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Abst ract 

The second-quantized form of the Laughlin states for the fractional quant um Hall 
effect is discussed by decomposing the Laughlin wavefunctions into the N -particle 
Sla ter basis. A general formu la is given for the expansion coefficients in terms of t he 
characters of the symmetric group. and the expansion coefficients are shown to possess 
numerous interesting symmet r ies . For expectation values of the density opera tor it 
is possible to identify individ u al dominant Slater states of the correct un iform bulk 
density and filling fract ion in t he physically relevant N ~ 'x limit. 

1 Introduct ion 

The variational trial wavefunctions introduced by Laughlin [1] form the basis for the theo­
ret ical understanding of the quant um Hall effect [2, 3]. The Laughlin wavefunctions describe 
especially stable strongly correlated states. known as incompressible quantum fluids, of a two 
dimensional electron gas in a strong magnetic field . They also form the foundation of the 
h ierarchy structure of the fracti onal quantu m Hall effect [4,5]. 

In the extreme low temperature and strong magnetic field limiL the single particle elec­
tron states are restricted to the lowest Landau level. In the absence of interactions, his 
Landau level has a high degeneracy detern1ined by the magnetic flux through the sample [6]. 
_ fuch (but not all) of the physics of the quantum Hall effect may be understood in terms of 
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the restriction of the dynamics to fi..xed Landau levels [7, 3, 8 . The integer quantum Hall ef­
fect may be understood in terms of fully filled Landau levels , b ut the fract ional quantum Hall 
effect involves fractionally filled Landau levels. Laugh li n 's (unnormalized) wavefunctions [1] 

,,' 
,T, m (z -.) - IT' (-. - ,.. )2m+l e- tL:~1 I zd2 (1)'i'Laughlin 1,····.;..\ - .(,. - J -, 

i<j 

where m is an integer, correspond to states of fractional til ing 2m\ 1 in the lowest Landau 
level. By exploiting the connection with two dimensional one-component plasmas, it can 
be shown that t hese wavefunctions correspond to incompressible quantum fl uids of uniform 
density 2ml+1 ( ~~ ) [9], Furthennore, quasiparticle excitations about these states have the 
appropriate frac tional statistics (10. 3J. 

A convenient description of the macroscopic properties of quant um Hall samples is given 
by effective fi eld theory techniques and the associated Che -Simons formalism [11. 12,3]. 
T hese effect ive field t eories are in turn related to importan t edge effects in quan tum Hall 
amples [13]. T he second-quantized effective field theories p rovide a useful formalism for 

studying the large ~V limit. The relationship between t he microscopic n1any-electron theory 
and these macroscopic effective field theories has been discussed in detai l for fully filled states 
by Stone [1 4) . It is much more difficult to make precise this connection for the fra ctional 
quant um Hall effect. 

In this paper I discuss the second quantized form of the fractional filling Laughlin wave­
functions (1 ) in their microscopic Fock space form. In p rac ice~ this involves expanding the 
Laughlin wavefunctions in terms of Slater wavefunctions. ince the Laughlin wavefunction 
has fi xed angular momentun1 JLaughli n = (2m + 1) ~ IV (iV - 1) it may be expanded as a linear 
conlbination of Slater determinant \yavefunctions each with this same angular momentum. 
T he goal is to seek some structure in this expansion an d use this to examine the ~V --+ x 
limit. 

A rela ted question has been addressed very recently by . l acDonald and ~,r it ra [15] who 
compu te the angular monlentum distribution func tion of the Laughlin wavefunctions - i.e. 
they compute the relative occupation numbers of t he single particle angular momentum 
s tates in the one particle density matrix for the Laughlin st ates. Here. instead, I ask for the 
relative weights of the multi-particle Slater states which comprise the Laughlin state. This 
is a much more d ifficult question. as one se€s simply by co unti ng the states involved. It is 
often the case t hat one can compute matrix elements of second quantized operators in the 
Slater states with relative ease, so that if one knows the expansion of the Laughlin state in 
the Slater basis , one can then compute the expectation value in the Laughlin state without 
resorting to the fi rst quantized technique of large multi-dimensional integrals. 

There have been previous investigations of the expansion of the Laughlin wavefunctions in 
the Slater basis. Tao [16] has studied the projection of the La ughlin states on the ground state 
in the N -t 00 limit . Datta and Ferrari [17J have d iscussed t he large 1'1 limit by considering 
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an associated Langevin equation. As is perfectly clear. any exact analysis soon confronts 
the problem that it is very difficult to store. expand and manipulate large polyomials and 
determinants. Here I propose to make use of the equivalence of this expansion problem with 
a classic combinatorial problem in the theory of symmetric functions to give a formula for 
the coefficients in the expansion in terms of characters of the symmetric group. The intended 
advantage of this approach is that one does not need to refer to the wavefunctions at all in 
the computation. There are still significant combinatorial and computational difficulties, but 
this point of view brings to light many interesting symmetries of the expansion coefficients, 
some of which make it possible to address the N --+ 00 limit exactly in certain special cases. 
For example, somewhat surprisingly, for the expectation value of the density operator it is 
possible to identify a single Slater state which dominates the expansion in the N -+ 00 limit, 

1and which has uniform bulk density 2~+1 (~~) and fractional filling 2m +l' 

This paper is organized as follows. In Section 2. I briefly review the second quantized 
formalism of .V-particle quantum mechanics in the context of the Laughlin wavefunctions. 
The connection between the many body Slater wavefunctions and special symmetric poly­
nomials known as "Schur functions" is discussed in Section 3, and this is used in Section 4 
to obtain a general formula for the Slater expansion coefficients in terms of the characters of 
the symmetric group. Section 5 contains the results for some low lV examples and in Section 
6 I discuss some symmetries of the expansion coefficients for all N. These symmetries are 
used in Section 7 to analyze the density profiles and pair correlation functions of Laughlin 
states in the iV -t 00 limit, The paper concludes with some discussion and some suggestions 
for further investigation. 

Second Quantized Form of Laughlin States 

For very large numbers of particles (.V -+ oc) it is often more convenient to use the second­
quantized formulation of nonrelativistic quantum mechanics. In second quantization, one 
defines a field opemtor <1> (z) by the expansion 

<1>(:) = L
Xl 

ak¢k(z) (2) 
k=O 

where the Ok(Z) form a complete orthonormal set of single particle wavefunctions and the 
ale: are Grassmann annihilation operators satisfying the anticommutation relations 

(3) 

The Fock vacuum 10 > is defined as the state annihilated by all the ak operators and an N­
particle state 1[.\] > is defined by the action of N creation operators on the vacuum 
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The usual ~-part icle first-quantized wavefunction corresponding to this state is 

1 
w[.x] ( Zl • ••• , z:v) - IX! < Ol~(zd ... cI>(ZN) I[A] > 

<P.xl (zd <P.x, (zd <P'\N (zd 
<P'\I(Z2) <P.x, (Z2) <P,\", (Z2)1 

(5)= IN! 
<P'\I(ZN) ¢>~,(ZN) ¢.xN(ZN) 

T his is, of course, just the familiar Slater determinant for the N particle fermionic state in 
which the single particle states At, A2, ... ,AN are occupied. By virtue of (3) and (4), these 
st a tes are orthonormal 

< [A] 1 [Il] >= 6[,\] • (jJ] (6) 

T he second quantized density operator is 

(7) 

and the (conserved) n urnher operator is 

.v = Jd2z p(z) (8) 

In the Fock state \ [A] >. the expectation value of the densi ty operator is 

tV 

< [A] I p(z) I [A] >= LI<1>'\;(.:)1 2 (9) 
i=l 

T he expectation value of the pair correlation operator P(Zl)P(Z2) is considered in Section 7. 
~otice that. in contrast to the first quantized approach. there are no integmtions involved 
in computing these expectation values . 

..\. general state is a linear combination of the Fock states I[A] > 

Is tate >= L e [,\]I['x] > (10) 
[.x] 

and if the coefficients e p.] are known then it is also straightforward to compute expectation 
values . For example. for the density operator only the diagonal matrix elements contribute 
and 

< statelp(z)lstate > = Lie (AJl2 < [,X]lp(z)\[A] > 
[Al 

= L Ie [.x] 12 (t 1<1>'\; (z) 12) (11 ) 
[,\] i= l 
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~ote. of course. that the coefficients C [AJ uniquely determine the state and have nothing to 
do with the particular operator. Once the expansion coefficients are known for a given state, 
one can express the expectation value of any operator as a sum over its Slater state matrix 
elements. The advantage of the Slater basis is that these matrix elements are often easy to 
compute. 

Since the first quantized Laughlin wavefunctions are of such fundamental importance in 
the study of the quantum Hall effect, it is natural to ask about their second quantized form. 
I t is the purpose of this paper to address this question : namely, to determine the expansion 
coefficients C [Al for the Laughlin state I L > 

I L >= L C [AJI["] > (12) 
[A) 

The corresponding first quantized wavefunction is given by the relation (5), and so the 
C [AJ are determined by the decomposition of the Laughlin wavefunction (1) in terms of the 
Slater basis wavefunctions. 

The relevant single particle wavefunctions are those corresponding to the lowest Landau 
level (we use the symmetric gauge for the vector potential Ai == - ~f ijX)) : 

(13) 


where k == 0.1,2.... is an angular momentum label. and where we have used J2e as the unit 
of length, where f == ffi is the magnetic length. \Vith these single particle wavefunctions, 
the normalized Slater wavefunctions (5) are 

_1 EN Iz 'lle ~ .=1 • 
'lJlA] (" ~ ~)Sialer -1, ":'2,· .. -N == JV' 7r;"'" TI',"'" A ' , 

•• 1 1=1 ,. 

AI ~ANztlZl ";'1 
~ Al ~Al ~AN
";'2 ';"2 4.2 

(14) 

~ A I .,.Al "AN
-.V 4.N -,'V 

There are two convenient simplifications of these wavefunctions. First, it proves helpful to 
label the wavefunction not by the string of integers (AJ = [AI, A2, ... AN), but by the string 
{I-L} == {Ill. J.l2, ... J.L.v} where 

-Xi == Pi + LV - i (15 ) 

This simply amounts to labelling relative to the minimum angular momentum wavefunction 
\vhich has [A] == (~V - l.:V - 2, ... ,2.1. 0] and angular momentum J == ~~V(~V - 1). This 
notation shall be used throughout the paper: square-bracketed integer strings [A] label the 
angular momenta of the occupied single particle states~ while the curly-bracketed integer 
strings {Il} label states relative to the state (A] = (.V - 1, ..V - 2, ... , 2, 1,0]. 
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The second simplification arises because it is natural to consider the Gaussian exponential 
factor e- t lzll in the wavefunctions (13) as part of the Hilbert space measure. in which case 
the lowest Landau level wavefunctions form a basis for Bargman's Hilbert space of analytic 
functions [7. 18], T hus. one may consider the simplified Slater wavefunctions (denoted by a 
lower case l ') 

JJI +l'/-1 JJ 'l+ N -2 .,J:lHZ1 ZI -1 
JJl+N-l JJl+N-2 -yJJN

Z2 Z2 '"'1t/J {JJ } (.. ..) ­ (16)Slater .... 1,·· · • .... N -

JJl+N-l zJJ1+N-2 ..PH
ZN N ~N 

T he normalization factors in (14) are not relevant for the decomposition problem, and will 
be reintroduced when computing expectation values - see Section 7. In this notation, the 
(un-norn1alized) Laughlin wavefunction is 

(17) 


where m is an integer. The problem is to expand ¢Laughlin in terms of the determinants 
1" {J..l}
YS later' 

Since the Laughlin wavefunction has definite angular momentum 

haughHn = (2m + l)~N(N - 1) (18) 

the expansion of L'Laughlin in terms of the 7i'~r!ter will involve only Slater wavefunctions such 
that 

.V 

L Pi == mlV(lV - 1) ( 19) 
i=1 

Thus, one can think of the label {p} as a p artition of mNU'l - 1). The corresponding label 
[A], related to {I-l} as in (15) is instead a partition of (2m + 1)~~\"(.Y - 1). 

It is instructive to consider some simple cases. \Vhen N == 2 and m == 1 (corresponding 
to the ~ filled Laughlin state), 

WLaughlin (ZI' Z2) (I z:;21. 11 I) 3 

_ 1z~zi 1 1- 31­ ..~~ 
1 "'2 

-_"1
~2 

1 

-
1;,{2} (.,. .. )
'l"Slater -1, .... 2 -

3 ,/,{1,1} (.. -)
""'Slater -1 ~ .... 2 (20) 

6 




\Vhen .V = 2 and m = 2 (corresponding to the ~ filled Laughlin state), 

= {4} ( ) 5 ./,{3,1} ( ) 10 .d2,2} ( )
tPSlata Zl, Z2 - 'f'Slater Zl, Z2 + 'f'Slater ZI, Z2 (21) 

\Vhen ~V = 3 and m = 1, 

(
_2 
';'1 =1 1 
... 2
';'2 =2 1 
... 2 

L'Laughlin(.:I. =2. =3) 

43 =3 1 

,.6 _3 1-I -1 
.,.6 _3
':"2 -2 1 
... 6 _3
43 -3 1 

... 5 .,.3 
"'1 -1 
_5 ... 3+6 ";'2 ";'2 
... 5 ...3
':"3 "'3 

.{4.2} (- ­

-3 


t. Slater -1,-2· ... 3 

r 

Z1 

=2 

Z3 

.,.) 
'f'Slater ';'1~.:.2·"'3 - "'Slater .;.1·-2·-3 

(22) 

-

.,.6 
"'1 
,.6
-2 
z6

3 

- 15 

z2
1

_2
':'2 

Z1 

z2 

z2
3 Z3 

Z4 ,.3 
1 	 -1 

_3z4
2 	 ':'2 

_3Z4 ':"33 

3 'li,{4,1.1}(... 

-3 

.,.2
';"1 
_2
";'2 
_2 
"'3 

- ... 

~5 ... 4 1"'1 -I 
_5 _4 
':'2 -2 1 

_4z5
3 	 -3 1 

) 3 lJ3,3} (- ~ -) 

For .Y = 2 it is trivial to decompose t{'Laughlin into Slater determinants. but when ~V = 3 
even for the m == 1 Laughlin wavefunction it is not completely trivial to determine the 
decomposi tion (22). It is clear that to proceed to higher numbers of particles and higher ill 
values a more systematic approach is needed. 

In Section 4 a closed form expression is presented for the (integer) coefficients a{JJ} ap­
pearing in the expansion 

'1:' - '""' a ,/,{JJ} 	 (23)"",Laughlin - L- {JJ} If-'Slater 
{JJ } 

This expression involves characters of the symmetric group, which will be briefly reviewed 
in the next section. 

7 




3 Slater States and Schur Functions 

It has already been noted that the Slater wavefunctions (16) which appear in the expansion 
(23) are labelled by partitions {J..L} of ml'i(lV - 1). Each of these Slater wa.vefunctions 
is a totally antisymmetric polynomial of homogeneous degree (2m + l)~~Y(~V - 1). Each 
can therefore be written as the product of the Vandermonde determinant V and a totally 
symmetric polynomial of homogeneous degree mN(N - 1). Here V is given by 

N-l 
Zl 

zN-2 
1 1 

V = 
N-l

Z2 
/+1-2

z2 1 

N-l
zN 

N-2 
zN 1 

.V 

== I1(Zi - Zj) (24) 
i< j 

T he corresponding symmetric polynomial is called a ~'Schur function" or -S-function'1 [19, 
20]. 

_J-lI+N-I J-l'l+N-2 ."JJN
ZI 

J-l1+N-I J-l'l+tlf'-2 ")'J-lN
Z2 Z2 

"'I "'I 

"'2 

JJI+N-I J-l'l+N-2 ")'J-lN
ZN Z.v - iV 

S{J-l}(ZI," • (25)ZN) = _.V-l _.'1-2 1"'I "'I 
_.V-I _.Y-2 1~2 "'2 

N-I z.'V -2zN N 1 

These symmetric polynomials play a key role in the theory of the symmetric group. This 
relationship between the Slater states and the Schur functions has previously been exploited 
for fully filled QHE states by Stone [14L while the suggestion of characterizing the quantum 
hall effect wavefunctions in terms of symmetric polynomials was originally made by Laughlin 
[1] . 

The unfamiliar reader should pause to note that it is by no means obvious at first sight 
that the ratio of determinants in (25) produces a polynomial! 

For the purposes of this paper. the most important property of the Schur functions S{JJ} 

is that they provide a linear basis for the space of symmetric polynomials of homogeneous 
degree L~~I Pi . The Laughlin wavefunction (17) is just V 2m+1 and so, di\iding the expansion 
(23 ) through by the Vandermonde determinant V, one finds 

rl'Laug hlin = v2m 

V 
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= 	La {Jl}S{Jl} (26) 
{Jl } 

Thus to deternline the coefficients a {Jl} of the expansion of U,'Laughlin \; '"2m+ 1 in terms 

of the totally antisymmetric Slater wavefunctions w~r!ter' equivalently one may consider the 
expansion of v2m in terms of the totally symmetric Schur functions S{Jl}. From (23) and 
(26), the expansion coefficients are in 1-1 correspondence. This reduction of degree of the 
polynomial under consideration from Vlm+l to V 2m represents a significant computational 
simplification. 

Another convenient basis for the space of totally symmetric polyomials of homogeneous 
degree mlV(1V - 1) is the "power sum basis". The power sums sJl are defined for J.l = 1 ... 00 

as 
.'V 

( ... .,. ) -, ."JlS Jl ""l· .. ·, .... N = L- "'j 	 (27) 
i=l 

Any totally symmetric polynomial may be expressed as a sum of products of the s~ '5. and so 
a basis for the totally symmetric polynomials of homogeneous degree mlV(.V - 1) is provided 
by the products 

(28) 

\vhere Lf::l Ili = mlV(.V - 1). 
The linear transformation between the Schur function basis and the power sum basis is 

given by Frobenius' reciprocity formula [19,20]: 

~ {A}
s{Jl} = L- X {Jl}Sp} 	 (29) 

{.X} 

where the X{~~} are characters of the representation {A} of the symmetric group of 2:~1 Pi 

symbols. For the application in this paper, L~~l J.li = mlV(lV - 1), and so the relevant 
symmetric group is SmN(N-l). 

It is important to note that the characters X{~~} are integers. Furthermore. these char­
acters satisfy the following completeness relations [19, 20] which permit the inversion of 
Frobenius' formula (29). If the partition {J.t} of m1V(1V - 1) is labelled with the Frobenius 
notation (/1, /2, /3, ... ) where 

/1 + 2/2 + 3/3 + . . . = m ~V (.V - 1) 	 (30) 

then the characters \:' {1~} == X{t,~ satisfy 

1 , {A} {A'} 

(m~Y(JV - 1))! f;) 9(1) X (I) X (I) = 


, P} {A} ( m:V (:V - 1))! r 
(31 )L- X (I) X (I') 	 °(/),(1') 

9(1){A} 
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where 
(mJVUV - I))! 

(32)
g(l) == 1'12 /1 ••• il !/2! ... 

Formula for the Expansion Coefficients a{Ji} 

From Frobenius' formula (29), it is clear that if one can expand v2m in the power sum basis, 
it is then straightforward to convert t his exansion to the Schur function basis. This is a 
useful observation because it is relatively easy to express v2m in the power sum basis since 
the "discriminant" V 2 may be expanded as 

1 1 1 
Zl 22 zN 

\/2 == 

_.\' -1 ... N-l Z.v-l 
""1 .'V";'2 

"V SI 52 

51 S2 S3 

S2 S3 54== 

SN-l SN S:V+l 

1 ZI ZI 
N-I 

_."11-11 22 ""2 

_N-l1 ZN ';"N 

5,v-1 

Sl'",' 

s/,'+1 

S2(N-l) 

== L (-l)P Sp(1)-ISp(2)Sp(3)+1 ., . Sp(N)+N-2 (33) 
perm~. p 

where in the last sum. the permutations p are permutations on l'l letters. and So == .V. 
Thus, equation (33) provides a simple decomposition of V 2 in the power sum basis 

v2 = L (-1)P S {JJp} (34) 
perm~, p 

where for each permutation p, {Jip} is the (unordered) partition 

{Jip} == {p(l) - 1,p(2),p(3) + 1, ... .p(.N) + lV - 2} (35) 

of 1V (1V - 1). v 2m may similarly be expanded in terms of the power sum basis, and then in 
the Schur function basis by using Frobenius' formula (29). For definiteness and simplicity, 
we shall henceforth concentrate on the m == 1 case, which corresponds to the Laughlin 
wavefunction for fractional filling ~. 

In the definition (27) of the power sums, it is assumed that Ji ~ 1, so that the partitions 
in (28) are partitions into nonzero parts. Before applying Frobenius' formula to (34) it is 
necessary to separate the Laplace expansion (33) into permutations for which 50 is a factor 
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(i .e those p for which p( 1) == 1) and those for which So is not a factor. The former correspond 
to partitions of ~V (.Y - 1) into exactly .V - 1 nonzero parts, while the latter correspond to 
partitions of .V(i.V - 1) into exactly .V nonzero parts. (This is a drastic reduction compared 
to all possible partitions of JV(~V -1)). Then, by Frobenius' formula, one finds the following 
expression for the expansion coefficients a {Jl}: 

a{Jl} == iV L (-l)Px{rl,.} + L (-l)Px {rl,.} (36) 
P • .t. P(l)= 1 p $.t. p(l)#l 

It is important to stress a computational issue at this point. This fonnula allows one to com­
pute the coefficient of any Schur function in the expansion of V 2 without ever having to make 
any reference to the polynomial V2 itself. This is an enormous computational simplification, 
as the algebraic manipulation of large polynomials rapidly becomes prohibitively difficult. 
The characters '\ {{l} may be computed efficiently using (for example) the combinatorial 
package ~~ combinaf' on \faple V [21]. 

In the next section the results for IV == 2.3.4,5,6 are presented. It is worth noting that 
although the expression (36) for Q{Jl} is a (large) sum of integers, the final answers for the 
a{JJ} are particularly simple integers. with many interesting symmetry properties not evident 
from the expansion (36). 

/ 

Examples 

Before proceeding to the statement and discussion of some computer-generated results, it is 
instructive to consider in detail some low .V examples to see how the formula (36) works. 
For .V == 2, 

V2 = 1;1 :~ I 
2252 - SI 

- 2s{2} - S{l.l} (37) 

The character table for the symmetric group 52 is : 

Table 1: character table for symmetric group 52 
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Frobenius' formula (29) says 

5{2} = S{2} - S{l.l} 

5{l.l} = S{l.I} + S{2} 

(38) 

which one may easily check since the explicit J.V = 2 power sums and Schur functions are 

5{2} = zi + zi 
5{l.l} - (ZI + Z2)2 

S{2} ­ I;~ ~ II I;~ ~ I 

= ZI 

2 + Z1 z2 + Z2 
2 

S {l .l} - I;~ ~~ III ~~ ~ 
- Z l Z2 

(39) 

Inserting these expansions into (37) yields 

~ -2 = S{2} - 3S{l.1} (-to) 

which should be compared with the Slater expansion of V 3 in (20). 
For .V = 3, 

51 52 53 

52 53 54 

322 = -52 + 25 15 25 3 - 353 - 5 154 + 3525 4 


- -5{2.2.2} + 25p.2.1} - 35{3.3} - 5{4.1.1} + 35{4.2} (41 ) 


It is clear that this decomposition of \/2 into the power sum basis is labelled by partitions 
of ~V(_y - 1) = 6 into 2 or 3 parts. The character table for the symmetric group 56 is lOxIa, 
but in fact only a 5x5 subblock contributes, corresponding to the 5 partitions appearing in 
the expansion (41). 

T hen, from equation (36), 

a{JJ} = 3 (x{rl,2} - X {rJ,3}) + 2X{rJ.2.l} - X{rJ.2.2} - x{rl.i.l} (42) 

Then. using the character table for 56 in Table 2 one finds the expansion 

\/2 = S{4.2} - 3S{4.1.1} - 3S{3.3} + 6S{3,2 .1} - 15S{2.2,2} (43) 
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x{:2 } II { 2,2,2 } I { 3,2 y 1 } I {3, 3} I {4 1,l} I {4, 2} I 
{2,2,2 } -1-1 2 13 

-2 0{3.2.1 } 1 1 0 
-1 -1 

{-l .Ll} 
-3 2{3,3} 1 
-2 -1 1 0 0 

{-l ,2 } -13 0 0 1 

Table 2: partial character table for symmetric group S6 

which once again should be compared with the explicit expansion (22) of V 3 into Slater 
determinants. 

For 1V == "* one needs the characters of St2 [22]. T hen Equation (36) leads to an expansion 
of V 2 in ternlS of 16 different Schur functions: 

\ -2 = 	 S {6 A.2} - 3 S{5.5,2} - 3S{6.3,3} + 6S{5.4 ,3} 

-1 5 S {4.4 ,3} - 3S{6.4.1.1} + 9S{5,5,1.1 } + 6S{6.3.2.1} 

- 12S{5,4.2,1} - 9S{5.3.3, l} + 27S{ 4,4,3,1} - 15S{6,2,2,2} 

+27 S{ 5.3,2.2} - 6S{ 4.4,2,2} - 45S{4,3,3,2} + 105S{3,3,3.3} ( 44) 

For iV = 5 there are 59 Schur functions in V2 and for 1V == 6 there are 247. T he results 
for the lV == 5 expa nsion are presented in Table 3. The ;V == 6 expansion is tabulated in the 
.\ppendix. T hese expansions have been checked by explicit expansion of the polynonlial V 3 in 
terms of Slater determi nants , using ~vlathematica (23] , a lthough that technique deals direct ly 
\vi t h t he polynomials themselves and so is slower. Notice that the coefficients are 'simple' 
integers, and there are clear symmetries and recursive patterns - these will be discussed in 
nlore detail in Section 6. 

Symmet ry Properties of Expansion Coefficients 

T he most striking symmetry property of the expansion coefficients is the following exact 
symmetry. For a given partition {/-L}, define the" reversed" partition {jL} by 

{jL } == {2 (~V - 1) - /-L S , 2 (iV - 1) - /-L N - 1 ~ ... , 2 (1\" - 1) - /-L 1 } ( 45) 

T hen the expansion coefficients of {/-L} and {ji} are equal: 

(46) 

13 



This resul t has direct physical significance because the integers J..li correspond to the angular 
lnomenta Ai == Pi + "V - i of single particle states and these states are strongly localized at 
radius A. In terms of the single particle st ate labels [A] in (15), the reversal operation is 

[~ ] == [3 (.V - 1) - A.v, 3( N - 1) - AN-I,,'" 3(lV - 1) - AI] (47) 

Thu , the relation (-16) relates the expansion coefficients of states peaked a t one point in 
the droplet with those for s t a tes peaked at other points. In particular, this may be used to 
rela e states localized near the edge of the droplet with those localized near the center. 

\Vhile this symmetry is clear from the examples presented in the previous section, it is 
not at all clear from the expansion coefficient formula (36). There is, however, an easy proofl 

of (46). 1 2( ZI, .... Zi\") is a homoge eous polynomial of degree N(N - 1) and it sa t isfies 

\o'2 (ZI .... , z:v ) == (IT z;(N-l) ) V2(~, ... ,~) 
i=~ ZI "N 

( 48) 

But. as can be seen from t he defi ni tion (25), 

(49) 

Hence, 

V"2
(ZI , ' .. I ZN ) L a{jJ}S{~} (ZI~" . , z ;\' ) 

{jJ} 

- L a{~}S{jJ} (Z I1"" Z,I\' ) (50) 
{p } 

In addition to this exact symmetry of the Slater expansion coefficients, it is possible 
to deduce sim ple combinatorial formulas (for any N) for the coefficients of certain special 
Slater states. T hese are h ighly nontrivial results, and somewhat fortuitously correspond to 
physically im portant Slat er states in the lV ~ 00 limit (see Section (7)). 

The simplest such exa mple is the state 

{J1} = {2 ( ~V - 1), 2 (IV - 2L ... , 4, 2} (51 ) 

for which 
(52) 


lThanks to D. Jackson for suggesting t his approach 
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This corresponds to the Slater state 

I[A] > = I[3(lV - 1) I 3(N' - 2), ... , 6, 3, 0] > (53) 

in which every third single particle a ngular momentum state is filled. It is also the most 
uniformly d istributed (in the bulk ) of the Slater states (see Section 7). T he other extreme 
is the Slater state in which the angular m omentum levels are most closely bunched 

{J-L} = {N -l,N -l, ... ,N -I} (54) 

for which 
a{p } = (_1)[N/2] (2N - I)!! (55) 

where [.lV/2] means t he integer part of N /2. Furthermore, all the expansion coefficients a{Jl} 

lie between these ext remes (in magnitude) 

, for all {J--l}. (56) 

Each of these states (51) and (54) is invariant under the II reversal- operation defined above 
(45). However. another import ant state (which is not reversal invariant) is t hat fo r which 
one electron is in the 0 angular momentum state and the remai ning lV - 1 electrons are 
bunched together 

~-l 

for which 

(57) 


(58) 


The reversed part i t ion is 

{it} = {2(lV - 1), N - 2, ... I lV - 2}, (59) 

for which, by (46), the coefficient is also given by (58). 
Other closed formulas e>ust for the reversal-invariant states that begin with the" maxi­

mally bunched" state (54) and successively move the extreme inner and outer electrons in 
and ou t (respectively) by one s tep: 

= (_1)[N/2J+l (iV - 1)( 2:V - 3)1!a{2.V,2:\' -2.2:V -3, .....'1 +1,iV.. V - 2} 

a { } (_1)[·V/2J+l ;,V( iV - 1)(2iV - 5)!!2 1'1 +1.2/...· - 2.2N -3, .. .,N+ 1 ,1'1';.N-3 

(_I)[N/2]+1 (21'1 - 5)!! (60) a{3(.V -1),2N -2,2N -3, .. .,N +l,N,O} 

These all correspond to states highly localized in the region VN ~ IzI ~ J2(N - 1). 
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Similarly one may begin with the ma:-imally distributed state (51) and make local shifts 
of e ectrons between angu lar momen tum levels. The simplest such shifts just involve one 
pair of electrons in which one electron is raised by ODe angular momentum step and another 
is 10\ 'e red (remember that the total angular momentum must not change). If these two 
electrons were initially separated by 3 units of angular momentum, then after such a shift 
they wi ll be separated by just 1 uni t of angular m omentum. Consulting the results for 
the coefficients Q{p} we note the remarkable fact t hat such an operation always changes the 
expansion coefficient a{~} by a factor of -3. If the two electrons were initially separa ted by 
6 units (\\ ith anot her electron midway in between ) then the change in the coefficient a{j~} 
is + 6. In fact, in an outer sub-block of M uniform ly spaced electrons (spaced by 3 units 
of angular momentum, as in the state (51 )) , if the outermost and innermost electrons are 
lowered and raised (respectively) by one unit each~ then the only change in the expansion 
coefficient is mul tiplication by a factor 

(61 ) 

For example. the state \vith 

(62) 

has angular momentum labels 

[A] = [3.Y-4,3iV-6,31V-9, ... , 6 , 3 , 1] (63) 

and differs from the ma..xlmally distributed state by t he bringing together (by one unit each of 
angul ar moment u ) of the outermost and innermost electrons, and its expansion coefficient 
IS 

- (_1 )N- 13 2I\ ' -2a{~} - . (64) 

T here are also clear recursive properties of the expansion coefficients. For example, 
the J.V part icle states in which one particle is in the" innermost" 0 level are in one-to-one 
correspondence \\it h all the (N - 1) particle states. Further, by the reversal symmetry 
property (46), this also applies to t he N part icle states for which one particle is in the 
.. outermosf' 3(~Y - 1) level. This property is a simple consequence of the fact that one may 
expand the ;V particle Vandermonde determinant in powers of any given Zj, say Zl.as 

IV 

,<,,(Zl. =2.··· , z,v) = IT (Zi - Zj ) 
l~i<j 

IV 

= v'1V-1 (Z2' ... , ZN) II (Zl - Zj) (65) 
j=2 

Vv - 1 ( Z2, ..• , Z.IV ) 

3(z{V-1 - elZl N - 2 + e2 Z1N - _ ... + (-l)N-l eN_d 
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where eJ.J = eJJ (z21 .... z.v ) is the JJth element ary symm etric polynomial in the N -1 variables 
Z2! ...• Z,v. ( eJ.J is defined to be the sum of all products of 11 of the variables; e.g. e1 = 
Z2 + ... + =,\" I and ex -1 = Z2=3 ... Z.v ). From t he expansion (66) it is clear t hat the only way 
to obtain the term zt (N -l) (this corresponds to ~utting particle 1 in the outermost level) in 
~~ is by accompanying it by (V"'-1(Z2,"" ZN) ) , and so one is left with the decomposition 
problem for 1V - 1 particles. 

Silnilar reasoning leads to further, deep er, recursive patterns. Define #(1V) to be the 
number of Schur functions appearing in t he expansion of V~ (equivalently, the number of 
Slater determinants appearing in the expans ion of V~). Then, with a consistent ordering 
of the coefficients (see tables) one sees t hat the first # (N - 1) coefficients for IV particles 
coincide with a ll the coefficients for N - 1 particles. Further, the next #(iV - 2) coefficients 
of the IV part icle problem are given by -3 imes the #(lV - 2) coefficients of t he .N - 2 
particle problem; the next # (.V - 3) coeffici ents of the j\j particle problelTI are given by 6 
ti lnes the #(.V - 3) coefficients of the IV - 3 particle problem; the next # (;.V - 4) coeffic ients 
of the iV parti cle problem are given by -12 times the # (1'1 - -1) coefficients of t he IV - 4 
pa rt i le problem .etc. ' " For example, fo r t he 1V = 5 case. the first 16 +5+2 = 23 coefficients 
are determi ned by this recursive pattern from the .V == 2,3,4 results. \Vhen combined with 
the other symmetry properties mentioned thus far ~ a total of 35 of the 59 coeffi cients are 
determined from prior knowledge. 

Of course. ultimately one would like a si m ple combinatorial formula (of the fo rm of (60) 
fo r example ) for all the coefficients in the e. ' pansion for any ~V. ~o such formula is currently 
known, al t hough the results presented here suggest that such a simple formula may exist. 
Indeed , the reversal symmetry and recursive properties of the coefficients , toge ther with 
their simple nature suggest that such a formula ","ould be a product of ratios of factori als. 
However. any such formula would necessarily involve in general all the parameters {J.l} which 
specify the partition in question - the simp le closed fornlulas given above are for especially 
symmetric classes of partitions. 

In the absence of such a general form u la for the coefficients a{J.J} for arbitrary IV , one 
may still discuss the question of whether the Slater decomposition (23) is in some sense 
~' dominated" by certain spe<:ial states. This is not yet a well posed question, because the 
notion of which states dominate depends on which expectation value is being considered, 
and so this is no longer a property of t he Laughlin state itself. However, it is st ill possible 
to ident ify important representative Slater states from the decomposi t ion (23) and estimate 
their relat.ive weights exactly as lV -+ 00. Remember, of course , that in order to address 
such questions, it is ne<:essary to rei nt roduce the correct normalization factors (which were 
previously dropped for convenience) so that the expansion of the Laughlin state is in terms of 
normalized Slater states. rather than just in terms of the bare Slater determinants themselves. 
These issues will be discussed further in t h e next Section. 
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7 D ensity P oBIes 

In thOs Section , the expansion coefficients for ;,V == 2 , 3 ,4,5,6 are used to plot the expectation 
val ue of t he particle densi ty and the pair correla tion function in the ~ fi lled Laughlin state. 
Allowing for t he change in the labelling convent ion from [A] --+ {fl} as given by (15L the 
expectation value of t he density operator is 

(66) 


where the normalized single particle states are given by (13), J~ is a n overall normalization 
facto r, and the coefficients c{l-'} are related to the coefficients a{l-'} of (23) by the reintroduction 
of the Slater normali zation factors in (14) 

N 

c{l-'l = a{JJ} IT (Pi + .7\/ - i)! (67) 
i=l 

T he common facto rs of J !V!rr i....· have been absorbed into the overall normali zation which is 
fixed by demanding that the integral of the expectation value of the density operator is just 
the total part icle number 

Jd2 z < L lp(.: )IL >== .v (68) 

T his is achieved by taking 

(69) 


Since the size of the 1fi lled droplet increases wit h .V, in order to compare the density profile 

for different .V it is appropriate to rescale the length by a factor J3N (for the general 

Laughlin state of filli ng fraction 2';+1' this rescaling factor would be J(2m + 1)lV) 

r= -
1 

Iz\ (70)
.J3IV 

Then one can plot 
p(r) == rr < L\p(.J3.Vr)IL > (71) 

T his rescaling is chosen so that the edge of the droplet is at r == 1 for all N. The nor­
maliza tion is chosen such that for a perfectly uniform 1filled state p(r) would be a step 
func tion 

O:$r<l 
(72) 

r > 1 
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In Figure 1 is plot ted the exact expectation value of the density in the ~ fi lled Laughlin state 
for ~V = 2, 3,4, 5 ,6 particles. T hese plots show a c lear tendency towards the form (72). For 
t hese small values of ;V there is also evidence of the characteristic" boundary hump" studied 
by Datta and Ferrari [17] (see also Figure 3). 

The densi ty profiles (,1) are weighted sums of t he densi ty profiles of the individual Slater 
states which make up t he Laughlin state. 

p(r) =(L ~ 12) L IC{p}12p{JJ}(r) (73) 
{jJ} C{jJ} {p} 

where the density profile of the individual Slater s t a te {Il} is 

~ _ -3Nr 2 N (3Nr2) JJ i+ N -i 

P{JJ} ( r) = e L ( . + N _ .) , (74) 
i=l III . l . 

The relative weighting factors are just given by the squares of the expansion coefficients 
C{p}, with t he overall normalization fixed by (68) . ~ote that each density function p{JJ}(r) is 
bounded °::; p{jJ}(r) ::; 1 for all r. This m eans thaL given information about the expansion 
coeffi cients, one can ask which (i f any) Slater states dominate this weighted sum in the 
iV ---? 00 lin1it. 

Consider. fo r example~ the Slater density for the maximally distributed state, [.,\] == 
1[3(iV -1),3 (.V - 2), ... ,3,0] >, for which the {Il} partition is {J.L} = {2 ( .N~ -1),2(1V­
2), ... ,2, o} and for which the expansion coefficient is a{jJ} == 1. Then the weighted expansion 
coeffic ient in t he density sum is 

S-1 
2 

IC{2( .V-l),2( :V-2) .... ,2,O }1 == II (3k ). (75) 
k=O 

The densi ty profi le of this individual Slater sta.te is given by 

~ ,. (r) == e-3Nr2 '~1 (31Vr
2 

) 3k 
P{2( .\- I ) ..... 2.0} to (3k)! (76) 

This is plotted in Figure 2 for jV == 10,100,100, and one sees that in t he bulk of the 
droplet, this Slater state (by itself!) represents a unifonn density of fractional fill ing ~ with 
rema.rkable accuracy even for such low values of 1\/. (The analogous result is true for all 
fractional fillin gs 2~+1). The failure at r == 0 and r = 1 is analogous to the breakdown of 
the \VKB approximation near classical turning points (see [24. 25] for a discussion of the 
im portance of the large ~ and semiclassical li mits at the edge of quantum Hall samples). In 
applications to the quantum Hall effect one is a.ctually more interested in annular samples 
[9, 26] (rather than disc samples) and so r == 0 is replaced by an edge at some small nonzero 
radius. 
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This i however , just one term of Inany contributing to the La ughlin density expectat ion 1 

value. One should compa re it \vith the other terms in the expansion. T he states with 
the la rgest Q{p} expansion coeffi cien ts are the maximally bunched st a tes (54) wi th {J..t} = 
{.V - 1 \ .Y - 1 . . .. , .v - I}. for which la {JJ } I = (2;.V - I)!!. T hese states are high ly localized 
near central values of the radius. These states have Slater occupation num bers given by (54) 
and (15) 

HA] >== 1(2.N - 2, 21V - 3, ... , .V, IV - 1] > (77) 

and . relat ive to (75) t hei r weight ing in the expansion (73) is 

IC{JJ }12 ((2.!V - 1),,)2 ((2JV - 2)! (2.V - 3)' ... N!(.N - I)!) 
(78) 

n~~ol {3k) . n~=ol (3k)! 

For small .Y this increases as the numer tor donlinates. For IV = 12 the rat io is '" 2.106 , 

but aft er .\" = 12 the denomi nator begins to dominate and t he ratio decreases rapidly. For 
N = 20 the ra tio is f'.J 0 .2 , a nd by the t inle ~\" = 50 it- has d ropped dramatically to "'" 10- 134 

. 

The rela t ive magnitudes of the C{IJ} involves a competition between the Q{p } factors and the 

facto rial normalizat io n fac tors Jnt~l (J-Li + .Y - i)!. From the results in the previous section, 
the a { ~} factors tend to increase as the electrons becon1e more closely bunched together. 
But the fac toria fac tors tend to increase with the angular momentum levels being as high 
as possible . One might therefore expec that the states of the form (57) which have iV - 1 
electrons bunched together at h igh angu lar momentum and just one electron in the k = 0 
level to be a ominant s tate in the density expansion. From (57) and (58) its relative wieght 
IS 

!c{fJ} 12 (( 2.V - 3)!!)2 ((2.V - 1) !(2.V - 2)! . .. (}V + 2)! (.V + I )!) 
(79) 

rr~~-o (3k )! n;~(/ (3k )! 

T his ra t io also increases with small iV , but peaks at .Y = l .j at a value of I".J 2. 109 , and then 
decreases rapidly. For .V = 20 it is still '" 106 . but for ~V = 50 it is I".J 10- 109 . For low J.V 
these are the most dominan t states in the densi ty expans i on~ and from Figures 1 and 3, in 
which the den ity profiles are plotted for IV = 2,3,4.5,6, one sees t heir cont ribut ion to the 
characteristic " boundary hump" discussed previously in [17]. 

In fact , the fac torial fa(: tors in (67) eventually dominate in the N -t oc limi t , since there 
is an increasing number of factorials of numbers which are themselves increasing. T his grows 
much more quickly t han the a{p} factors, which are bounded in magnitude by (2IV - I)!!. 
This tends to favor the evenly distributed states. Indeed. the dominant states are those 
which are'" close to" the maxi m a lly distributed state (51 ). By" close to" is n1eant states 
which are related to (51) by a shift of just two electrons . Shifts of n10re than two electrons 
tend to be suppressed by the factorial factors in the ~V -t ex) liluit. Of these states, the 
ones with the largest weighting coefficients c{p} are those states (62) in which the innermost 
electron is raised from the 0 level to the k = 0 level and the outern1ost electron is lowered 
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from the k = 3(.Y - 1) level to the k = 31'1 - 4 level. For these states, 

IC{J.I}12 22(N-2) (3N - 4)!(3jV - 6) . ... 3!1! 

nk~(/ (3k )! 9 . (3N - 3)!(3JV - 6)! ... 3!O! 
22(N-2) 

3- -- (80)
J.V -1 

T his ratio tends to infinity as J.V -+ 00. The density profile of this dominant class of states 
is given, for all N, by 

N-2 (3Nr2)3k (3 Nr2)3N-4)
~ -3Nr2 2 • (81)Pdom(r) = e ( 31Vr +?; (3k)! + (31V _ 4)! 

T hese density profiles a re p lotted in Figure 4 for IV = 10~ 100, 1000. T hese plots show that in 
t he bulk of the droplet the unifornl density of the! filled Laughlin state is well app roximated 
by the densit_" profile of t h is individual Slater state. Also, apart from the behavior near T = 0 
t hese plots a re indist inguis hable from those of the maximally dist ribu ted st ate (51 ) in Figure 
2. 

The resu lt for t he expansion coefficients found for LV = 2, 3. 4 ~ 5, 6 may also be used 
to plot the pair correlation function g(Zl' Z2). Conventionally [27, 9, 28], one cons iders the 
radi al pa ir correlation 

g( lzl) _ g(lzl, 0) 
< Llp(lzl)p(O)IL > 

(82) 
< Llp(l zDIL >< Llp(O)IL > 

near the center of the disc-l ike sample, to minimize edge effects. Since the densi ty operator 

(7) at the center has the simple form p(O) = atao, it is easy to see that g(lzl) is given in 
terms of the expansion coefficients C{jJ} and the single particle states (13) by 

'I zl) = L:{jJ} s.t. IJN,eO ic{lJ} 12 L:~121¢1J.+N-i( l zDI2 
(83) 

9\ (L:{jJ} !c{jJ}1 21¢jJi+N-i(lZI) 12) (L:{jJ} 5.t. jJ.v#O IC{IJ }1 2) 

In order to compare with previous computations using the first quantized approach [27, 
28, 29J. this has been plotted in Figure 5 for the IV = 6 case in terms of the variable x = ~Izl 

(i.e. in units of the magnetic length, rather than the scaling (70) used previously for the 
density plots ). T he exact result from Equation (83 ) and the coefficients (67) computed here 
for the ..N = 6 ~ filled La ughlin state agrees (as it must) with the exact result of ~1acDonald 
and ~lurray [29]. which as t hey point out is very close to the /"'1 -t 00 ~1onte Car lo result 
(30]. In F igure 5. I have also plotted the pair correla tion function computed from (83) in the 
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8 

~Y ~ Xl limit by just retaining a single dominant Slater state in each of the SUlns appearing 
in the expression (83), This leads to 

)3J ( 1 )3N-4
2/ )4 ,", _V-2 ( r-

'J /2 r /2
( I 2 + L-j=2 (3j )! -+: (3,V-4)! 

(84) gapprox (x) == . 2 / 2 + ,", ~r -2 (r'2 / 2)3J + (x2 / 2)3 N -4 
X L-J =l (3j)! (3N - 4 )! 

This fu nction (84) at iV == 6 is also virtually indistinguishable from its .ioN --t 00 limit. 
From the Figure 5 one sees t ha t this truncated pair correlation function has t.he correct 
tendency, but slightly overestimates g(x) at distances less than I"V 3 m agnetic lengths. This 
may be understood since the use of expression (82) for t he pair correlation function assumes 
unifonnity near t he origin x = 0, which is not true for the individual N --t 00 'dominant' 
Slater states (see Figures 2.4 ). 

Conclusions 

To conclude. the re-interpretation of t he expansion of the Laughlin wavefunctions in Slater 
wavefunct ions as the expansion of v2m in terms of Schur fu nctions leads to an expression 
for the coefficie nts of t his expansion in terms of the characters of the symmetric group 
S mS(.\'-l), Thi may be used to peform the Slater decomposition of the Laughlin states 
without explicitly expanding the polynomial V2m+ 1, Some low dimensional examples are 
presented here (as is seen from the Appendix, even the tabulation of results for higher .V 
becomes difficult) and from t hese it has been possible to glean some important syrnmetry 
propert ies of the expansion coeffi cients. In many cases this means a si m ple con1binatorial 
forn1ul a for the expansion coefficient. \ Vhile a simple product formula has not been found 
fo r all states for all ;.Y, it is st ill possible t o show that for the expectation value of the density 
operator there is a single dom in ant Slater state which has the correct uniform bulk densi ty 
and fill ing fract ion, It is natural and consistent to identify this with the leading term in the 
la rge ~y expansion of the density, which is intricately linked with the semiclassical limit of 
the two dimensional electron gas [25]. 

However. the question of t he 'domi nance' of the Slater expansion of the Laughlin state is 
specific to the operator in question. Thus, the dominant state for the expectation value of the 
density operator is in no way necessari ly dominant when considering the expectation values 
of other operators~ such as t he pair correlation operator or the energy operator. Indeed, the 
state (62) resembles the superlattice state~ considered originally by Tao and Thouless [31]' 
which \"'as unable to explain a ll features of t he fractional quantum Hall effect. The question 
of dominance for the density is simplified by the fact that the individual density profiles p 
are bounded between 0 and 1. It \vould be important to understand this issue for other 
operators, especially the energy operator. 
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It would also be interesting to ex plore the relationship with t he approach of MacDonald 
a nd . Iitra [15] which concent ra tes on the one particle density m atrix. They cOlnpute the 
angula r di stribut ion fu nction < nm > which is related to the expansion coefficients cp.} 
discussed here by < n m >= L [,XJm (cI,X] )2, where t he sum L[,XJm is the sum 0 'er a ll ['x] such 
t hat t he angular momentum index m· E [A]. 
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Note A dded 

After com plet ion of this work I became aware of a package called n SF" written fo r rvfaple V 
by J. Stembridge [32]. which includes procedures for manipulating and analyzing symmetric 
funct ions . One of its procedures converts a symmetric function expressed in t he p ower sum 
basi into an expansion in the Schur function basis. For low .V. usi ng the analysis of Section 
4. this gives a \. ry efficient way to compute the Slater decomposition of t he Laughlin t a t es. 
It would be interesting to test the efficiency of this package for larger 1'l. 
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{Il } {Il} {t-t}a{Jl } a{p} a{}.l} 

{ 8, 6, 4, 2, O} 1 { 6, 6, 6, 1, I} 45 { 8, 4, 4, 2, 2} -6 
{ 7,7,4,2, O} -3 { 8, 6, 3, 2, I} { 7, 5, 4, 2, 2} 6 -27 
{ 8, 5 , 5 ~ 2, O} -3 { 7, 7, 3, 2, I} -18 { 6, 6, 4, 2, 2} III 
{ 7, 6, 5, 2, O} 6 { 8, 5, 4, 2, I} -12 { 6, 5, 5, 2, 2} -18 
{ 6. 6 , 6,2, O} -1 5 { 7. 6 -t , 2, 1} 24 { 8, 4, 3, 3, 2} -45 
{ 8, 6, 3 3, O} { 7,5,5,2,1}-3 18 { 7, 5, 3, 3, 2} 81 
{ 7, 7,3 , 3, O} 9 { 6, 6, 5, 2, I} -54 { 6, 6, 3, 3, 2} -1 8 
{ 8.5,4.3, O} 6 {8,5,3,3.1} -9 { 7,4, 4, 3~ 2} 72 
{ 7.6,4,3, O} -12 { 7, 6, 3, 3, I} 18 { 6, 5, 4, 3, 2} -144 
{ 7, 5 5, 3, O} -9 { 8, 4, 4, 3, I} 27 { 5, 5, 5, 3, 2} 45 
{ 6, 6. 5, 3, O} 27 {7,5,4,3,1} -36 { 6, 4, 4, 4, 2} -90 
{ 8. 4.4 4, O} -15 { 6, 6, 4, 3, I} -27 { 5, 5, 4, 4, 2} 270 
{ 7, 5 , 4, 4, O} 27 { 6, 5, 5, 3, I} 81 { 8, 3, 3, 3, 3} 105 
{ 6, 6, 4, 4, O} -6 {7,4,4, 4,1} -36 { 7, 4, 3, 3, 3} -180 
{ 6. 5, 5, 4, O} -45 {6,5,4,4,1} 72 { 6, 5, 3, 3, 3} 45 
{ .5, 5..5,5, O} 105 { 5, 5. 5~ 4, I} -180 { 6, 4, 4, 3, 3} 270 
{ 8, 6 . 4,1,1} -3 { 8, 6, 2, 2, 2} -15 { 5, 5, 4, 3, 3} -75 
{ 7. 1.4,1, I} 9 { 7, 7, 2, 2, 2} 45 { 5, 4, 4, 4, 3} -420 
{ 8 , S.5,l,l} { 8, 5, 3, 2, 2} 9 27 { 4, 4, 4, 4, 4} 945 
{ 7, 6,5, 1. I} -18 { 7, 6, 3, 2, 2} -54 

Table 3: Schur function decon1position for N==5 
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Appendix: N = 6 Schur function d ecom position 

{Il} a{ JJ } {Il} a{JJ } {Il} a{JJ} 

{10, 8, 6, 4.2, O} 1 {9, 8, 5, 5, 3, O} 18 {7, 7,6,5,5, O} -75 
{9, 9, 6, 4. 2, O} -3 {10, 6, 6, 5, 3, O} 27 {7, 6, 6, 6, 5, O} -420 
{10, 7, 7,4.2, O} -3 {9, 7, 6, 5, 3, O} -36 {6, 6, 6, 6, 6, O} 945 
{g , 8, 7 4. 2, O} 6 {8, 8, 6, 5, 3, O} -27 {10, 8, 6, 4,1, I} -3 
{8, 8, 8. 4. 2. O} -15 {8, 7, 7,5 , 3, O} 81 {g, 9. 6, 4,1, I} 9 

{ lO , 8 , 5 ~ 5.2. O} -3 {9 6 ,6,6,3 , 0} -36 {10, 7, 7,4,1, I} 9 
{g . 9. 5. 5. 2. O} 9 {8 , 7,6,6,3, O} 72 {9. 8, 7, 4,1. I} -18 
{10, 7.6.5.2. O} 6 {7, 7,7,6,3, O} -180 {8, 8, 8, 4,1, I} 45 
{g , 8.6.5.2, O} -12 flO, 8, 4,4,4. O} -15 {10 , 8,5,5,1, I} 9 
{g, 7. 7. 5. 2. O} -9 {9, 9,4,4,4, O} 45 {9. 9, 5, 5.1, I} -27 
{8 . 8 , 7, 5. 2, O} 27 {10, 7,5,4,4. O} 27 {10. 7, 6, 5,1, I} -18 
{IO, 6, 6. 6. 2. O} -15 {9. 8, 5, 4,4. O} -54 {9. 8. 6,5,1. I} 36 
{g. 7.6 , 6.2, O} 27 {10, 6,6,4,4, O} -6 {g. 7, 7, 5,1. I} 27 
{8 , 8. 6, 6. 2. O} -6 {9, 7,6,4,4, O} -27 {8, 8.7,5.1. I} -81 
{8. 7, 7.6.2, O} -45 {8, 8,6,4,4, O} III {10. 6, 6,6 , 1, I} 45 
{I. 7, 7. i. 2. O} 105 {8, 7,7,4,4. O} -18 {g. 7, 6, 6. I, I } -81 

I 

{10. 8.6.3.3, O} -3 {10, 6, 5, 5, 4. O} -45 {8 , 8, 6, 6, 1. I } 18 
{g. 9 , 6. 3. 3, O} 9 {9, 7, 5, 5, 4, O} 81 {8, 7, 7, 6, 1, I } 135 
{10, 7, 7. 3,3, O} 9 {8, 8, 5 , 5,4, O} -18 {7, 7, 7, 7, 1, I } -315 
{g. 8. 7.3.3, O} -18 {9, 6,6,5,4, O} 72 {10, 8, 6,3,2, I} 6 
{8, 8,8.3.3 , O} 45 {8, 7,6 , 5,4. O} -144 {9, 9,6,3 , 2, I} -18 
{10. 8, 5. -1.3, O} 6 {7, 7,7,5,4, O} 45 {10, 7, 7, 3, 2, I} -18 
{g. 9. 5. 4. 3, O} -18 {8, 6,6 , 6,4 . O} -90 {9. 8, 7, 3, 2, I} 36 
f lO, 7.6. -1. 3, O} -12 {7, 7,6,6.4. O} 270 {8. 8, 8.3,2. I} -90 
{g. 8, 6,4.3, O} 24 {10. 5, 5, 5, 5, O} 105 {10, 8, 5 , 4, 2, I} -12 
{9. 7,7,4.3, O} 18 {9, 6, 5, 5,5, O} -180 {9. 9, 5,4,2, I} 36 
{8, 8, 7, 4. 3, O} -54 {8, 7,5,5,5. O} 45 {lO, 7, 6, 4,2, I} 24 
fl O. 7,5.5.3 , O} -9 {8 , 6, 6, 5, 5, O} 270 {g, 8, 6,4,2, I} -48 
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Appendix : N = 6 Schur funct ion decom position (cont in ued) 

Vi} .a{p} {Il} a {p} {J-L} aV,,} 
{9, 7,7, 4, 2, I} -36 {9, 6! 6, 5, 3, I} -81 {8, 8, 8, 2, 2, 2} 225 
{8, 8,7,4,2, I} 108 {B, 7~ 6, 5,3, 1} 162 {la, 8,5,3,2, 2} 27 
{la, 7, 5, 5 2 I} 18 {7, 7, 7, 5, 3, I} 162 {9, 9, 5, 3, 2, 2} -81 
{9, 8, 5 5. 2 .1 } -36 {8, 6, 6~ 6, 3, I} 162 {la, 7,6,3,2, 2} -54 

{la, 6, 6, 5~ 2, I} -54 {7, 7,6,6,3, I} -486 {9, 8,6,3,2, 2} lOB 
{9, 7, 6, 5~ 2. I} 72 {10. 7.4,4,4, I} -36 {9, 7, 7~ 3, 2. 2} 81 
{8 , 8,6, 5. 2. I} 54 {9, B. ~. 4, 4, I } 72 {8 , 8,7.3,2. 2} - 2~3 

{8, 7, 7, 5 , 2, I} -1 62 {IO . 6. 5.4,4, I} 72 {la, 8, -L 4, 2. 2} -6 
{9, 6, 6 6 , 2 . 1} 72 {9, 7.5. -L 4, I} -81 {9, 9, 4. 4, 2, 2} 1B 
{8, 7, 6, 6. 2, I} -144 {8, 8. 5,4,4, I} -117 {la, 7, 5, 4. 2, 2} -27 
{7, 7,7,6,2. I} 360 {9. 6, 6, 4 , 4, I} -117 {9, 8, 5, 4, 2, 2} 54 

{10 . 8 5, 3, 3, I} -9 {8~ 7.6,4,4, I} 234 {la, 6 , 6, 4. 2, 2} 111 
{9, 9, 5, 3, 3, I} 27 {7~ 7, 7, 4,4, I} -81 {9, 7. 6,4 , 2, 2} -162 
{la, 7, 6,3,3, I } 18 {10. 5. 5 , 5, 4, I} -180 {8, 8, 6, 4, 2, 2} -69 
{9. 8, 6, 3, 3. 1} -36 {9. 6. 5, 5.4, I} 216 {8, 7, 7, 4,2, 2} 333 
{9. 7, 7, 3.3 . I} -27 {8. 7. 5. 5. 4. I} 108 {la, 6 ~ 5, 5, 2, 2} -18 
{8, 8, 7, 3, 3, I} 81 {S. 6. 6. 5.4, I} -324 {9, 7, 5,5,2, 2} 81 

{1 0, 8, 4, 4, 3, I} 27 {T. 7,6.5,4, I} -288 {8, 8. 5, 5, 2. 2} -153 
{9. 9, 4, 4 , 3, I} -81 {7, 6. 6 , 6, 4, I} 720 {9, 6,6,5,2. 2} -117 
{la, 7, 5,~, 3, I} -36 {9. 5. 5, 5,5, I} 225 {8, 7, 6, 5,2, 2} 234 
{g. 8, 5, 4 , 3, I} 72 {8, 6,5,5,5, I} -405 {7, 7, 7,5,2 , 2} -711 

{IO. 6, 6,4,3, I} -27 {7, 7, 5, 5.5, I} 90 {8, 6, 6, 6, 2. 2} -36 
{9, 7, 6, 4, 3, I} 99 {7, 6. 6, 5, 5, I} 675 {7, 7, 6, 6, 2, 2} 108 
{8, 8, 6 , 4, 3, I} -162 {6, 6, 6, 6, 5, I} -1575 {la, 8, 4, 3, 3, 2} -45 
{8 , 7, 7, 4 3, I} -81 {10. 8. 6.2 , 2. 2} -15 {9, 9, 4, 3, 3, 2} 135 
{la, 6,5,5,3, I} 81 {9. 9. 6. 2, 2, 2} 45 {la, 7. 5.3,3, 2} 81 
{9, 7, 5, 5,3, I} -162 {lO. 7. 7,2,2. 2} 45 {9 , 8. 5,3.3 , 2} -162 
{8 ,8 , 5 , 5,3,1} 81 {9. 8. 7, 2, 2, 2} -90 {la, 6, 6 , 3, 3, 2} -18 
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Appendix: N = 6 Schu r function d ecompositio n (cont inued) 

{Il} a{pl {Ill a{p} {Ill a{p} 

{9, 7, 6, 3, 3, 2} -81 {7, 6, 6, 5, 4, 2} -1215 {10, 5, 4, 4, 4, 3} -420 
{8, 8, 6, 3, 3 ~ 2} 333 {6, 6, 6, 6, 4, 2} 405 {9, 6, 4, 4, 4, 3} 720 
{8, 7, 7, 3, 3, 2} -54 {8, 5, 5, 5, 5, 2} 450 {8, 7, 4, 4, 4, 3} -180 
{10, 7.4,4,3. 2} 72 {7, 6,5,5,5, 2} -900 {9, 5, 5, 4, 4, 3} 675 
{9, 8. -1, 4 , 3. 2} -144 {6 6 . 6 , 5,5,2} 2250 {8, 6, 5,4,4, 3} -1215 

{10, 6, 5. 4, 3, 2} -1 44 {10, 8, 3, 3, 3. 3} 105 {7 , 7,5,4,4, 3} 270 
{9, 7. 5, 4, 3. 2} 162 {9, 9, 3, 3, 3 , 3} -3 5 {7, 6. 6, 4, 4, 3} 345 
{8 , 8. 5, 4, 3. 2} 234 {lO , 7, 4, 3,3, 3} -180 {8, 5, 5. 5, 4, 3} -900 
{9, 6. 6, 4, 3. 2} 234 {9. 8,4,3,3 , 3} 360 {7, 6. 5, 5. 4, 3} 1800 
{8, 7.6,4,3. 2} -468 {10, 6~ 5, 3, 3, 3} 45 {6, 6, 6, 5,4, 3} -720 
{7. 7. 7, 4, 3. 2} 162 {9, 7, 5,3 , 3, 3} 162 {7, 5, 5, 5, 5, 3} 1050 

{l O, 5. 5. 5. 3. 2} 45 {8, 8, 5, 3, 3, 3} -711 {6, 6. 5 , 5,5. 3} -3150 
{9, 6, 5, 5. 3. 2} 108 {9, 6, 6. 3. 3, 3} -81 {10. 4, 4, 4, 4, 4} 945 
{8, 7. 5, 5. 3. 2} -351 {8, 7, 6, 3, 3, 3} 162 {9, 5. 4, 4, 4. 4} -1575 
{8 , 6. 6, 5, 3. 2} -162 {7, 7, 7.3.3. 3} -90 {8, 6. 4, 4, 4, 4} 405 
C" - 6 - 3 .J}{ , I, ,,J, .... 80 1 {10, 6. 4,4,3, 3} 270 {7, 7,4,4.4, 4} 45 
{7, 6, 6,6,3. 2} -180 {9, 7, 4, 4, 3, 3} -486 {8, 5, 5, 4. 4, 4} 2250 

i {10 , 6, 4, 4, 4, 2} -90 {8, 8, 4, 4, 3, 3} 108 {7, 6, 5, 4. 4, 4} -720 
{9, 7.4,4,4, 2} 162 {10, 5, 5,4,3, 3} -75 {6, 6, 6, ·L 4, 4} 225 
{8, 8, 4, 4,4. 2} -36 {9, 6, 5, 4, 3, 3} -288 {7, 5, 5, 5, 4, 4} -3150 

{10, 5, 5.4, -1. 2} 270 {8, 7, 5,4,3, 3} 801 {6, 6,5,5,4, 4} 945 
{9, 6, 5. 4. 4. 2} -324 {8, 6, 6, 4, 3, 3} -108 {6, 5, 5, 5, 5, 4} 4725 
{8, 7,5,4.4 , 2} -162 {7, 7, 6,4,3, 3} -201 {5, 5, 5, 5, 5, 5} -10395 
{8, 6, 6, 4, 4, 2} 666 {9, 5, 5, 5, 3, 3} 90 
{7, 7,6,4,4, 2} -108 {8, 6,5,5,3, 3} 324 
{9, 5, 5, 5,4. 2} -405 {7, 7, 5,5,3, 3} -1422 
{8, 6, 5, 5, 4, 2} 567 {7, 6.6,5 , 3, 3} 270 
{7, 7.5. 5, 4, 2} 324 {6, 6, 6, 6 , 3, 3} 45 
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Figure 1: The exact density profiles p( r), scaled as in (71) so that the sample edge is at 
r = 1 for al l LV , of the ~ filled Laughlin state for N =2,3,4,5,6, together with the perfectly 
uniform profile. 
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Figure 2: The density profiles of the maximally distributed states (51) for ]V = 10,100) 1000 

electrons. The plateau is exactly at density ~. 
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Figure 3: The density profiles of t he states (57), showing their conribution to the 'boundary 
hump ' for the ~V = 2,3,4, .), 6 elect ron cases. 
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Figure 4: The density profiles of the dominant states (62) for .V = 10, 100,1 000 electrons. 
As in Figure 2, the plateau is exactly at densi t~! ~. 
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Figure 5: The pair correlat ion fu nction for the ~ filled ~V = 6 Laughlin state. as computed in 
equation (83). together with the approximate correlat ion func tion (8o! ) obtained by retaining 
a dominant Slater state in (83). 
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