and then spec the result for the two-dimensional case. 

A more derivation of eqs. ( ) and ) is in 2. 

and des the x and y of force per meter 

* of and f = f is 

:::: - H 
2 

This the force on all enclosed the 

It should be noted that for the validi of eq. it is not 

that H is an function of To obtain the force on the 

whole conductor structure, the contour has to be somewhere between the con­

* ductors and the iron shell. H can there be the Laurent 

series. To include also saturation effects, it is convenient to introduce 

the expansion coefficient , which is defined as follows: 

+ n > 0 

n > 0 (35) 

= 0 

* In the above H is 



and us 

* H = 
co 

n=-co 

this in eq. ( 

* f 
2 

00 

n,m=-00 

All in the sum disappear unless the 

00 co 

* f ::: ::: 2rrµ p 
0 

n=l n=l 

For a of the ideal structure, described 

first order for the of the force 

00 

* /Jf ::: 2TI]J p, 
0 

n=l 

. ( ) confirms the a 

Of 

structure of an is zero. Us 

-1, 

one obtains to 

eq. to 

evaluate the effect of the of the whole conductor 

structure, one obtains with eq. 

* /Jf = 
00 

n=l 

) : 

* (n+l) 



* Since llz is a real and positive number that term 

s a force that has the same direction as the of the 

conductor structure. eq. ( to a cal •.J.. 

' l v 

follows from eq. satisfies the same that the term 

to vanishes, unless N = l. the term 

to llz will in be very small even for = l it is at least of 

academic interest to note that the is the 

where a of the conductor structure does not neces lead to 

a force that is to the the term rv/J,z 

for N = 1 one obtains for the force from a di of the con-

ductors in a 

00 

f :::: (2m+l (2m+l)-2 . 2 
2m+l) 

m=O 

To obtain a more cal form of eq. ) for a mult it is 

now assumed that the first term in the sum of eq. contributes 

to also that the term to 

is cant in eq. (32 , can be expressed the maximum radial 

,max at the iron surface for infinite , and becomes field 

f = N+l) 
,max 

Us more cal units express f in metric tons per meter 

,max 
in Tesla, and the in mm, one 

obtains 



-2 

f = ) . 
,max 

Since the forces can be substantial, and in since are in 

the direction as the caus have to be taken into 

account in the of the structure. It is also that 

these forces could be used as a c tool strain gauges 

at locations. 

The ' or moment of the force with to the axis of the 

-+ -+ 

' has in the x x y direction, and its T 

per meter is obtained in a manner similar to the derivation Of 

the force. One obtains from 

T = H 

00 

T - -
n=l 

As ed, a can appear as a consequence of saturation of 

the iron. T is zero for a , even if the whole conductor 

structure is However like rotational error of a 

part of the conductor structure can result in and are eas evaluated 

with eq. ( 



It is the purpose of this section to expressions that are 

evaluated a for the most of interest, 

With the of of sects, , 3 and 7. , it is assumed in this 

section that j is constant over conductor cross sections of finite size. 

this fact is sometimes written after the to indicate 

summation of j times the over all conductors of the fied 

the ect of the discussion. It is assumed in sections .1 and 7,2 that 

the iron has infinite , since saturation effects are eas 

into account the expansion coefficients 

7.1. EVALUATION OF EXPANSION COEFFICIENTS 

The expansion coefficients 

eq. ), and cation of eq_. 

n+l z = 

eq. ) to eq_. ( 

* = n-1 

cation of eq. ( ) to eq. ( 

= 
* 
~dz 

, characteri 

for n > 1: 

n > 1 

for n = 1: 

a conductor, are 

taken 



As was stated at the end of sect. 3.1, the coefficients are if the 

conductor is to the x-axis. If that is the case, 

the above are most eas obtained over the 

upper half of the conductor, the real and mult 2. 

A minor reduction in time can be obtained for most appear-

in sect. 7 , demonstrated in its 

* cation to eq. ) : z = 2x - z = z - it becomes clear 

* that z in eq. ( can be by 2x or 

To evaluate the contour int in sect. 7, various can 

be applied. A s method consists of the contour a 

sufficient number of and then the formula or 

Romberg 8 
If substantial of the contour lines, are 

over these lines can often be 

in the manner: If and end line 

are and ' and = one can use the 

of the line :::: real, 0 ~ p ~ 1): 

z = + . p 

From this follows 

* * * * * z = zl + 6z p ::::: + 4 

* dz = dz 



this to the 

z 

One obtains 

z 

* 
z 

= -*-
/:,.z 

= 

* 
Q,n ( * = 

* dz = /:,.z + 

in eq, ( for a 

* z 

n > 2 

* 

It should be noted that the side of eq. (48) 

extension of the s line goes through z = 0. 

For a circular arc with its center at the 

* of z · z = 

z 
2 *n 

- - r 

~ one obtains 

line: 

* when the 

cation 



z * -2 n-1) = r 

* * dz = 

for circular arcs with the center not with the 

can also be derived. However are somewhat more cated and will not 

be here since do not seem to appear very 

If the contour of a conductor is bounded two circular arcs with 

radius 

lines at 

most 

and and with their centers at the 

and a
2

, the 

evaluated 

::: i 

= i 

= i · fln ) . ( e 

in eqs. 

-e 

-e 

-e 

and 

(n+2) 

(2-n); n 

/2 

, and two radial 

are of course 

2 



EVALUATION OF 

the coefficients are interest, 

for of reasons it can be of interest to have a direct method for 

* * calculation of H can be of interest in the to 

difference between the actual fields and the contributions of the or multi-

* coefficients. H is of interest in the coil 

* 

ons to find I I max' 

H can also be of interest for the evaluation f and with eqs. ( ) 

and ), unless one wants to use the sect. 7,3, 

eqs. ) > ), ( ) to the first of the 

in eq. ( and ea. ) to the second of the int in eq. 

* * 
* :::: 

As mentioned in 1 eq. ( ) is correct whether or is inside 

contour. The absolute value of the int of the first is 

one and furthermore the convenient the.t when is on the 

the does not when one goes unless 

is located at a corner. As in sect. 7.1, over lines 

or circule.r arcs can be but will not be here. 

* The field Lrn result from a of a 

conductor t.z is obtained from eqo differentiation and one obtains 

* * * = -t.z , 



The second contributes when is inside the conductor 

and is therefore not of interest. For the effect of rotation a 

small a one obtains 

- - ia 

Eq. 53 the contribution of one conductor to the total 

field. When one is with a , the contribution 

from the conductor rotated m with to the reference conductor 

is obtained in eq. (53) z and mult the 

whole expression -1 this and up in eq. 

instead of the first 

2N-l N+l 

dz 

m=O 

eq. ) to both of this and the same 

for evaluation of the second in eq. 

* H ::::: 
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7.3. ON 

In order to reduce corap1J~ter t~rne, the use of transc 

been avoided so far whenever possible To calculate force c:.nd torq_1Je on ir:.Gi 

conductors eq ) and ( 111) can be ed the expressions for 

* H ""VE:n in sect. 7.2. However vrl1en the stored energy to be 

extensive use of thm.s s eeirrs Uc'1avoi dab le and if ' ~ "1 ., ~ are ava2..Lao_i_e fro1n 

energy ation, the lS 

dDnensional case, the force f and torque T per meter are eqs. 

) and ) : 

f = 

T = j 
-+ 

r ·H)do == 
0 

The total field is a linear 

* "'· . \ ;~ 

, Z ) Z dO 
0 0 0 

tion of the three 

:fields: l The vacuw.u field, i.e., the field the conductor 

structure without any iron This field is derivable from eq. 

i.f the second factor of the of the thrn. is set to one. 

2) The field currents described ..... vne second factor 

of eq. ( 5b)' 3) The fields caused the 

saturation effects, described the expansion coefficients (eq. ( 21) ) . 

the forces and result fro!ll the last two sources can be 

obtained in a manner similar to the one used to obtain the effects 

f:co=i t!::.e v-acuill2l fields, the is s and e 



as a function of and * and eqs. A2), one obtains 

H = (-2i ) · * 

this in eq. ( ) and eq. 

f - - A( 

to obtain T from eq. ( 58) ' and utili 

* * * * = a( )/8 A and the fact that A is real 

T :::: - A( z , 
0 

* ) * 

It should be noted that in eq. ( any int over a circular arc with its 

center at z = 0 does not contribute to T. 

To evaluate eqs. ( ) and ( ), A has to be known on the contour of 

the conductor under consideration. Since one would also consider a of 

a block to obtain the internal stresses, 

this case be inside a conductor. From eq. 

contribution of a current filament at z to the vector 

The 

( z- ) + * * )) (z -

are declared real for real 

with a branch cut so that the 

ive 

of the contour will 

follows for the 

A at 

(65) 

and are made 

of each 



Us eq. ( 36) to describe the total fields caused currents 

and saturation, one obtains 

co 

f = 
n=l 

the the coefficients (eq. , des 

the of the conductor structure under consideration for the calculation 

of f and T, one obtains 

co 

f :::: 

n=l 

Us the same to calculate T, one obtains 

co 

* T = 
n=l 

It should be noted that to what was said in sect. 5, b is not 
0 

neces zero in this context. 

cit formulae for are in sect. 7 .1. 

for conductors with constant current over finite areas of conductors, 

eqs. (60) and (61) are valid even for nonuniform current distributions. 

To obtain the contribution of the vacuum field to force and torque, 

i-t is convenient to transform eqs. ) and first into contour 

To do so, H is expressed derivatives of A (eq. 1) . 



From this follows for the contribution from all conductors 

* * A= z- + z dcr 

this into a contour with eq. 

A::::: ) + * * z dz 

Since = 2icr, and the total current zero, the 

term -1 in the of eq. ( does not contribute to A so that 

can be written as follows: 

* ::: * *) j z -

with eqs. ) and ( 

!2 . dz 

allows thus the evaluation of 

f and T. The fact that A is known to be real allows as check of at 

least some of the program to evaluate A. To obtain the order of 

of time needed to evaluate f and T, the 

numbers seem reasonable for a if the conductor contours in each 

sector are 100 calculation of A 

If the contour of the conductor under consideration is 

also 100 evaluation of f and T 

of 4. 35 µsec execution time per on the CDC 

under the thus leads to a total time of a few 

seconds. 



:::: s 

:::: 

as s 



to the evaluation of their contribution to f and T: 

00 

= iF' :::: 

n=l 

00 

F ::::: + iV = -
n=l 

co 

:::: Re 

n=l 

co 

::: 21T . Re 

n=l 

this in eq, then for the contribution of the currents 

and saturation effects to E: 

co 

E = ) -
j 

(j n 

n=l 

It is to note that the energy eq. ( ) is smaller 

than the vacuum field energy 

smaller if saturation effects are 

follows: if the infinite 

shell, one obtains the 

the first factor of the 

~actor instead of 

below if = O, and will be still 

This is most seen as 

shell is a 

from a current filament 

of the in eq. 

it. The energy result 

the second 

from the 

currents is then eq. ( the side is 



-1. Since the total energy must be positive, the energy eq ( 

for = 0 must be smaller than the vacuum field energy. This statement is 

of course correct if the conductor structure is surrounded a circular 

shell. 

The to obtain the contribution to E that results from the 

first factor of the of the on the side of eq. ( 5b) 

follows the same as the calculation of the contribution of that term 

to f and T 

For the contribution of one current filament at z to E one 

obtains 

obtains 

with 

l E = 2 

eqs. 

j (z -z) + 
0 

* * z -z ) ) 
0 

and ( ) , and into account that 

j * , )dz 
0 

* * · (z -z ) 
0 

(z -z) + 
0 

The effect of all currents is described 

= 0 one 



= 

eq. 

derivation of eq. 

* -z ) 

to this expression 

* * j -z ) 

( -z 

-z 

* * -z ) dcr 

in the same manner as the 

-z) * -z ) * dz 

It is easy to see that the term -1 in the is of this 

does not contribute to E, so that E can be calculated from 

E = • G( 

jl 2 2 * = . dz 

For a 
' the in eq. ( has to be 

evaluated for one sector since each sector contributes to E· 

evaluation of G, the has to be carried out over all con-

duct ors of the 



eqs. ) can be found in the literature, are 

derived because here in a not 

also needs some 

From Stoke's theorem 

x - y 

s 

of z and 

a; 

this 

and then 

, follows 

do - - Fdx 

x and y z and 

* z , the 

* dX = 'd/'dz + dZ 

= i('d/'dz - a; *) 

in eqs. (Al), mult 

eq. 

do == 
dZ 

da 
I 

2i 

gives 

Fdz 

* Fdz 

-+ 
\) 

* z 

• a/ 

eq 

-+ 
da = 

and cons 

become 

(Ala) 

trivial manner, which 

to a vector in the 

(Ala) 

F now as a function 

(A2a) 

(A2b) 

i, and first subtract 




