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Abstract. We describe the concept of a high-luminosity asymmetric <t> factory and 
show how high-intensity , strangeness-tagged KOIRo particles can be obtained for CPT 
tests, We also describe the concept of an asymmetric <t> factory using linac storage 
rings, Finally, we describe the study of a powerfullinac storage-ring collider that could 
give an asymmetric-<t>-factory luminosity of 1034 cm-2 s-I, making for the ultimate CPT 
tests. We describe the concept of a high-luminosity asymmetric <t> factory and show how 
high-intensity, strangeness-tagged KOIKo particles can be obtained for CPT tests. We 
also describe the concept of an asymmetric <t> factory using linac storage rings. Finally, 
we describe the study of a powerful linac storage-ring collider that could give an 
asymmetric-<t>-factory luminosity of 1034 cm-2 s-I, making for the ultimate CPT tests. 

INTRODUCTION 

The final frontier of particle physics may occur at the Planck scale (- 1019 GeV). 
In as much as there is no known method to produce such energies, two tests have 
been proposed to study this region: 

1. 	 If proton decay is observed, and if it proceeds through the exchange of an X 
particle of mass of - 1016 GeV, there could be interference effects due to the 
Planck mass exchange. 

2. 	CPT could be violated at the Planck scale if locality of the fields is broken (1). 

Both of these types of measurements are extremely hard to do. We discuss here the 
search for CPT violation using a special type of ¢ factory called an "asymmetric ¢ 
factory" (2,3). 

In Fig. 1, we trace the road to ¢ factories (this is from work we did in the late 
1980s) (1). Note that it has taken nearly 30 years to actually build a ¢ factory 
(Da¢NE), which should operate in 1997. Unfortunately, the UCLA symmetric ¢ 
factory (which used an entirely different approach) was not approved by the US 
Department of Energy in 1991. 
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FIGURE 1. Road to ¢ factories and CPT tests. 
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The test for CPT violation that uses KOIKobeams attempts to measure the CPT 
violating parameters shown in Fig. 2. Since there is no real theory of CPT violation, 
it is hard to "predict" the nature of a signal for this violation. However, we know that 
present limits are not all that far from the possible Planck-scale violation effects. 

SYMMETRIC VS ASYMMETRIC <P FACTORIES 

Many virtues of a symmetric <p factory were emphasized in a 1990 workshop at 
UCLA and published in the proceedings (1). The concept of an asymmetric <p 
factory arose in 1992 at another workshop at UCLA (2); there was also a workshog 
on symmetric <p factories in 1993 at UCLA. Figure 3 gives a comparison of the Ks 
decay length for the two (symmetric and asymmetric <p factories), showing the large 
difference. This is the key parameter to be able to tag KOIKo in a model-independent 
way. 

A second useful aspect of an asymmetric <p factory is the possibility of tagging 
the strangeness of the beam by the strong interaction of the KO or KO, e.g., 

-0 -+<p ---> KOIKo K +p--->n+N , 

<p ---> KOIKo 

If the KOIKo is tagged at t = t , the other particle in the <p decay must be the a 
antiparticle at that time, thus giving a particle/antiparticle-identified beam (3). A 
detailed comparison of tagged KOlKO beams leads to extremely precise CPT tests, 
some of which are listed in Table l. We emphasize that this tag does not rely on the 
use of the ~S = ~Q rule. 

A third feature of an asymmetric <p factory is the possible realization of very high 
luminosity in a linac storage-ring collider, which we will now discuss. 

Table 2 lists the various types of asymmetric <p factories with some pros and cons 
for the different schemes (2). In this paper, we only discuss the linac collider option 
with a high-energy e+-beam storage ring and a low-energy e--beam. 

The basic idea to enhance the luminosity of a linac ring collider is shown in Fig. 
4(A) and (B). A high-current, high-energy stored e+ beam interacts with a lower
current, lower-energy e- beam and, in the process, the e- beam is pinched into the e + 

beam, giving a high-density e+e- beam, with the resulting e- beam fully disrupted, as 
shown in Fig. 4(B). This process occurs at high frequency, giving rise to a possible 
high luminosity. Care must be taken that the low-current e- beam does not cause 
other types ofdamage {e.g., a displacement, etc.).to the e~ beam. We believe these 
and many other problen1s can be overcome if the high-energy e+ storage ring has a 
very fast damping time to erase such displacements and other problems. Other 
schemes for asymmetric <p factories have been proposed (4). A key issue is the 
dynamics of the beam- beam interaction, which has been studied elsewhere (5,6). 
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1KsO > {[I+(E+O)]IKo>+[I-(E+O)]IKo>} , 
J2(1 + IE + (12

) 

IK2> 1 {[1+(E-O)]IKO>-[I-(E-O)] IKO>}, 
J2(l - IE + (12

) 

(A o - A
O

) 


1l± = EO + E' , Eo = E - 0 - Ao ' AO= --- 

(AO + Ao) 


where 0 = CPT in mass matrix and A = CPT in direct am litude. 

FIGURE 2. K~/K~ formulation with CPT violating parameters indicated. 
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FIGURE 3. Ks decay length for (A) symmetric and (8) asymmetric ct> factories. 
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TABLE 1. Methods to Tag the KJ Strangeness with an Asymmetric ¢ Factory 

,A) 0If ¢» f\ ,K· (t.= t.)
I J I J ' 

For flavor 10 in a connector 
(do not need b.S = b.Q rule for test) 

b.S = b.Q rule assumed tj = tj 
(ii) 

KJ + p -/\ + n+ 	 Flavor 10 

n+ e - ve ' 
(iii) 	 b.S =b.Q rule assumed tj = tj; unique e- 10 using 

forward C counters and magnetic spectrometer 

(iv) 	¢ » ~~ Symmetric or asymmetric ¢ factory 
I 1 

n+n-	 (tj = tj); possible serious background from 

¢-KsKsY 

TABLE 2. Types of Asymmetric ¢ Factories 

Type 	 Advantages Disadvantages 

1. 	 Low-energy e+ storage ring 
or accumulator and 
high-energy e- linac 

2. 	 Low-energy e- linac and 
high-energy e+ storage ring 

3. 	 e- linac or e+ Jinac 

4. 	 e- storage ring or 
e+ storage ring 

(A) Rapid damping time 

e+ means reduced 

instabilities 


(8) Easy to produce low
energy e+ storage ring 

(A) Low-energy super

conducting linac 


(8) e- trapped in e+ bunch 

._Requires novel e+ 
source for e+ linac 

More difficult than a 

symmetric e+ e- collider 


(A) Need high rep rate 
e- linac 

(8) High-energy linac 
is expensive 

(A) Expensive e+ 
source 

(8) Damping time of 
e+ ring may allow 
buildup of 
instabilities 
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FIGURE 4. (A) Collision model where colliding bunches are divided into slices, with each 
slice populated with a random distribution of macroparticles containing the charged particles. 
The overall behavior of the particles in the bunches is approximated by the behavior of the 
macroparticles. 
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FIGURE 4. (8) Electron trajectories at the collision point (20 contour) viewed in the test 
frame of the positron bunch with (i) Gaussian and (ii) parabolic longitudinal distributions. 

6 



A POSSIBLE, POWERFUL 

LINAC STORAGE-RING ASYMMETRIC cp FACTORY 


The linac ring scheme that is being studied at UCLA is shown in Fig. 5. A 
powerful compact storage ring that uses 7-T superconducting bending magnets is 
used for the positron beam. Table 3 gives some parameters for the storage ring. 
Note that the damping times are 200- 400 ~s! An advanced linac such as Tesla, 
which is shown schematically in Fig. 5 (6), is used for the e- beam. Table 4 gives 
the required parameters of the linac and the overall parameters required to reach a 

2 lluminosity of 1034 cm- s- . 

TESTS OF QUANTUM MECHANICS 

The asymmetric cp factory concept provides for novel tests of quantum 
mechanics. One possibility, which was devised by P. Eberhard, is shown in Fig. 6 
(7). The rates in the various configurations should show clearll the effects of 
quantum interference, which has never been measured for a KO/K correlated pair 
(7). 
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FIGURE 5. UCLA Ultra-compact light source and asymmetric ¢ factory. 
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TABLE 3. Lattice Parameters for the Compact Storage Ring 

Maximum stored-beam energy (GeV) 

Projected injection-beam energy (GeV) 

Projected beam current (mA) 

Circumference (m) 

Bend radius (m) 


Dipole bend angle (deg) 

Integrated dipole induction* (T m) 

Dipole central induction (T) 

Dipole magnetic length along the bend (m) 

Critical energy (keV) 

Horizontal natural emittance* (pm) 

Vertical coupled emittance* (pm) 

Vertical operating emittance* (pm) 

Horizontal tune 


Vertical tune 


Horizontal chromaticity 

Vertical chromaticity 

Maximum horizontal beta function (m) 

Maximum vertical beta function (m) 

Maximum dispersion (m) 

Energy loss per turn* (MeV) 

RF voltage (MV) 


RF frequency (MHz) 

Energy spread (parts in 1000) 

Bunch length rms* (mm) 

Horizontal damping time* (ms) 

Vertical camping time* (ms) 

Energy damping time* (ms) 

Quantum lifetime (s) 


*At the maximum beam-energy design. 

1.5 
0.1 

-200 
26 

0.7257 
30 

2.6197 
6.894 

0.38 
10.3 
2.34 
1.17 

0.0234 

3.17 

2.57 
-2.22 
-5.24 
3.09 
6.66 
1.29 

0.617 

2.5 
499 
1.52 

30 
0.412 
0.422 
0.213 

2.2 x 108 
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Table 4. Asymmetric <t>-Factory Linac Calculations 

No. of electrons 

Electron avg repetition rate 

No. of positrons 

Positron period 

Positron avg repetition rate* 

Electron current 

Duty cycle of electrons 

Accelerating gradient in Tesla linac 

Electron beam energy (eV) 

Active length of linac 

Normalized emittance of electrons 

Physical electron emittance 

Positron energy (eV) 

Luminosity (cm-2 s-1) 

= 1010Ne 

fe =5 x 105 

= 1011NP 


Tp = 87 x 10-9 


. 	 -] 

fp =T p 


Ie = 8 x 1 0-4 (Ie = N e x 1.6 x 10-19 x fe) 


11 = 0.044 (11 = fe1fp' 4 x Tesla test facility) 

Eacc = 1.5 x 107 


Ee = 1.8 x 108 


Lace = 12 m (Lace = EelEacc) 


8 =2 x 10-6 

e 


8 =5.678 x 10-9 (8 = 8 /y,
e

where y = E 15.11 x 105)e

Ep = 1.5 x 109 

= 1034?£ 

*Same as electron avg repetition rate during linac pulse. 
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