
UCRHEP-TIOI 
November, 19]"2 

A Lorentz invariant sum rule for the 
O-dependence in QeD 

Hisashi Kikuchi and Jos6 Wudka 

Department of Physics 


University of California, Riverside 


Riverside, CA 92521 


ABSTRACT 

A sum rule for the O-dependence in QCD is derived. Special 

attention is paid to the subtleties associated with the translation 

of the Lagrangian path integral result into Hamiltonian canoni­

cal quantization language, and the Lorentz non-covariance of T­

product within canonical Gg = 0 quantization. Prescriptions for 

dealing with these problems are given. 
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1. The addition to a Lagrangian of exact differentials does not affect clas­

sical motion, but can potentially (and significantly) alter the nature of the 

system upon quantization. In this paper we will consider the effects of such 

modifications restricting ourselves to the phenomenologically interesting case 

of CP odd terms, which we label "O-terms"; we denote by 0 the correspond­

ing coefficient. The evaluation of the dependence of physical observables on 

owithin a given model is, in general, a highly nontrivial dynamical problem 

[1]. This is the case in QCD, where the determination of the 0 dependence is 

a problem of both theoretical and phenomenological relevance: experimental 

evidence strongly suggests that observables are independent of 0, while, on 

the other hand, there is no theoretical understanding of this effect (within 

QCD) [2]. In this paper we will determine a sum rule describing the 0 de­

penaence of a model, we will first consider the case of a quantum mechanical 

system and then follow a similar approach for QCD. 

A quantity which we will use to measure the O-dependence in a given 

model is the energy density of the vacuum 

c(O)= lim (3iVlnZ(O,(3,V), (1)
{3.V'~oo 

where Z(O, (3, V) is the Minkowsky space partition function with time period 

(3 and space volume V. Z can be written using the Lagrangian path integral 

Z(O,(3, \I) = j[d¢] ei !:dt!v dXL9 [¢;], (2) 

where ¢ denotes the fields of the model. 

Equivalently we can consider the differential coefficients at 0 = 0 (assum­

ing a smooth 0 dependence): 

c'(O) -(( Q(O) )), (3) 

c"(O) (-i) j d4 x [(( Q(x) Q(O) )) - (( Q(O) ))2] , (4) 

etc., where 
dLo 

Q(x) == do (5) 
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and 

(( 0 )) == lim 1 j[d¢] 0 e i I: dt Iv dx L9[4>11 . (6)
~,V-+oo Z(O, (3, V) 6=0 

These differential coefficients relate the O-dependence of the vacuum energy 

density to correlation functions of the charge Q of the system at 0 = O. 

The relevance of the Eqs. (3)-(4) becomes more transparent when re­

written in terms of field operators. Then, by inserting a complete set of 

eigen-states of the Hamiltonian as intermediate states, we can, in principle, 

evaluate c:'(0), c:"(0), etc. in terms of a sum over appropriate matrix elements 

of Q(x). These expressions can then be regarded as sum rules describing the 

O-dependence of the system. 

When translating the path integral result into canonical operator lan­

guage, the naive interpretation of the correlation function (( 0 )) as the vac­

uum expectation value of the T-product (01 T 0 10) is not correct: contact 

terms must be added [3] (see also Ref. [4]). As we will show below, the exis­

tence of these contact terms resolves an apparent contradiction related to the 

O-dependence of the vacuum energy in quantum mechanical systems. Within 

field theory this solution is still not satisfactory: the result does not appear to 

be Lorentz invariant, although c(0) and all its differential coefficients must be 

Lorentz scalar. Indeed, the Euclidean version of Z( 0) corresponds to the zero 

temperature gluonic partition function (with zero chemical potential), E.(O) 

can then be interpreted as minus the vacuum pressure, which is a Lorentz 

scalar. This implies that the vacuum expectation value of energy momentum 

tensor is given by (0IT~1I10) = c(0) g~lI. 

In this paper, we solve this paradox and write down the sum rules for 

c'(O), E."(O) , etc. in a manifestly Lorentz invariant fashion. For definiteness 

we concentrate on the second differential coefficient c:"(0), the extension for 

the higher coefficients is straightforward (the first differential coefficient is 

zero in QeD due to time reversal symmetry). We divide the calculation 

into two steps. First, using the Hamiltonian path integral, we establish 
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a translation rule between the Lagrangian path integral expression for the 

correlation functions and the canonical operator language Green's functions. 

Second, we covariantize the results by replacing the T -products with T*­

products which entails the evaluation of the corresponding seagull terms. 

2. We begin by considering the case of one-dimensional field theory (quan­

tum mechanics) since it provides an instructive and transparent example 

both for obtaining the translation rule, and for understanding Eq. (3)-(4) as 

sum rules. We consider a particle moving in a potential V(x), 

Lo = ~X2 - V(x) +Ox. (7) 

The path integral expression of c:"(0) is 

E."(O) = (-i) j dt (( x(t) x(O) )), (8) 

where we used (( x(O))) = 0, a simple consequence of time reversal invariance 

at 0 = O. 

The corresponding Hamiltonian is 

1 2
Ho = 2(P - 0) + V(x) (9) 

and Heisenberg equation for operator x(t) is x(t) = p(t) for 0 = O. 

Now, can we replace x(t) -+ p(t) and (( ... )) -+ (01 T ... IO) in Eq. (8)7 The 

answer for this question is "No." Indeed, if we adopt this naive translation 

rule, we find a contradiction: writing c:"(0) as the zero frequency limit of the 

relevant Fourier transform we obtain the inequality 

c:"(0) J: lim(-i)jdteiwt(OI Tp(t)p(O) 10) = lim roo dm ;mpc~m). < 0 
w-+O w-+oJo w -m +u: 

(10) 
by virt ue of the posi ti veness of the (connected) spectral function 

pc(m) == L 1(01 p(O) In)1 2 8(m - En +E.(O)), (11 ) 
n¥O 

4 



where In) are the eigen-states of Ho with corresponding eigen-values En. This 

inequality, however, is false for periodic potentials for which it is known [5J 

that £(0) a(1 - cos 0), a > 0 which implies £"(0) > 0, This shows t.hat f"o,J 

the naive translation rule is incorrect. 

To find the correct correspondence between the path integral and operator 

expressions for the correlation functions, we consider the expression for Z in 

terms of a Hamiltonian path integral with canonical variables x and p 

iH9f3 10)Z(O, (3) (01 e-

j[dpJ[dxJexp [-i fof3 dt{H/1[P,xJ - xp}] , ( 12) 

where the functional integral is over two independent functions x(t) and p(t); 

integrating over p(t) and using Eq. (7) we recover Eq. (2). Substituting (12) 

in (1) and using (9) we obtain 

c"(O) = 1 - i j dt(( p(t) p(O) )). ( 13) 

Noting that 

(p - i :p) i j dt (px - Ho) = x (14 ) 

we find that the correct correspondence is 

.b 
x -+ p - t bp' (15) 

For example 

(( x(t) x(O) )) 

8 b
~ j[dpJ[dxJ (P( t) - i__) (P(O) - i__) e i J: dt{xp-Ho}

Z bp(t) bp(O) 

ib(t) + (( p(t) p(O) )). (16) 


Once we write the correlation function in terms of x(t) and p(t) by eliminating 

all x factors, the translation to canonical operator is straightforward. 
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The translation rule (15) can be stated as follows: "In replacing x(t) with 

p( t), check if there is a p(t') factor in the correlation function . If present, add 

a contact term generated by replacing p(t') and x(t) with i8(t' - t). Repeat 

until all x factors have been replaced." 

We also note that by the construction of (12) using time slicing, the 

correlation functions obtained using (15) to eliminate x in favor of p will 

correspond to the T product Green's functions. 

The correct sum rule for £"(0) is now given by 

£"(0) = 1 - i j dt (01 T p(t) p(O) 10) = 1 _ [00 dm 2 pc(m). (17)io m 

For the harmonic oscillator potential V(x) x 2/2 we obtain 

pc(m) = b(m - 1)/2 and thus £"(0) = 0, a result consistent with the ab­

sence of any O-dependence in this case. 

Note also that Eq. (17) can be rewritten as 

£"(0) = -i j dt ~(Ol T x(t) p(O) 10). (18) 

Thus a nontrivial O-dcpendence, £"(0) i- 0, indicates the presence of long 

time correlations between x and p. 

We now apply the same analysis to QeD. The Lagrangian reads 1 

L = J1.11_!eaea + oLea ca/loll 
/1 4 /loll 3211'2 J1.// , (19) 

where 

e:1I = a/loe~ - aile: + grbcG:e~, caJ1.11 
-
_ !

2t
/lo1l),,(7ea)"(7 ' (20) 

In this paper we will ignore the quark contributions. 

Using the cg = 0 gauge the Hamiltonian is given by 

II = !(1I'a + iJB?-)2 + !(B?-)2.
/1 2 I 2 I , iJ == (l/811'2)0, (21)I 

lWe use the same metric as that in Bjorken and DrelI [6J: glJ lI = diag(l, -1, -1, -1) . 
(0123 = _(0123 = 1. r bc denote the SU(3) structure constants. 
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where 1ri is the canonical momentum conjugate to Gr, and Bf == (.jj",Gjk/2 
is chromo-magnetic field. The fields operators 1ri and Gi are assumed to 

satisfy the equal time canonical commutators 

[1I"f(t, x), G~(t, 0] = -io(x - y)OijOob (22) 

and 

[1I"f(t, x), 1rJ(t, 0] = [G~(t, x), G~(t, 0] = o. (23) 

Physical states are constrained by the Gauss law 

1'j1l"il) == (oj1ri + grbcG~1I"nl ) = o. (24) 

The translation rule between Lagrangian path integral and operator lan­

guages is obtained from 

Z(O) J[d1l"i][dG~][dG~] 

x exp [-i J d4x {He[1ri, GiJ - (1'j1l"f)Gg - 1riG'f}] , 
(25) 

which is the path integral expression for the partition function in the canoni­

cal variables [7], where Gg has been re-introduced as a Lagrange multiplier for 

the constraint (24). If we perform the 1rf integral we recover the Lagrangian 

path integral expression. By argument identical to those used in the context 

of quantum mechanics, we get the correct translation rule: "Every time we 

replace G~j in the correlation function with 1rf, we must add a contact term 

generated by replacing each {Ggj(x), 1rj(y)} pair with i8(x - y)8jj 8ab ." 

From (19), and applying the above translation rule, we get 

e"(O) = (-i) (::,rJd'x« {G~;(x)Bi(xll {G~j(O)BJ(Oll », 

= (::, ),[(01Bi(0)' 10) - i Jd" x (01 T "i(x )Bi(x) ~j(0)Ej(0) 10)1(26) 

for the second differential coefficient. 
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3. As mentioned previously ["(0) is a Lorentz invariant quantity, but the 

right hand side of Eq. (26) is not manifestly a Lorentz scalar. The second step 

in our calculation is to write Eq. (26) in a manifestly Lorentz invariant form; 

to this end we use the technique developed for covariantizing the T-product 

of fermion current operators [8, 9]. 

We first examine the equal time (canonical) commutator of two 1I"i Bf 
operators. We obtain 

[1I"i(x)Bf(£),1I"J(y)Bj(y)] 

= - 2i'ijk".H; 8k"(i - 0 + i'ijk [8~k '" (0B;(01"(i - 0. (27) 

We notice the presence of a "Schwinger-like term", the first term on right 

hand side in Eq. (27). Thus the T-product of two 1riBf operators is not a 

Lorentz covariant object [8]. [Since 1I"iBf is a gauge invariant operator, it 

transforms as a Lorentz scalar, even in Gg = 0 gauge.] We therefore need 

a seagull term T in order to construct the manifestly Lorentz covariant To.­

product, 

To. 1I"i(x)Bf(x) 1I"J(y)BJ(y) 

== T 1I"f(x)Bi(x) 1I"j(y)Bj(y) + iT(y)8(x - y), (28) 

where the non-covariance in the T -product is cancelled by that in T. 

To determine T(y), we re-write Eq. (27) in terms of a time like unit vector 

n lJ : 

8((x - y) . n) [1I"f(x)Bf(x),1I"J(y)Bj(y)] 

= isa(y; n )(9/3 
- nan(3)O{38(x - y) + iC(y; n )8(x - y), (29) 

where sa(y; n) and C(y; n) are the Lorentz covariant but frame dependent 

(n-dependent) operators, determined by the condition that Eq. (29) reduces 

to Eq. (27) when nil = (1,0). The seagull T(Y) is given by 

T(Y) = r(y; n)lnlJ=(l,o) (30) 
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where r(y; n) is a solution of [8] 

~r(y;n) = SO(y;n). 	 (31 ) 
ano 

From Eq. (29) we find 

SO(y; n) = _2G~IlGaolln!3 (32) 

where we replaced 7rf -+ GOi ' Then we get 

r(y; n) = -G~IlGaolln!3no, r(y) = 7rf(y)2. (33) 

There is an intrinsic ambiguity in the definition to the T* product corre­

sponding to the addition of Lorentz invariant terms to r; in fact, if we replace 

r -+ r + 0 = r', where 0 is an arbitrary local Lorentz invariant operator, 

the Lorentz transformation properties of the T*-product remain unchanged. 

This affects the definition of both the seagull (33) and T*-product (28), but 

not the equal time commutator (29). Our choice Eq. (32) defines what we 

understand by T*. Using Eq. (33) and (28), we obtain 

<"(0) = U:,)' [(01 s;{O)' - ,,;(0)' 10) 

-i Jd4x(01 T* 7rf(x)Bf(x) 7rJ(O)BJ(O) 10)], (34) 

for the second differential coefficient in Lorentz invariant form. 

Incidentally, the above derivation shows that the vacuum expectation 

value of the T-product of two 7rf Bf's is a Lorentz scalar if and only if the 

expectation value of (Bf)2 is zero. 

We now write Eq. (34) using a spectral representation so that its nature 

as a sum rule becomes clear. Let F(p) denote the Fourier transform of the 

T*-product: 

F(p) 	 Jdxeipx 
( -i)(OI T* 7ri(x)Bi(x) 7rJ(O)BJ(O) 10) 

Jdxe ipx 
( -i)(OI T 7ri(x)Bi(x) 7rJ(O)BJ(O) + i7ri(0)2b(x) 10). 

(35) 
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For X
O =I a the T* and T-products coincide, and we can write their vacuum 

expectation value using a spectral decomposition. At X O = 0 the T* -product 

can have b-fullction type singularities which are related to corresponding 

singularities in the T-product. By Lorentz invariance, these singularities 

correspond to terms in F(p) which are polynomial in p2. Thus F(p) takes 

the general form 

oo 
2 p(m2 

) 2 
F(p) = dm 2 2 . + fo + fIP + ... , (36)lao p-m+u: 

where 

p(m2
) = (27r)3 L I(OI 7r i(O)Bf(O) In)1 28(q - pn)i (37) 

n;iO 	 q2=m2,qO~0 

and In) represents a physical state. Then we obtain 

<"(0) = u:,),[(01B;(O)' - ,,;(0)' +1010) - j dm'P;:')] , (38) 

for the sum for O-dependence in QeD. 
The determination of the fl is non-trivial. We only present some plausi­

bility arguments regarding their general form. Let us define 

2 	 2 

Q = _9_Ga callIJ 	 9= -~7rr::Br:: . a=-, (39)327r2 IlIJ 27r I I' 47r 

where we took 0 = O. We assume that the singularity of TQ( x )Q(O) at x = 0 

is determined by the short distance behavior of operator product Q(x)Q(O) 

at space-like separations, and we consider the operator product expansion of 

this quantity. Note that Q is a renormalization group invariant dimension 

four operator. The possible leading nontrivial term in the expansion is 

Jd4x eiP'X(OI Q(x )Q(O) 10) "-' iA(OI aG:IJGaIlIJ 10) (40) 

where we have used the renormalization group invariance of aG~IJGaIlIJ; the 

factor of i comes from the transition to the Euclidean region. This term 
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generates a term independent of p2 in F(p). The other terms in the operat.or 

product expansion contain higher dimensional operators and are expected to 

vanish as p2 -+ -00 2. These arguments suggest that fa will be proportional 

to (01 oG:II Ga jj ll 10) and fl = 0 for 1 ~ 1. With the above assumptions we 

obtain 

c"(O) = f(o)(OI oG~IIGajjll 10) - 4:22 Jdm2P~2), (41) 

where f( 0) = A + 0/(87r 2
). 

Let us turn to the possible modification of the sum rule by the inclusion 

of quark effects. It is known for QED triangle quark loop effect changes the 

naive canonical commutation relations for fermion currents but the commu­

tator for gauge fields remain intact [10, 11, 12]. Thus we expect the canonical 

structure of 7rf and Gf, especially their canonical commutation relations re­

main valid also when quarks are introduced. (In this case () must be identified 

with the coefficient of GG when the quark mass matrix is real and diagonal 

[2, 13].) The presence of quark loops will not alter the forms of (38) or (41), 

but will modify the explicit expressions for p and fa and f(o). In the pres­

ence of quarks the anomaly equation can be used to evaluate c"(O) in terms 

of fermionic operators; several publications [14, 15J have addressed this issue. 

These references, however, have apparently ignored the non-canonical quark 

current commutators implied by the anomaly. We will return to this issue in 

a future publication. 

It is interesting to compare Eq. (38) with the interacting instanton gas 

result [16]. We get positive value for the first term: 

u:,),[(01 Bi(O)' ~ "-i(O)' + 10 10)] = 2~ > 0, en) 

where ~ is the instanton density. T he O-dependence of QCD (up order ()2) is 

then determined by a competit ion between the (positive) first term and the 

2We assume that the corresponding anomalous dimensions are not so large so as to 
invalidate this statement . 
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negative definite second term in (38). This raises the possibility of a cancel­

lation, but a meaningful discussion of this possibility, as well as any other 

phenomenological implication, requires the introduction of quark effects. 

This work was supported in part by the US Department of Energy under 

Contract No. DE-AT03-87ER40327. 
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