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General expressions are given for the field and its expansion

coaefficients produced by a two dimensional conductor structure surrounded
by iron with a cireular inside boundary. Saturation ts are described
in terms of the tangential field at that boundery. The effects of th
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of perturbations are discussed: displacement, rotation

and error excitation of a conductor, change of conductor shape, and

b

modification of the inside contour of the ircon. A design criterion is
given to minimize the error fields associated with a displacement of the
iron shell relative to the condu0uor structure. Expressions for the

force and torque acting on a COﬁdu;ﬁOT are derived both for the unperturbed

and perturbed magnet. Formulae are presented that allow convenient and fast

evaluation of pertinent guantities with a computer when the structure is too
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1. Introduction

With the maturing of superconductors as a practical material for the
construction of magnets, a considerable amount of work has been done over the
last few years on magnets whose fields are dominated not by the iron con-
figuration, as in conventional iron magnets, but by the conductor configuration.
A number of theoretical papers have been published, for instance those by
Beth,l) Blewett,g) Asner,3) Meuser,u) that deal with two dimensional conductor-
dominated magnets that are surrounded by a circular iron shell. These papers
discuss special design considerations for specifiec types of magnets. The topilc
of this paper is in a sense the opposite: it will be attempted to give as
- general a description of conductor-dominated two-dimensional magnets as
possible, and to discuss in particular the effects resulting from deviations
of the actual magnet from the ideal design.

A good understanding of these perturbation effects i1s not only
important for establishing reascnable manufacturing tolerances, but is also
important for the design of a magnet. It will be shown, for instance, that
it is advantageous to satisfy a certain design criterion to make the magnet
insensitive to a particular very common kind of perturbation. Besides causing
unwanted fields or harmonics, perturbations can also produce substantisl
forces between the conductor structure and the iron shell, and these forces
can lead to disastrous results if not anticipated and properly taken into
account. 1In contrast to the discussion of perturbation effects in iron-
dominated magnets,5) perturbation effects are falirly easily expressed to
nigher than firét order of the perturbation parsmeters; however, this was
not done here since the first order perturbation theory will be of

sufficient accuracy in the majority of practical magnets.
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In developing the general description, an sttempt has been made to
introduce as few restrictions as poSsible. Although symmetrical multipole
magnets are emphasized, the theory has been kept géneral enough to also allow
its application to other types of magnets. The only essential limitations
kare the restriction to two-dimensional magnets and the assumption that the
boundary between the‘iron shell and the inside of the magnet is a circular
cylinder. Although the latter restriction can in principle be dropped
through application of the appropriate conformal transformation, in view of
the resulting complications this deoes not seem be to Jjustifiable at the
present time. The exact analysis extends only to the boundary between the
iron and the inside of the magnet, and the iron saturation effects are
expressed in terms of the azimuthsal fileld component that is produced by
saturation effects at that boundary. The information necessary to obtain
that field, or to design the outside contour of the shield, is supplied.
This approach was preferred over the one including the iron shield and
assuming counstant permeability of the iron: If the permeability is small
enough to be noticeable, the B(H) curve is usually so nonlinear that the
latter approach will usually give meaningless results. A drawback of the
approach chosen here is that in calculating the effect of perturbations of
the conductor structure, the effect of the change of saturation in the iron
as a consequence of the perturbation is not taken into account, although
this could be done with an iterative procedure. However, these secondary
effects should be fairly small unless the irom is driven extremely hard,

and seem to be difficult to describe properly no matter what basic

ot

W

vproach is chosen. The description of iron-free magnets 1s obtained by
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dropping the terms associated with the iron shell, or by letting R (see
fig. 1) go to infinity.

Although it is the main purpose of the general description to give
a better underétanding of varicus effects, the formulae are simple enough
to be easily evaluated by hand for simple structures. To make guantitative
evaluation possible when the structures are more complicated, sect. T gives
explicit formulae that are easlily evaluated by & computer. The guiding
thought is to convert all surface integrals into contour integrals to make
both the logic of the program simpler and to minimize execution time. In most
parts of sect. T it has been assumed that the current density in the conductor
structure is not a continuous function of the space coordinates, but is
constant over finite cross sections of the conductors. Although this festric~
tion could be lifted, it seems not worthwhile to do so at the present time.

In order to limit the length of tﬁis paper, the author had to leave
out many formulae that might be of interest under some circumstances. It is
hoped that the presentation is clear encugh to allow the reader to derive
expressions needed for specific applications, and in some instances it is

briefly indicated how to cbtain them.
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2. Basic formulae, notation, normalization and units

The coordinate system 1s chosen such that the fields are in the &,

n - plane of a Cartesian cocrdinate system, with the center of the iron shell
at £ =71 = 0., MKS units are used throughout. All distances are normalized
with the normalization length 0, which is most conveniently chosen to be the
useful aperture radius of the magnet. The actual gquantities used to describe
the geometry are the dimensionless quantities x = E/p, v = n/p and

7z = x + iy = rei¢, This does not preclude dimensional checks on formulae,
since at any stage a dimensional check can be performed by assuming that p
is dimensionless and equals one.

The field components HX and Hy can be derived in the conductor-
and iron-free region from a scalar potential V, and everywhere from a vector
potential which needs to have only a component A in the direction perpendicular
to the x-y plane. The field components are obtained from the potentials

through

1l

pH

. 9A/By = - 3V/3x (la)

pHy = - 3A/3x = - 3V/3y . (1p)

The eqs. involving V are of course valid only in conductor- and iron-free
regions. Introducing the complex quantities F(z) = A + iV, and H = H o+ iHy,
and indicating the complex conjugate of a guantity by an asterisk, the

field components can, because of egs. (1), be obtained in a conductor- and

iron-free region from the complex potential F through
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# ‘ ‘
pH = idF(z)/dz . (2)
If the complex potential can be expanded into a Taylor series in 1z,
[eo]
F(z) = Z cz (3)
n
n=0

the coefficients Cn are usually called the multipole coefficients. From

%
egs. (2) and (3) follows for the Taylor series of H :

(o)
% inC _
H=Z n n-1 (ha)

#
Introducing i~n-Cn/p = cn, the series for H becomes

n=1

In this paper the coefficients c will be called the multipole coefficients.
The physical significance of cn and the usefulness of setting ¢ equal to
the usable aperture radius of the magnet follows from eq. (4b): The absclute
value of the contributipn of the term cnznal to the total fleld at

!z; = 1 equals }cnf. c, and the expansion coefficients that will be intro-
duced below may sometimes be used to describe only the effects resulting

from one part of the total structure. Whenever it is essential for the

correctness of a formula that these coefficients describe the whole structure,
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the coefficient symbol will be underlined. Since this paper contains a

lafge number of equations, the numbers of those eguations that are either
very important definitions or can be considered as an end result will be
underlined. Throughout this paper, n, m, N, M represent integersu' The
difference between quantities describing the perturbed and unperturbed system

will be indicated by A.
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3. Fields for infinite permesbilit

3.1. BASIC FORMULAE

To describe the fields generated by thé conductor structure, it is
convenient to consider first the fields produced by a current filament.
If the region of interest is enclosed by an infinite permeability iron shell
with normalized inside radius R (fig. 1), the boundary condition at the inside
surface is that the tangential field component is zero there. An equivalent
condition is the requirement that the scalar potential is constant on that
surface. Thisg can obviously only be satisfied if the current return for the
filament is also in the region enclosed by the iron. If the current filament
with current I din the g‘x ; direction 1s located at 2z and the current
return at the coordinate origin, then it is easy to verify that the complex

potential at Z is given by

Flz ) = =« =—24n ((zo~z)(zo—R2/z%)/zo) (5a)

and that this complex potential satisfies the above stated boundary condition.
If every current filament in the whole aperature ig represented in this
manner, the singularity at z, = 0 disappears since the sum of all currents
of the wheole system must vanish. One can therefore consider the contribution

of the current I at 2z to the total complex potential to be given by

F(z) = - 5= In <zo_z>(zo-32/z*> . (50)
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This potential can also be interpreted as the potential at {ZOI <R produced
by I at =z 1f the return current is uniformly distributed over the inside
%
boundary of the iron shell. From egs. (5b) and (2) follows for H :
® il 1 1

H(z):0 -+ y o (63.)
o) 27p Zown 7, Rg/z -

Introducing the normalized ares element 40 = didn/pg = dxdy, and the current

density J, the fields produced by distributed currents become

* _ip | . 1 1
io= 27 J Z=7 * 2, % do - (ék)
o R/z -z

When calculating H* inside a conductor, an infinitesimally small circular
disc around Z, has to be excluded from the integration of the first part of
the integrand. Although the contribution to the field from that circle is
infinitesimally small, eliminating that circle from the integration has the
effect that H* is no lohger an analytical function of Z - This expected
result becomes even more apparent in eg. (53).

Expanding H* into a Taylor series in Zs with a convergence radius
‘ equal to the distance from the origin to its closest conductor,’gives for

the multipole coefficients c = from egs. (kb) and (6b)

- ip | . -n
2y = 5 | 327 (12)
_ip [ . ¥ 2n '
b = 5- | dz "do/R (Tp)
c =a +b (Te)
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The coefficients Cn’ aﬂ3 bn are intentionally not underlined since
eqs. (7) describe obviously the contribution of any part of the structure.
If a part of the structure is described by eqs. (7), and if that part is
rotated about the ccordinate origin by o in the positive gense, the

cocefficients produced by the rotated part are obtained from er. (7T) by

replacing =z by zela, and one cbtains

If one is dealing with a symmetrical 2N pole magnet whose conductor structure
is invariant under rotation by 7/N, with alternating sign of excitation of

the individqal sectors, and if the reference sector of angular extent T7/N

is described by a s bn’ c > it then follows from egs. (8) that the whole

structure is described by

-1 oN-1
c =0 zz: e—lnmﬂ/N(_l>m - . ZE: o-imm(+a/W)
n n n

m=0 m=0

If every term of this sum equals one, the sum equals 2N. Otherwise,
application of the summation formula for the geometric series shows that the

sum vanishes, leading to the following result:
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N
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£
o]

i
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=
o
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c

for n = N{2m+1)

AO

(9)

=b =0 for n #F N{om+1l) .

A
N
A

Since the odd multiples of N are thus the only harmonics that are possible

in a symmetrical 2N-pole magnet, they are called "allowed harmonics'. If the
reference sector has a symmetry plane and if this sector has such an orientation
that 1t is symmetrical with respect to the x-axis, as is shown in fig. 1 for

a dipole magnet, it follows from eqs. (7) that the expansion coefficients

Tor that sector are imaginary. Because of eq. (9) the same is then also true

for the expansion coefficients of the whole magnet.

3.2. EFFECT OF BASIC PERTURBATIONS ON THE FIELD

When one is dealing with a symmetrical 2N pole magnet, and the
reference section is perturbed in some way, resulting in an effect described
oy Acn’ and 1f all other sections have the same perturbation when rotated
into the same position as the reference section, it is clear that the egs.
(9) are valid also if all a, b, ¢ in eg. (9) are replaced by Aa, Ab,
Ac. TFor this reason the emphasis in the following is on describing the effects
of perturbations of parts of the system. In general the effects of perturbations
are more damaging when they are not identical in all sections than when they
are.

If a particular section of the system has for some reason an incorrect
excitation, its effect is of course directly described by the coefficients

& bn that describe the contribution of that section to the field.
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If a particular section, described by 2 s bn, is rotated by the
small angle o, it follows directly from egs. {8) that the effect of that

rotation is to first order in d given by

ha = - inoa 3 Ab = - inab . (10)
n n n n =

For the discussion of the effect of a perturbation of tﬂe outside contour
of a conductor, it is assumed for simplicity that in the conductor block
under consideration, the current density J is constant. One then has to
distinguish between two cases, namely when the total current is unchanged,
and when J is not affected by the contour change. In the latter case,

it follows from egs. (7) that

. _ : . %
Aanr:%—%,j[\ z "ao ;Abn=-g—%.~%gﬂ([znd0 . (11)
R

 When the net current I is fixed, which will be the more freguent occurence,
one can replace J in egs. (7) by I/fdc and obtains:
Ao

. B : . %
Aan = &E'jA z Yao -a = = ; Ab = LIS — A z Vao - bn =

(12)
If, as it will mostly be, the contour modification consists of the addition
of a narrow strip of not necessarily constant thickness t, it is of course

# #*
sufficient to calculate A(fz "d0) by evaluating [z "t(s)ds, where ds is

ot

he line element. The same procedure is applicable for the calculation of

Afz27 a0) .
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Probably the most important type of perturbation to know is the
displacement of a conductor by Az. Replacing z = in eq. (Ta) by (z+Az) "
and expanding in Az to first order gives

Ae. = - nhz - L. z_<n+l)d0

Expressing the integral by an+l’ and applying the same procedure to bn

gives

2

#
Aan = - nAzan+l; Abn = nhAz bn~l/R (13)

3.3. EFFECTS OF DISPLACEMENT OF THE WHOLE CONDUCTOR STRUCTURE OF A SYMMETRICAL
2N POLE RELATIVE TO THE SHELL
From egs. (Te), (9) and (13) follows that for displacement of the
conductor structure of a 2N pole the only nonvanishing harmonics are

described by

Bey(omer)y = = 02 ((2m1)-1) ayn 0y s (1ha)
beg(ome1)er = bz (N(2m+1)+1) 10-i\r(emﬂ)/Rg : (1)

If the coordinate origin of a symmetrical 2N pole is displaced by Az

without perturbing the magnet, it follows from egs. (4b) and (9) that the

effect on ¢ is described by
-0

= Az (N(2m+1)-1)

Aoy (ome1)-1 Sv(om+1) ==
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If one displaces the coordinate origin together with the conductor structure
by Az, corresponding to moving the ghell by -Az relative to the conductors
with the coordinate origin remaining at the center of the conductor structure,

it follows from addition of egs. (1lbha) and (15):

Mey(omer)-1 = 22 (@(2m+1)-1) Byop) (16a)
bey(ome1)e bz’ (n(ems1)+1) 9N(2m+1)/32 : (16n)

Egs. (1L4) and (16) can be of importance for the design of magnets: It is

clearly impossible to avoid generation of Ac by & dislocation of the

“NEl

shell relative to the conductor structure. But this kind of perturbation
will also cause harmonics directly adjacent to the allowed harmonics unless
the conductor structure is so designed that not only the usual design

. . - . . o N
objective EN(2m+l) 0 1is satisfied for m 0, but that alsoc

éN(2m+l) % b (1) =0 for m>0 (;I)

is fulfilled. When eq. (17) is satisfied, the generation of [

dislocation of the shell can, at least in principle, be turned into an

advantage. 1If the usually quite damaging component S+ is generated by

some other asymmetry of the gystem, it can be compensated by dislocating

the shell relative to the conductors. The associated production of Ch-1

can then be eliminated by an appropriate new choice of the coordinate origin.
Whether this procedure is practically feasible depends of course on the

magnitude of and EN’ but is certainly worth considering when the

Se1

magnet 1s in the design stage.
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To satisfy eq. (17) one needs twice as many free parameters compared
t i i = 0. [ i i 1
o satisfying only EN(2m+l) 0 However the design process is greatly
simplified if one restricts oneself to conductor gtructures with radius-
independent current densities in the range rl <r <§r2, and J = 0 outside

that range. It follows then from egs. (7) that and

Sy (om+1) Dy om+1)
depend in the same manner on the azimuthal current distribution, and
conseguently vanish together when one of them does. Fig. 1 gives a simple
example of éuch a design: if a, = 43,18°, o= 52.,15%, o
const. and identical in all current biocks, eq. (17) is satisfied for

= 67.27°, and |J|

2n+l = 3, 5, 7. The above mentioned angles have to be divided by N for

a 2N-pole.
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Lk, Detailed shell related effacts

L.1. SATURATION EFFECTS

Until this point it has been assumed that the iron has infinite
permeability, leading to the boundary condition that at the inside iron surface
the azimuthal field is gzero, reguiring that the scalar potential is constant
there. Because of the relstion between B and H in the iron, there will
actuslly be an azimuthal field component, and assoclated with it a varying
scalar potential. The correct solution for the fields is therefore obtained
by adding to the fields that have been described above fields that result
from the solution to the field egquations that satisfy the boundary conditions
established by the iron and have no singularities for tz{ < B. The golution
to this Dirichlet problem in a circulayr disc is given by Schwarz's integral,6)

and 1f the scalar potential is used to express the boundary condition one

obtaing:

i o
o om Z~3Z
o

V(¢) - dp + F(0); z =R - e“¢ . (18)

Dropping the unimportant quantity F(0) and expanding in z, gives

£ 13
(z) = Z z [ %z““m)@ . (19)
T

n=1

";:;j

%
From this one obtains with eq. (2) for H
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n=1
{
i (20)
_..n -n
& =7 z v($lad .
-7
Integrating by parts and introducing H¢(¢) = -~ V' (¢)/Ro vyields
T
R S ~ing \
% e n-1 & H@(@id¢ ° (.2__%.,}
TR -7

As one expects, the expansion coefficients én are essentially the Fourier
coefficients of the azimuthal field component at thelinside surface of the
iron shell. For a symmetrical 2N pole, i.e., when H¢(¢+W/N) = - H¢(¢)
is valid, cne cobtains of course nonvahishing coefficients only for n = N{2m+1)
and eq. (21) reduces to

/2N

oNi . iN(emtl)d
WRN(2m+.L}—-1

Sv(oms1) ~ T  (¢0)ad (22)

¢
-/ 2N

and if the structure Is symmetrical with respect to the xz-axis as shown in
fig. 1. i.e., if H¢(~¢) = ﬂé(é), eq. (22) becomes

T/2n

/r

. Lt ,
Swam1) © T W(aT | cooW(Eme) - mie)e . (23

0

R
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It is clear thaﬁ in order to avoid generation of undesired harmonics,
H¢(¢) should be proportional to cosN¢, unless the maximum value of H¢
is so small and R 'so large that the undesired harmonics are not harmful.

To know H¢ requires the solution to Laplace's equation in nonlinear
iron, which is clearly.not obtainable analytically. Although one can use
one of the many computer programs developed for that purpose, the following
procedure should give a reascnable design of the iron shell for operation
at a specified field level: TFrom the equations given in sect. 5 for ths field
in the region adjacent to the iron shell, the flux entering the iron that
results from the infinite permeability solution is known. Specifying H¢(¢)
allows calculation of the associated flux through the equationskgiven in this
section. Although with a specified Hé(R,é) there will in general be no
question that the convergence radius of the power series (egs. (19) and (20))
is larger than R, one might have to solve problems where there is doubt about
convergence. Starting from eq. (18) cne can derive expressions that give the

vector potential without use of a power series. Since these expressions

are not likely to be used frequently, they are given without proof:

il ¢'¢2
Rp . sin 5 }
A<Ra¢2) - A(R=¢l) == H¢(R=¢) « 4n —*"Eajaz; *de . (2L)
~TT sin
2

If for a 2N-pole H¢(R,¢+W/N) = - H¢(R,¢> is valid, one obtains

: R /2 tan(N > 2)
A(R,$,) - AR, = —% ~ Hy(R,9) + dn| ——5— | a6 . (25)
1
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The singularities of the integrand are of course integraﬁle and the
integration is easily carried out numerically.

With A(R,9) thus completely known one is in a position to design
the outside contour of the iron shell such that one obtains the specified
H¢ on the inside. The graphical method given by Meuser,h) if modified as

stated above, should result in a resonably good design.

L.2. SHIMMING OF THE INSIDE IRON SURFACE

Although small deviations of the inside iron surface from a circle
are not very likely to occur, effects of such perturbations are of some
interest.  One might for instance intentionally introduce additional iron at
that surface to modify the flelds of & magnet that does not produce gquite the
desired fields. If one adds locally et R,$ an iron sheet of normalized
thickness h, its effect can be described to first order in h by changing

the scalar potential at the unperturbed iron surface by

V(¢) = - ph(e) - EH_(¢) . (26)

r

Using this expression in eqgs. (18) and (19), and expressing the resulting

field change by Agn, Agn resulting from an extended sheet is given by

TT N
he = -2 IMiuvm (s)as . (27)

! n r
TR
~1T

i

Hf{¢) can again be obtained from sect. 5. The sgimplified expressions for

a gsymmetrical 2N pole with symmetrical perturbations are again easily
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obtained and will not be given here. While eq. (27) would be only a rough
approximation if the additional iron has to be applied in a region where H

is very strong, even this rough approximation would allow a reasonable estimate

of the effect of a shinm.



-20~ UCRL~189LT
5. PField in the region adjacent to the iron
Referring to eq. (6b) it is clear that an expansion of the first
o 3 S - - - - i .
part of the parenthesis in z, 1s not possible when zO; is larger than
the distance from the coordinate origin tc the closest conductor. IF §z0§
is larger than the distance from the origin to the farthest conductor, an
expansion in ifzo is possible, giving together with the contribution from
: » . N - '}:4
the second part of the integrand in eq. (6b) the Laurent expansion for H .
Carrying this through and defining b for n 2 0 through
T __igaf.l'l&g {”7>O) {8\
“en T T 27 dj Jz » MR : Ve
% . -
H (z ) is given in the sbove specified region by

Since, according to eq. (28), b =0,

bo = 0 for any part of the systen.
vields

one can also set in this context

Comparison of eqg. (28) with eqg. (7b)

(30)
expressed by
#
(r/z V%) . 1
‘“/Zo) ) (31)
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From this follows for the field at the iron surface:

o0

H.(R,0) = 2Re :E: .Rn'lbnein¢ . (32)

n=1

The expression for the vector potential at the iron surface is

A(R,9) = 2pIm,:E: Rnbneiﬂ¢/n . (33)

n=1
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6.  Force and torque between conductor dtructiure and iron shell

One can obtain an expression for the force acting on a system by
starting from Maxwell's stress tensor, representing the foree by a surface
inﬁegral,T) and then specializing the result for the two-dimensional case.
A more compact derivation of egs. (34) and (Ll) is given in Appendix 2.
With fx and fy describing the x and y component of force per meter

%
length of magnet, and introducing f = fX + ify, £ dis given by

T =-— ?H dzO, {

This equation gives the forcenacting on all parts enclosed by the integration

L)

[O))

path. It should be noted that for the validity of eq. (34) it is not required
that H* is an analytical function of Z, To obtain the force acting on the
whole conductor structure, the contour has to be somewhere between the con~
ductors and the iron shell. Hée can there be expressed by the Laurent

series. To include also saturation effects, it is convenient to introdﬁce

the expansion coefficlent g which is defined as follows:

i
o
+
oy
[

\4
(@]

g, =0, * &

i
=y,
o
47
]
\%
O
W
1

&n

50 = 0

%
In the above specified region, H is given by
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* =1 | ’
B = E{: 8%, R | (36)

T OO

and using this in eq. (34) yields:

oo
* iuop nHme-2
oo e N
: =B Y e,
n

’m: el

All integrals in the sum disappear unless the exponent of zZ, equals. =1,
giving

[+
*

(o)
®_2n
o= QWUOQ | ji: Ep+18pn Eﬂuop zz: E§n+1+§n+l)éﬁ3 : (§_)

n=1 n=1

For a perturbation of the ideal structure, described by Ab, one obtains to

first order for the perturbation of the force

2]

® on * # k
AT = ewop.ZR [A’pﬁin+l+A‘_om+l_‘pn) . ‘ (38)

n=1
Eq. (37) confirms the a priori known fact that the net force on the conductor
structure of an unperturbed 2N-pole magnet is zero. Using eq. (38) to
evaluate the effect of the displacement by Az of the whole conductor

structure, one obtains with eg. (13):

<]
*

‘ en-2, *# 2 * |
b = omipey | B2 (g (men) o |Peamne) g L) - (39)
n=1
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Since Az* is multiplied by a real and positive number, that term
represents a force that has the same direction as the displacement of the
conductor structure. Applying eq. (39) to a symmetrical 20-pole, it
follows from eq. (9) (gﬁ satisfies the same equations) that the term
proportional to Az vanishes, unless N = 1. Although the term proportional
to Az will in general be very small even for N = 1, it is at'least of
academic interest to note that the dipole magnet is the only multipole magnet
where a displacement of the conductor structure does not necessarily lead to
a force that is parallel to the displacement. VNeglecting the term Az
for N = 1, one obtains for the force resulting from a displacement of the con-

ductors in a 2N~pole magnet:

o

- QWOQAZ » Z (N(Zm-%l%l}}% oN(om+l ) -2 !

m=0

2
=17{ 2m+1) I

To obtain a more practical form of eq. (40a) for a multipole magnet, it is
now assumed that only the first term in the sum of eqg. (40a) contributes

significantly to f. Assuming also that only the term proportional to EN

is significant in eg. (32), b, can be expressed through the maximum radial

field H_ . at the iron surface for infinite permeability, and f Dbecomes
%

1

f o= §ﬂUO(N+l} H2

© phz
T max

Using more practical units by expressing f in metric tons per meter

magnet length, Br nax in Tesla, and the displacement plAz in mm, one

- 2

obtains
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o ® L @ ® ® Ob

Since the forces can be substanﬁial, and in particular since they are in
the same direction as the causing displacement, they have to be taken into
account in the design of the support structure. It is also noteworthy that
these forces could be used as & diagnostic tool by installing strain gauges
at appropriate locations.

The torgue, or moment of the force with respect to the axis of the
system, has only a component in the § X § direction, and its magnitude' T,
per meter magnet length is obtained in 2 manner similar to the derivation of

the force. One obtains from

1 2 #2
== M h
T = Su_pRe gg Bz dz (k1)
oG
_ 2 2n, . ¥
T = EWquImZR ab . (k2)
n=1

As expectéd, a torque can appear only as a consequence of saturation of
the iron. T i1s zero for a symmetrical 2N-pole, even if the whole conductor
structure is displaced. However perturbations like rotaticnal error of a

part of the conductor structure can result in torques and are easily evaluated

with eq. (L2).
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T. Numerical evalugtion formulae

It is the purpose of this section to provide expressions that are
easily evaluated by a computer for the most important quantities of interest.
With the exception of parts of sects. 7.3 and 7.4, it is assumed in this
section that J 1is constant over conductor cross sections of finite size.
Despite this fact J 1s sometimes written after the integral sign to indicate
summation of J times the integral over all conductors of the region specified
by the subject of the discussion. It is assumed in sections 7.1 and 7.2 that
the iron has infinite permeability, since saturation effects are easily taken

into account through the expansion coefficients @ﬂ,

T.1. EVALUATION OF EXPANSION COEFFICIENTS
The expansion coefficients bn, charscterizing a conductor, are given

by eq. (7o), and application of eq. (A3a) yields

. -2n %
b o= A B '?ﬁ~z n+ldz . (43)

n ™ n+l

Applying eq. (A3b) to eq. (T7a) gives for n > 1:

; o #
a = %%—° E%E-. fﬁ.zl Baz , n>1 ., (Lig)

Application of eq. (A3a) to eg. (7a) gives for n = 1:

.
- 4P . z_
%17 I #; 2 &% (4kb)
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As was stated at the end of sect. 3.1, the coefficients are imaginarytif the
conductor is gsymmetrical with respect to the x-~axis. If that is the case,
the integrals above are most easily obtained by integrating only over‘the
upper half of the conductor, dropping the real part and multiplying by 2.
A wminor reduction in computer time can be cobtained for most integrals appear-
ing in sect. 7 by applying the following argument, demonstrated in its
application to eq. (Llb): writing z* =2x -z = z - 2iy, it becomes clear
that z* in eq. (LLb) can be replaced by 2x or -~ 2iy.

To evaluate the contour integrals in sect. 7, various techniques can
be applied. A simple method consists of specifying the contour by a
sufficient number of points and then applying the trapezoid formula or
Romberg integration.&) If substantial parts of the contour are straight lines,
integration over these straight lines can often be performed explicitly
in the following manner: If starting and end point of the straight line
are zl and Z5s and Az = 22 - Zl, one can use temporarily the following

parameter representation of the straight line (p = real, 0 S<p < 1):

£ %
dz [Az

i
o
3]
T
=
£

(k5p)
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Applying this to the integral in eq. (L3) gives for a straight line:

Z z

2 2 Z*n+2 Z*n+2
, #*n+ A B4l # Az N
jr 7z Plag = == 2 lag” = % 2 L . (ke)
n+ 2 ——
Z Az Z Az
1
One obtains similarly
z
2 2-n 2-n
f 1on, % Az %o " F
z dz = 77 ST s n > 2 (L7a)
2y
%o
f 1% pg
- _ Az
z dz = 77 Rn(zg/zl) (47p)
Z
1
%o
j” % N . A %
Z - _ . Z .
A - dz = Az + {zl 2y ZE—J Qn(zg/zl) . (48)
1

*
t should be noted that the right side of eq. (L48) equals Az  when the
extension of the straight line goes through 2z = 0.

For a circular arc with its center at the origin, one obtains by application

# 2
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2
-n+l ¥ ~2(n-1) ¢ ¥*n *n

J{ d r (22 -2, }/n (50a)
%
=

# # %

2 8z =12 -2 . (50p)

Z 1 2 245
%

Expressions for circular arcs with the center not coineciding with the origin
can also be derived. However they are somewhat more complicated and will not
e given here since they do not seem to appear very frequently.

If the contour of a conductor is bounded by two circular arcs with
radius 1 and and with their centers at the origin, and by two radial

1 2

lines at ., and O, the integrals in eqs. (Ta) and (Tb) are of course

most easily evaluated directly and are given by

-1ino -170.

*
z M40 = i(rg+2—r§+2)(e 2 e 1}/n(n+2) (51)
~ino -inQ
z 4o = i(rgnn-rinn)(e e l}/n(Q-n); n# 2 (522)
~ing -ing
Z—EdU = 1 Zn(rp/rj) . (e 2~e l}/2 . (52b)
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%
7.2. EVALUATION OF H
Although the expansion coefficients are usually of primary interest,
for a variety of reasons i1t can be of interest to have a direct method for
] -ﬂ% * ® 3 s
calculation of H : H can be of interest in the aperture to find the

“difference between the actual filelds and the contributions of the major multi-

®
pole coefficients. H is of interegt in the coll regions to find

"

max
%

H can also be of interest for the evaluation of £ and T with egs. (34)
and (Ll), unless one wants to use the equations given in sect. 7.3.

Applying egs. (A3a), (AL), (A5) to the first part of the integrand
in eq. (6b), and eq. (A3b) to the second part of the integrand in eq. (6b)

gives:

As mentioned in Appendix 1, eg. (53) is correct whether or not Z, is inside
the contour. The absolute value of the integrand of the first integral is
one and has furthermore the convenient property that when Z, 1s on the
contour, the integrand does not change when one goes "through” z, unless
Zo iz located at a corner. As in sect. 7.1, integrations over straight lines
or circular arcs can be performed explicitly but will not be given here.

The field perturbation AH* resulting from a displacement of 2

conductor by Az is obtained from eq. (53) by differentiation and one obtains

#
*® K % * *
pH =42 [ g —2 4z + bz dz_ _ g2p — 4
4T 2 Z-7 2 2
(z~zo) o (R o
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The second integral contributes obvicusly only when Z ig ingide the conductor
and is therefore not of great interest. For the effect of rotation by a

" small angle o one obtains similarly

% : %*
® L dp ZZ 52 Z% #
MHD = - i 3o -—-—-——~( 5 dz - R %5 & . (55)
z—zo) (R°=z z )

Eq. (53) represents the contribution of one conductor to the total
field. When one is dealing with a symmetrical 2N-pole magnet, the contribution
from the conductor rotated by m - 7/N with respect to the reference conductor
. . . . immw/N . .
is obtained by replacing in eq. (53) =z by =z + e and multiplying the

whole expression by (-1)". Doing this and summing up gives in eq. (53)

instead of the first integral

¥

Applying eq. (Al8) to both parts of this integrand and following the same

2N-1 ¥ iN-m7w/N * 1 (N+1) -mm/N
Zz e e Zoe

dz .

-t Z(eim’ﬁ/l\f _ ZO/Z}

procedure for evaluation of the second integral in eq. (53) gives

%

. ZN—l(zz -7 z*) ¥l #
g o= 48 01 90 45 - R 2 _ZZ__ 4,
21 "o 5 2N Ly 2§ #2§
zZ - Zo R -zo Z




7.3. TFORCE AND TORQUE ON INDIVIDUAL

DUCTOR

AN

" i - ey ” P I, "
the use of transcendental Tunctions has

been avoided so far whenever possible. To calculate force and torgue on individual

H given in sect. T7.2.

dimensional case, the force T and torque T 1per meter are gilven by egs.
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The total field is a linear superposition of
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fieldss 1) The vacuum field, i.e., the field produced by the conductor

o

gtructure without any iron present. This

b
Hy

ield is derivable from eg. (5b)

}:) .

£
i

the second factor of the argument of the logarithm is se

ot

to one.
2) The field produced by the image currents, described by the second factor

the argument of the logarithm of eg. (5b). 3) The fields caused by the

saturation effects, described by the expansion ceoefficients (eq. (21)).

d
“n <

Although the forces and torques resulting from the last two scurces can be
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o thes one

o

sed to obtain the effects stemming

from the vacuum Tields, the following procedure is simpler and quite adequate.
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®
A as & function of Zo‘ and ZO and using egs. (A2), one obtains
%
B=(-21/p) - 8A/3z_ . (62)

Using this in eq. (57) and applying eq. (A3a) yields

%

o 63

f ip_pd ?E A(zo,zo)dzO (63)
Proceeding similarly to obtain T from eq. (58), and utilizing

% % % %
zOBA/SzO = a(.zQA)/azO - A and the fact that A is real yields
o * *
T = e 3 . L
T M0 Jaegg Alz sz )z dz (6L)

It should be noted that in eq. (6L), any integral over a circular arc with its
center at 2z = 0 does not contribute to T.

To evaluate egs. (63) and (64), A has to be known on the contour of
the conductor under consideration. Since one would alsc consider a part of
a conductor block to obtain the internal stresses, part of the contour will
in this general case be insgide & conductor. From eg. (5b) follows for the

contribution of a current filament at 3z +to the vector potential A at z.

#*

A= - E%’(Qn(zmzo) + n(sz «zz)) . (65)

The logarithms are declared real for real positive arguments and are made
single-valued with a branch cut so that the imaginary part of each logarithm

E P . ; "
13 bLetween -7 and T.
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Using eq. (36) to describe the total fields caused by image currents

and saturation, one obtains

Expressing the integrals through the coefficients b (ea. (7Tb)),describing
the part of the conductor structure under consideration for the calculation

of £ and T, one obtains

£ = 2m o Z gb ;R . (60)

Using the same procedure to caleulate T, one obtains

o0
E3
7 = ZmJOpgim g_nbnRzn . | (61)

n=1

It should be noted that contrary to what was sald in sect. 5, bo is not
necessarily zero in this context.

Although general explicit formulae for bn are given in seect. T.1l.
only for conductors with constant current density over finite areas of conductors,
egs. (60) and (61) are valid even for nonuniform current distributions.

To obtain the contribution of the vacuum field to force and torgue,
it is convenient to transform egs. (57) and (58) first into contour integrals.

To do so, H is expressed by spatial derivatives of A (eq. (1)). Considering
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From this follows for the contribution from all conductors

no

j(%n(z—zo) + Rn(z*wz:)]dc . (66)

=

i

i
4:’!@
=

Converting this into a contour integral gives with eq. (A8)

i .2 :
A = Lgﬂ %ﬁ.j(z*—zz)[ﬁn(z-zo) + Zn(z*-zZ)—l}dz . (67)

% %
Since gﬁﬂzodz = 0, §§ z dz = 210, and the total current equals zero, the
term -1 in the parenthesis of eq. (67) does not contribute to A so that

‘A can be written as follows:

2

A(Zo’zi> = i%; 55 j(z*—zi)ﬁn]zmzolg *dz . (68)

Eq. (68), together with egs. (63) and (6L) allows thus the evaluation of

f and T. The fact that A is known to be real allows a simple check of at
least some parts of the progfam to evaluate A. To obtain the order of
magnitude of computer time needed to evaluate I ana T, the following
mumbers seem reasonable for a quadrupcle: 1f the conductor contours in each
sector are specified by 100 peoints, calculation of A requires computation
of 400 logarithms. If the contour of the conductor under consideration is
also specified by 100 points, evaluation of f and T requires computation
of h.lOLL logarithms. 35 usec execution time per logarithm on the CDC 6600
under the Chippewa operating system thus leads to a total time of a few

seconds.
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“T.k. TOTAL STORED ENERGY
Since the vector potential represents the Tlux in s two dimensional

magnet, the power E per meter magnet length delivered from the power supply

to the magnet is given by

N 21 ., #
E=1up gﬂ(za,ze}dqa

Stérting at t =0 with E = 0, J = 0, and integrating by parts over time

yvields

It has been assumed here that the current density has the same time dependence
everywhere, and the time dependence of A 1is expressed thf@ugb its

dependence on J. The contributions to A Tfrom the vacuum field and the image
currents are linear in 3 and thersfore contribute J A/2 %o the integrand

in eq. (69). The contribution to A from saturation of the ilron reguires
integration over the past as indicated in eq. (69). This means that for theé

contribution of saturstion to the energy, fAS jdGo has to be known for all

at
vast excitation levels. Of course not all conbributions to E resulting
from saturation are recoverable, so that the term "stored energy” for E is
really 2 misnomer.

o get the contributions to fAjdGO@ and ultimstely E, that are

caused 1

[T
£F

e
i
®

turation effects and the image currenits, the procedure is similar
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to the evaluation of thelr contribution to £ and T:

foe
# n-1
= 4! =
H iF'/p Zgnzo
n=1
oo
F=A+iv=-ipz zn/n
En%
n=1
o0
. - I B
Agdgo Re ZE: d/ﬁlpgzodcogn/n
n=1
. .
A3d0 =2W'ReZRnb(b+d)/n .
O e ¢ Wi ¢ Bl ¢ 1

n=1

Using this in eq. (69) then gives for the contribution of the image currents

and saturation effects to E:

o *
b
-

J
_— 2 2n 2 ¥ oy U sV g
E = u_mp Z R }_‘@_nf +2Re<§_néﬁ(3) 3 [gn(.})d3> /n . (71)
‘ 0

n=1

It is interesting to note that the energy given by eq. (71) is smaller
than the vacuum field energy given below if én = 0, and will be still
smaller if saturation effects are present. This is most easily seen as
follows: 1f the infinite permesbility shell is replaced by a supercconducting
shell, one obtains the complex potential from a current filament by dividing
the first factor of the argument of the logarithm in eq. (5b) by the second
Tactor instead of multiplying by it. The energy resulting from the image

currents is then again given by eq. (71l), except the right side is multiplied
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by =~l1. Since the total energy must be positive, the energy given by eg (71)
for gﬂ = 0 nust be smaller than the vacuum field energy. This statement is
of course correct only 1f the conductor structure is surrounded by a circular
shell.

The procedure to obtain the contribution to E that results from the
first factor of the argument of the logarithm on the right side of eq. (5b)
follows the same pattern as the calculation of the contribution of that term

to £ and T,

For the contribution of one current filament at 2z Lo E one

obtains

1 2| , . -L % %
B=ZUpP I = (Qn(zo—z) + Qn(zc—z )}dﬁo

Applying egs. (A3a) and (A8), and taking into account that fjdGO = 0 one

obtains
1 2 i #®
E=ZUpP ?g JGl(zO,zo)dzo , (72)
with
* iT * % * %
= e © - 7 - + -
szo’zo) 5 (zo z )(Qn(vo z) Qn(zo z ))

The effect of all currents is described by
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*®

. .2
G (zo,z:) = . j(z:~z%)(2n(zomz) * Qn(z:fz ))do . (73)

Applying eq. (A3b) to this expression gives in the same manner as the

derivation of eg. (A8):

Gl(z ,z:) = E%E-- fﬁ. j(z:—z*)(zo~z)(2n(zoﬂz) + Qn(zz—z*)~l)dz*

It is agein easy to see that the term -1 in the parenthesis of this equation

does not contribute to E, so that E can be calculated from

L
u_p %
2= .9 . -
B = T gg 3 (zo,zo)dzo (74)
L . 2, 2 . #
G(zo,zo) = gé-glz—zoi inz-zol dz . (75)

For a symmetrical 2N-pole, the integral in eq. (74) has to be
evaluated for only one sector since each sector contributes equally to E;
for evaluation of G, the integration has to be carried out over all con-

ductors of the systemn.
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Appendix 1
9
Although eqs. (A3) can be found in the literature, ) they are briefly
derived because they are applied here in a not quite trivial manner, which

alsc needs some explanation.

- 3 -5 >
From Stoke's theorem (Sfeurl v - do = %é- Vv - ds), applied to a vector in the

X - vy plane, follows

J/ﬁaF<§£x) i Sﬁ'de (a1a)
f@f—%;ﬂdo -?SMX . (A1b)

%
Expressing x and y by z and 2z and consgidering F now as a function

[

#
of z and =z , the operators 9/3x, 3/3y become

5/5x% = 3/3z + /32 (A2a)

[H

5/3y = 1(3/8z - 8/3z") . (42D)

i

Using this in egs. (A1), multiplying eq. (Ala) by i, and first subtracting

and then adding eq. (Alb) gives

=3
W

.
—a%—dc::é—.igg}?dz (

0 Aa
oz

=

3F B 1 *
azd6~~gi§3’dz . (A3Db





