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The Universal T-Matrix. 

C.Fronsdal A. Galindo 

ABSTRACT. The universal T-matrix of a quantum group is the Hopf algebra 

dual fonn, expressed in tenns of the generators of the algebra and the gen­

erators of its dual. In the physical applications it is the familiar T-matrix of 

integrable models, here calculated in the structure, without specialization to 

a representation of the algebra of physical variables, nor to a representation of 

the auxiliary algebra. This article deals with some rather surprising facts that 

were discovered by examination of the formula for the universal T-matrix for 

Uq(~12)' among them the existence of a new series of quantum defonnations 

of U(gln) and a generalization of the quanturn double. The new quantum 

groups have physical applications with essentially new features, principally 

arising from the fact that the dual Lie algebra (algebra of physical variables) 

is not solvable. 

I , 1 Introduction 

The principal object that defines an integrable classical field theory is its 
"L-matrix", the spatial component of a flat Lax connection. In Drinfeld's inter­
pretation it is a Lie bialgebra dual form. If (ld, i = 1, ... , n, is a basis for a Lie 
bialgebra C, and (xi) is the dual basis for the vector space dual C·, then it is 

(1) 

In practice, the Ii are matrices and the xi are dynamical variables, but nothing 
so far depends on the choice of a representation; duality, in this context, is a 
concept with a clear structural content. After quantization, which is understood 
as a Hopf algebra deformation of the universal enveloping algebra U (g) of C, the 
attention of the physicist shifts to the "T-matrix". Classically, the T-matrix is 
the monodromy associated with the Lax connection; after quantization one tries 
to preserve this interpretation. Unlike the situation in the classical theory, the 
structural meaning of the quantum T-matrix is not always clear; it is normally 
studied in a particular representation of C (the Woronowicz picture [1]) or in 
special representations of C· (the Kulish-Reshetikhin picture [2]). 
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2 Fronsdal and Galindo 

Section 2 examines the Hopf algebra dual of the quantum group Uq,q' (gI2). It 
is a deformation Uq ,q' (gI2·) of the enveloping algebra of the bialgebra dual gl(2)· 
of gl( 2), with the structure of Lie algebra preserved, the deformation affecting 
only the coproduct. Both Hopf algebras are thus finitely generated. The Hopf 
algebra dual form can be obtained explicitly in terms of the generators xi and h 
of g12· and of g12: 

(2) 

Here Ie = qq' and < is the usual twisted exponential. The result was obtained 
from the known structure of Uq,q,(gI2), both product and coproduct, using the 
relations that characterize and in fact determine the dual form , namely 

(3) 

Here x and x', resp. I and I', refer to two identical copies of Uq,q,(gI2·), resp. of 

Uq,q,(gI2). The second relation is the multiplicative property that is the essence of 
complete integrability. The coproducts are denoted xi 1-+ ~(xi) and Ii 1-+ ~(Id. 
The calculation yields the expression for T, as well as the structure of the dual. 
Since Eq.(2) is structural, independent of any reference to representations of gl2 
or of g12·, the term Universal T-matrix is justified. Eqs.(3) express Hopf algebra 
duality in a particularly succinct form. 

Section 3 rep rts the discovery of a new quantum deformation of U(gI3). 
To demonstrate t He practical utility of the result (2) we investigated the Hopf 
algebra that results from taking the xi (not, as is usual, the Ii) in a small, faithful 
representation. We are thus led to 

(4 ) 
T= 0 ; D' 

where the entries are expressed in terms of the Ii and satisfy the relations 

ab = q-1ba, ac = qca, [a, a] = 0, 
(5) 	 [a, d] = 0 = [a, d], ab = q-1ba, ac = qca, 

bd = q-1db , cd = qdc, [b, c] = '\(aci - dd). 

[The associated compatible coproduct is of course given by multiplication of 
matrices, this being an application of Eq.(3).] The respective roles of gl2 and 
g12· have thus been reversed as compared to the usual situation. The physical 
significance of this is that the physical variables a, b, c, d now have the structure 
of quantum gl(2), instead of that of its solvable dual. Applications in the form of 
ice models and new types of Toda field theories and nonlinear sigma models are 
envisaged . Because of (3), the matrix elements of (4) generate a Hopf algebra. 
However, since it is gl2 and not g12· that is a coboundary Lie algebra, this Hopf 
algebra is not of the coboundary type. Nevertheless, a Yang-Baxter matrix for the 
T-matrix (4) does exist. The exph..nation for this lies in the fact that Uq,q,(gI2·) 
is a sub-Hopf algebra of a new quantum deformation Uq ,q' (gI3) of the enveloping 
algebra of gl(3), and this one is of the coboundary type. We determined the 
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R-matrix using Manin's technique and from this the new structure of "esoteric 
quantum gl(3)". 

In Section 4 the generalization of the formula (2) for the universal T-matrix, 
to standard quantum gl(n), is obtained. 

In Section 5 we generalize the results of Section 3 and present the structure of 
the new quantum groups, "esoteric quantum gl(n)". The most important feature 
of these new quantum groups is that the dual algebras are not solvable; this has 
a profound effect on the physical applications. The Hopf algebra dual form of 
these quantum groups can also be calculated; a start is made here. The essential 
step is a factorization that generalizes the famililar quantum double. 

Section 6. Belavin and Drinfeld [3] have classified the coboundary Lie bialge­
bra structures associated with the simple Lie algebras. Analogous results for the 
quantum deformations are not yet available. To the simplest r-matrices for gl(n) 
correspond multi-parameter deformations Uq(gin); here q stands for a point in 
a multi-dimensional parameter space. The "roots of unity" points are of course 
exceptional, but that is not all. Investigating the rigidity of Uq(gln) under de­
formations within the category of coboundary Hopf algebras, one finds rigidity 
in general (including the standard, one-parameter case), but nontrivial deforma­
tions in special cases, among them the new quantizations of gl( n) obtained in 
Section 5. 

2 The Hopf 	Algebra Dual Form for Uq,q,(g12) 

With Woronowicz, we consider the matrix 

(6) 

with matrix elements that satisfy the relations 

ab = q' ba, ac = qca, 
(7) 	 bd = qdb, cd = q'dc, 

q'bc = qcb, ad - da = (q' - q-l )bc, 

involving two independent parameters q, q'. The algebra generated by a, b, c, d 
will be augmented by the addition of an inverse to a, to authorize the factorization 

(8) T 	= x+).( 1_ 0) (a ~) (1
xl 0 d 	 01 · • 

The algebra is finally completed by including logarithms of a and d, to allow the 
representation 

rO d- _r1 h, = e h'(9) 	 a=e, =e ,q=e,q 

Proposition. The relations (7) are equivalent to the following structure of Lie 
algebra 

[XO, x+] =h' x+, [xO, x-] =hx-, [x+, x-] =0,
(10) [xl,x+] = hx+, [x1,x-] = h'x-, [xO,xl] = O. 
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The compatible coproduct, defined by matrix multiplication, takes the form 

(11) 

There is a sense in which the Hopf algebra generated by a, b, c, d is dual to the 
2-parameter quantum group Uq,q,(gI2). A precise concept of duality can be for­
mulated as follows: 

Definition. Let (A, B ) be an algebra A with countable basis B. The topological 
dual (A * , B*) is the vector space of linear functions on A, containing all those 
vanishing on all but a finite subset of B, (with B* as the dual basis), and cer­
t ain formal series [4] of elements of B*. [When, as in the case that A is finitely 
generated, the choice of B is more or less natural, we speak of the dual A* of A 
without referring to B.] 

Proposition. The bialgebra dual of the deformed enveloping algebra Uq,q' (gI2) 
is the deformed enveloping algebra Uq,9'(gI2*) generated by (zi),i = -,0,1,+, 
with relations (10) and coproduct (11). 

Proof. In Uq,q,(gI2*) take the basis (z-)m(zO)n(zl t(z+)', m, n, r, S = 0, 1,2, ... , 
and let (Pmnr.) be the dual basis, so that the dual form is 

(12) 

Direct calculation using the fundamental relations (3), the relations (10) and the 
coproduct (11), immediately yields the resul t that the dual is generated by 

(13) P- = PlOOO , Po = POIOO , PI = POOIO , P+ = POOOI , 

with the relations and the coproduct that characterize Uq,q,(gI2), namely 

(Po, P±] = ±p± = (PI, P±], (Po, pd = 0,
(14) 

(p+,p_] = (q _ q,-I)-I[ehpoeh'Pl _ e-h'poe-hPl]. 

and 

d(po) =Po 0 1 + 1 0 Po, d(PI) = PI 0 1 + 1 0 PI , 


(15) 	 d(p+) = p_ 0 e-h'po-hpl + 10 P+, 


d(p_) = p_ 0 1 + ehpo+h'Pl 0 P_, 


Proposition. The dual form (12) can be expressed in terms of the generators, 
as follows 
(16) 

Here k = qq' and e: is the usual twisted exponential 

kn +lzn 	 - 1 
(17) ek := L [n!]t' [n!]t := [1]t[2]t ... [n]t, 'n]t = k _ 1 . 

n 
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To summarize. The bialgebra dual of Uq,q'(912), with structure relations (14) 
and coproduct (15), is the solvable quantum group Uq,q' (gI2) with structure (10) 
and coproduct (11). Both are thus finitely generated and the Hopf algebra dual 
form can be expressed, as in (16), in terms of the generators. 

3 Esoteric Quantum gi3 

All recent activity in the field of integrable models makes essential use of the 
Yang-Baxter matrix, in its original quantum mechanical context or in the classical 
form developed later [5] . The existence of the classical r-matrix was interpreted 
by Drinfeld [6] in terms of coboundary Lie bialgebras, and the construction of 
a related quantum R-matrix could then be viewed as arising from quantization, 
especially when quantization is interpreted as a deformation of classical struc­
tures [7]. A principal new result reported here is that Drinfeld's restriction to 
coboundary Lie bialgebras can be relaxed. 

Basic to all applications is the construction of a Lax pair, a matrix valued, 
flat connection. Two Lie algebras are involved. In this section, Gz will denote 
the Lie algebra of basic dynamical variables. This is not the infinite dimensional 
Poisson algebra on phase space, but some finite subalgebra of it that is the 
focus of interest and that forms the basis for quantization. In the context of 
integrable models, Gz is generated by the dynamical variables that appear as 
matrix elements of the Lax connection. Typically, Gz is the Heisenberg algebra 
(as in the nonlinear Schroedinger model) or the Euclidean group (as in the sine­
Gordon theory), and sometimes it is a simple Lie algebra (as in the case of spin 
systems). On the other hand, G, will denote the auxiliary matrix algebra where 
the Lax connection lives. There is no a priori known principle that commands 
a particular choice of G" except that a preference for simplicity usually leads to 
the lowest possible dimension; this explains why this algebra is often simple; in 
the familiar examples it is gl(2). 

A Lax pair does not automatically imply the existence of an r-matrix. Ac­
cording to the insight of Drinfeld [6], the r-matrix is intimately related to the fact 
that Gz and G, can be promoted to a pair of mutually dual Lie bialgebras, and 
more especially to the fact that G, (but not Gz !) is a coboundary Lie bialgebra. 
The connection is provided by the relation f = dr, where f is the G, one-form 
that determines the coproduct on G, (and the Lie product on Gz ), and dr is 
the differential of r. This then implies very strong conditions of compatibility 
between the two algebras. For example, if G, is sl(2), then the structure of Gz 

is fixed; it is not the Euclidean algebra E(2), though it is similar to it (one of 
the signs in the commutation relations is different) . Therefore, sl2 cannot be 
used as the auxiliary algebra to solve the sine-Gordon model, for example, for 
the dynamical algebra of this model is E(2) . The impasse is resolved by the 
device of the spectral parameter. Instead of sl(2), one introduces the infinite 
dimensional Lie algebra sl(2)[A], of matrices of power series in a parameter A, 
the spectral parameter. This infinite dimensional Lie algebra can be endowed 
with a coproduct that turns it into a coboundary Lie algebra. Also, and this is 
the point, its (infinite dimensional) dual contains E(2) as a quotient. Here are 
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the details. 
The r-matrix that was used to solve the sine-Gordon model is [8] 

(18) r = (13 ® 13coshu + 1+ ® L + L ® 1+) /sinhu, u =A - /J. 

in which (Ii) is the usual Weyl basis for s/2. The algebra s/2[A) has the basis 
(lni = An/i), i = 3, +, -, with n running over an infinite set of integers to be 
specified. The dual form is 

(19) 	 r =L 'Yni/ni, 
n,i 

and the Lie structure of 81(2)[A)- (expressed as a Poisson bracket) is determined 
by 

(20) 	 {r, r'} = [r, r + r'), r' = L 'Yni I~i' 
n,i 

where I~i is the basis for another copy of s/(2)[A). One finds that 

(21) {,n+,'Ym-} = r:;+m'Yn+m,3, {'Ym'±,'Yn ,3} =O"~+m'Yn+m,±, 

with the following non-zero coefficients: 

rk =1, 	1e=I-n, ... -3,-I,I,3, ... ,n-l, 
-1, Ie =m = 1,3, ... , 

(22) 	 +1, Ie =m = -1, -3, ... , 
-2, Ie:: 1,3,5, ... , m - 2,( 
+2, Ie - -1, -3, ... ,2 - m. 

This dual algebra contains E(2) as the quotient by the ideal generated by all 'Yni 

except ,0,3, 'Y 1,+, and ,-1,- . 

Thus it seems as if, to incorporate a physically relevant dynamical algebra ­
E(2), s/2' ... - into the scheme, the use of a spectral parameter is essential, so that 
one has 	to deal with infinite dimensional Lie algebras and infinite dimensional 
quantum groups. This does not annihilate the 	subject; but it is interesting to 
note that all recent work on quantum groups (this paper included) deals with 
finite dimensional Lie algebras, although this makes the connection to solvable 
models a little distant . It would certainly be interesting to see some more exam­
ples (besides the Liouville model and the conformal Toda models that generalize 
it [10]) 	 that do not require infinite dimensional Lie algebras but instead pro­
vide direct application of q-deformations of finite dimensional Lie bialgebras to 
integrable field theories. 

Our inspiration comes from the high degree of symmetry that exists in the 
dual relationship between G x and G,. 	The quantum group Uq,ql(gI2) is a deforma­
tion of the enveloping algebra U(gI2) and its bialgebra dual is also a deformation 
of an enveloping algebra. It is not too much to conjecture that, quite generally, 
the bialgebra dual of Uq(G,) is a deformation Uq(Gx ) of the enveloping algebra 
of G x . This has interesting implications. Namely, by stressing the symmetry be­
tween the two Lie bialgebras, rather 	than the relation of duality between them, 
one should be able to use 	them interchangeably; in spite of the fact that only 
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one of them is a coboundary. In the simplest interesting case, that of the quan­
tum group U9,9' (gI2), the bialgebra dual form is known explicitly in terms of 
q-exponentials, Eq.(2). The two Lie bialgebras appear quite symmetrically in 
this "universal T-matrix." 

Let us see what kinds of models can be built on this structure, without in­
troducing a spectral parameter. Only gl(2) is a coboundary Lie bialgebra, its 
dual is not; therefore, according to Drinfeld, it is gl(2) that is suitable for use as 
matrix algebra; and gl(2)* must play the role of the dynamical algebra. But this 
is quite contrary to the requirements of the applications, so it is natural to persist 
in trying to reverse the situation. Thus, we identify gl(2) with the dynamical 
algebra, and the solvable dual gl(2)* with the matrix algebra. 

If in the formula (2) one takes the l's in the 2-dimensional repr~ntation of 
gl(2) (which is what one normally does), then the matrix elements T/ of T satisfy 
the algebraic conditions (7) of Woronowicz's matrix pseudogroup. Instead, we 
shall now take the x's in a faithful representation of gl2 - , then the matrix elements 
ofT satisfy another set of algebraic relations. This new algebra of matrix elements 
is related to gl2 and to U9,9' (gI2) in the same way that the algebra of Woronowicz 
is related to gl(2)* and to U9,9,(gI2-). 

The dual Lie algebra gl(2)* is solvable; the faithful representations of smallest 
dimension are 3-dimensional. In one such representation the universal T-matrix 
(2) reduces to 

(23) 

with matrix elements 

a =eh [Pl-'1(Pl+Pl»), a =eh [Pl+'1(Pl+Pl)]
(24) 

b = hp_d, c = hap+, d = ehPl 

satisfying the relations 

ab = q-1ba, ac = qca, [a, a] = 0, [a, d] =0 = [a, d], 
(25) 	 ab = q-1ba, ac =qca, bd = q-1db, cd = qdc, 

[b, c] =A(aa - dd). 

The two parameters q and q' of U9,9' (gI2) have been replaced by eh(l-'1) and 
eh(l+'1), respectively. One regards '1 as a fixed parameter of the un deformed 
theory and h as a single deformation parameter. From now on this will uniformly 

hbe the significance of '1, hand q = e . 

The roles of the two underlying Lie algebras have thus been reversed. Recall 
that, in the applications, the matrices are used to construct the Lax connection, 
while the matrix elements are the dynamical variables. Our example is therefore 
appropriate for systems whose principal dynamical variables are those of gl2 or 
s/2 (after restriction) or £(2) (after contraction); for example, spin systems and 
the sine-Gordon model. 

In order for this to be useful one needs (according to present wisdom) an 
R-matrix. The existence of an 	R-matrix satisfying 

(26) 	 R(T (I) 1)(1 (I) T) = (1 (I) T)(T (I) I)R 
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would imply the "multiplication property", but the converse is not true. The 
multiplication property is built into (2) and is expressed by (3), but the existence 
of an R-matrix satisfying (26), (the "coboundary" property) must be checked 
directly. A matrix satisfying this condition will be constructed explicitly below, 
after some preparation. 

Once more according to current wisdom, this matrix should have to satisfy 
the Yang-Baxter or braid relation 

(27) 

That this relation turns out to be satisfied in the case at hand is a surprise. Recall 
that the infinitesimal form of this relation is the classical Yang-Baxter relation, 
and that this is related to the coboundary property of a Lie bialgebra, the matrix 
algebra G,. In our case that would be the solvable dual of gl(2). But this Lie 
bialgebra is not coboundary! Nevertheless, we verify that the R-matrix does 
have an expansion around unity, and that the firs t order term satisfies a modified 
classical Yang-Baxter relation. This surprising and, we believe important result 
does not contradict what was known previously. The point is that our r-matrix 
does not live in gl(2) ® gl(2), but in M3 ® M3. 

The wider implication of this result is that, to find a useful Lax pair for 
integrable models in which the dynamical algebra is £(2) or 81(2), it may be un­
necessary to introduce a spectral parameter and, with it, an infinite dimensional 
auxiliary algebra. A flat 81(2) connection does not exist, but one can be found 
t hat is valued in a larger, finite dimensional matrix algebra. 

We try to interpret the matrix (23), with matrix elements satisfying the re­
lations (25), in terms of automorphislIlB of a 3-dimensional quantum plane, an 
algebra with generators ("coordinates") (~i), i = 1,2, and quadratic relations [9]. 
That is, we require that the mapping given by 

(28) 

preserve the relations. It is easy to see that this condition is satisfied if the 
relations among the coordinates are 

(29) 

and that these are the only relations of the type ~i~i = qii~i ~i, i < j, that are 
so preserved. 

Now our strategy :>r constructing the R-matrix calls for a similar statement 
about an associated exterior algebra. Let (Oi), i = 1,2,3, be the generators of 
this exterior algebra; what is preserved is the unique structure 

0102 + q0201 =0, 0203 + q0302 = 0, 0103 + 03 01 = 0,
(30) 

0101 =0202 =0, 0202 
.,J... >"03 01 =O. 

There is nothing canonical about the relations (29-30), except for their number, 
32 

; but they are all preserved when T acts from the right. 
This property of the relations (29-30) has the important implication that 

there is a numerical 9 x 9 matrix U such that 

(31) oioiu~.' = 0 ~id(U_1_q2)~! = 0 
'] , , , ']' 
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which is unique if 1 + q2 =/; 0, namely 

[The subspaces are in correspondence with i + i =2,3, ... ,6.] 
The fact that U preserves both structures is equivalent to the statement that 

U commutes with (T ® T); hence U is, up to the addition of a scalar, the matrix 
that is conventionally denoted R: 

(33) 

This turns (31) into 

(34) 

so that e'ei is "symmetric" (the deformed permutation R is unity on ee). Also, 
this makes R ........ 1 when h ........ 0. This construction of R does not guarantee that it 
satisfies the Yang-Baxter relation; nevertheless it does. In other words, we have 
discovered a new coboundary bialgebra deformation of U(gI3)' It is related to a 
known but somewhat esoteric classical r-matrix [3]. 

The Dual Form for Standard Quantum gl(n) 

Following Wor<?nowicz [1] and Manin [9], we investigate a bialgebra A, generated 
by elements (zf), i, i = 1, ... , n. The relations are 

zi zf = qzf zi , i < Ie, 
k k _ k k' . 

~,zi - qZi z, , I < ),(35) 
[zf,zl] = 0, i<l,i>le, 
[zi,zl] = >.z{zL i < I, i < Ie, 

with>' := q - q-l, and the coproduct is defined by matrix multiplication, 

(36) 

We do not fix the quantum determinant. 
Define three "bialgebra quotients" of A. As algebras, (Aa), i = -,0, +, are 

quotients of A by ideals I, that are generated respectively by 

(37) 1_ : {zi, i < i}, 10 : {zi, i =/; i}, 1+ : {zi, i > i} ; 

the relations of A, are obtained from A by setting the generators of I, to zero. 
The reason why these algebraic quotients deserve to be called bialgebra quo­

tients is that a compatible coproduct is naturally induced on each from that of 
A; namely, the coproduct (36) has the property 

(38) ~(I) C I ® A + A ® I, 
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for 1= 1_,10 or 1+. For example, taking z1 in 1_, thus i < j, it is evident that 
.6.(z1) has one or the other factor in 1_. 

We introduce copies of Ai, with the correspondence 

(39) 

The formula 
(40) 

is an imbedding of A into A_ ~ A+, but to obtain a unique decomposition of 
A we need to take a factor Ao out of A_ and A+. The generators zi of A are 
assumed to be invertible. Now there are unique factorizations (Xi and Yi being 
invertible), 

xi =1,
(4 1) 

Y/ =1. 

The elements Xi generate a copy Ao- of A o, an Abelian bialgebra (commutative 
and co-commutative), and the Yi'S generate another copy, Ao+. The relations 
among the X f (the Y/) are of the same form as those that hold for the z1, with 
the obvious specializations. These quantities generate bialgebras A __ and A++, 
with the usual formula for the coproducts, but they are not bialgebra quotients 
of A_ and A+. 

We imbed Ao into Ao- ~ Ao+ by setting 

(42) Zj = XiYi 

and notice that the factorization (40) takes the form 

(43) 

Proposition. This factorization is unique, A = A_ ~Ao A+. 

Proof. One begins by noticing that zt =Zl and proceeds by induction. 

The relations satisfied by the Xf, the ZA: and the yt are easily determined 

from the formulas given; note in particular that xl and Xi commute with Y~ and 
YA: while for example, 

X i Xi··(44) i Zi =qZi i' Z > ), 

We analyze the algebraic structure of A__ . Among the generators X{, i < j, 
we distinguish the "simple generators" 

(45) Xi = Xi+l' i = 1, ... , N - 1. 

They satisfy the following relations, the commutation relations 

(46) 
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(47) 

and the "Serre relations" 

[Xi, [Xi, Xi+d l/q]q = 0,
(48) 

[Xi, Xi+dl/ q' Xi+dq = O. 

Recall that the generators Xi are supposed to be invertible; set q = eh and 
introduce new generators Pi by 
(49) xi=ePi . 

The relations, expressed in terms of the xf and the Pi, reduce in the limit h 1-+ 0 
to the commutation relations of a parabolic subgroup of gl(n). After replacing 
the Xi by the Pi we find a deformation of the enveloping algebra of this Lie 
algebra; by abuse of notation we still call this algebra A_. We now calculate its 
dual, and the bialgebra dual form. 

Consider the formal series 

(50) Tz .p =L IT (X{tii(Pm)a"'p[a][a]. 
i<i.m 

The first two groups of factors run over a basis for A_, the last over a basis for 
A_ •. The subscript [a] stands for the set of indices (aii, i < j) and [0'] for the 
set (am). What defines the bialgebra dual form is the set of relations 

(51) 

In the first relation, X and x' refer to two copies of A_; the coproduct is known 
and the equation determines the relations of A_ •. In the second relation, p and 
p' refer to two copies of A_·; the relations of A_ are known and the equation 
determines the coproduct of A_ •. 

The calculation is quite painless provided that the most convenient ordering 
of the X f is chosen: 

(52) XJ,XJ, ...,X~,X~, ...,X~,X~, ... 

We find that A_· is generated by 

(53) pI = p[a][O], a{ = 1, all others zero, 

and 
(54) Pm = p[O][a], am = 1, all others zero. 

The relations satisfied by the generators are 

[Pi, Pi] = 0, 


[Pi, P/] = (6ij - 6ik )P/, j > Ie,

(55) [P!, pi] = pi, i > j > I, 

[pt, 
. 

Pi]q 
q 

= 0, i > j i Ie > I. 



F'ronsdal and Galindo12 

The expression for Tr,p is simply 

Xipi
' 'eP""P"" Ie·- q-2(56) Tr,p = II eIi: ,.-, 

i<j,m 

the factors to be ordered as above. This completes the calculation of the universal 
T-matrix for A_. Similarly, for A+, set Yi =eUi and 

T - eU""P"" e"(57) r,p - IT Ii: 

yipi 

, 

to discover the relations of A+ • : 

[Pi, Pj] =0, 
Ii: Ii: .

[Pi, P
A 

j ] = (fJij - fJili:)P
A 

j , J < Ie, 
(58) [/,.' ,Pj] = pI, i < j < I, 

A. A

[Pi ,pn II 
II = 0, i < j f. Ie < I. 

For the complete algebra A we combine (56) and (57). 

Theorem. The bialgebra dual of the standard quantum deformation of U(gln) is 
generated by (Xl, Ti, Y/), Ti = Pi +O'i, and with relations and coproduct inherited 
from (35) and (36). The bialgebra dual form can be expressed in terms of the 
generators, 

- i i . ylpl
(59) T = eX, Pi eT,p, e " " Ie:= q2

r,p 1/" Ii: , ,n 
(The factors involving the xl have to be ordered as in (52) and those involving 
the Y/ as in Y?, y 13, .... ) 

5 Esoteric Quantum gl(2n - 1) 
We shall describe a generalization of esoteric quantum g13. The R-matrix takes 
the form 

(60) 

with 

Ro = qM~ 
I 

0 M!
J 

(61) 

i<n i<n 

and Rl equal to 

(62) L (JJ~Mr0Mir:+JJiMir:0Mr) + L (AijM! 0Mf,' +q2 A~jMf,'0M!). 
Ii:<i<n Ii:<i<j<n 
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The coefficients (J-Ji :f. 0), k < i < n determine the others, 

J-Ji =_q2(i-n)J-Ji, k < i < n, 

(63) 	 Aij = (1 - q2)q2(i-j)(J-JdJ-Jj), 

A~j = (1- q-2)(J-JdJ-Jj), i < j < n. 

Here i' := 2n - i and k is fixed, 0 < k < n - 2. 
The bialgebra A is the algebragen;ated by the matrix elements (T!), i, j = 

1, ... , 2n - 1 of a matrix T, with relations 

(64) 

and with the coproduct 
(65) 

The factorization used in the standard case does not work here. 
We shall describe three bialgebra quotients, denoted A_, A+ and Ao; they 

will play the same roles as their homologues in the standard case, but their 
construction and their properties will be different. In particular, Ao will not be 
Abelian. 

We need some descriptive terms for matrices. If m = (m1) is any matrix we 
denote by (i,j) the position of m{ in it. Two regions are important, 

(66) 	 D+ = {(i,j),k < i < j ~ n}, D_ = {(i,j),n ~ j < i < 2n - k}. 

Definition. A matrix (m{) is called almost lower triangular if m{ = 0 whenever 

i ~ j, which means that i < j and (i, j) rt D+; it is called almost upper triangular 
if rrr: = 0 whenever i ~ j, by which is meant that i > j and (i,j) rtD_. 

As matrices, A_ is a space of almost lower triangular matrices and A+ is a 
space of almost upper triangular matrices, while Ao consists of matrices that are 
almost upper triangular as well as almost lower triangular; they may be said to 
be almost diagonal: 

z 0 0 0 000 
0 z z z 000 

(67) 
0 
0 

0 
0 

z 
0 

z 
z 

000 
zOO 

0 0 0 z z z 0 
0 0 0 0 o 0 z 

In this illustration n = 4 and k = 1. As algebras, (Ai), i = -, +, 0, are quotients 
of A by ideals Ii that are generated respectively by 

(68) 1_: {z1 ,i « j}, 1+ : {z1, i ~ j}, 10 : {z1, i ~ j or i ~ j}. 

The algebras Ai are generated by the complimentary sets of generators of A. 
We now explain what motivated the above definitions. 
It is well known, and an immediate consequence of the Yang-Baxter relation, 

that the mapping 11'"_, from A to the space of matrices of dimension 2n - I, 
generated by 
(69) 	 T! ~ 1I'"_(T!) = Rf = {(Rf)!} = {Rf!} 
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is a representation of A as an algebra. As for the mapping 

(70) T/ ...... 7r+(T!) = s1 = {(S1)~} = {R!~}, 

it is (almost) an anti-homomorphism. Now it is seen by inspection of R that the 
kernels of 7r_ and 7r+ contain the ideals 1_ and 1+, respectively, that is, 

n.i O' 'Si O· .(71) fii = ,t ~ J, i = ,t» J. 

Furthermore, the representatives R~ and s: of the generators zt are invertible. 
T his shows that these generators can be taken to be invertible, as in the standard 
case , as generators of A_, of A+ or A. 

There is a unique decomposition of A, similar to the decomposition (43) of 
the standard case, into three factors, 

(72) 

The factors are defined in the same way as before, starting with the new ideals 
defined in (57) . This decomposition is useful for understanding the structure of 
esoteric quantum gl(2n - 1) and suitable for evaluating the associated universal 
T-matrix. Complete results will be published elsewhere. 

We list all the relations Eq.(55). When a < i, b < j, and a -:f; i', b -:f; j', 

It is easy to see that the relations are just enough to allow every element of the 
algebra to be expressed in the form of a standard ordered polynomial. 

Now we pass to the quotient Ao by setting 

(74) z1 = 0, unless Ie < i ~ j ~ n or n ~ j ~ i < 2n - Ie. 

Again one verifies that the standard ordered monomials span the algebra. The 
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relations of Ao are a little simpler; with a < i, h < j and a' i= i, h' i= j, 

The positive and negative simple roots are 

i+l i'-l(76) ei = zi ,and Ii = zi' ,Ie < i < n; 

the former commute with the latter except that 

[en-l,/n-d = q- 2 /ln_l{hn hn - hn-1hn+t), hi = zt,
(77) 

[ei, Ii] =Ai,i+l (hi+l hi'- 1 - hihi l ), i < n - 1. 

This algebra has a nontrivial center that includes {h a - hal, a = 1, ... , n - I}. 

Deformations of Standard 

Multiparameter U(gln) • . 


The structure of esoteric quantum gl(3) was found by accident, the generalization 
to gl{n) by making a general ansatz for the R-matrix and demanding that the 
quantum Yang-Baxter relation be satisfied. A more satisfactory approach is 
through the use of deformation theory [11]. Deformations around the classical 
theory gives nothing in the first order; the classical Yang-Baxter relation appears 
only in t!1e second order. Perturbations around multiparameter Uq{gln), q E RN, 
are more rewarding. We find rigidity at general position in parameter space 
and interesting, essential deformations on certain algebraic surfaces. We have 
determined the equivalence classes of essential deformations, and we have related 
these results to the classification, by Belavin and Drinfeld [3], of classical Yang­
Baxter matrices. We describe, briefly, a very interesting special case. 

Taking n =3, for simplicity, we note that standard muitiparameter quantum 
gl(3) [12] is characterized by three q-parameters and, in addition, the Hecke 
parameter; that is, the second eigenvalue of R, the first one being unity. A very 
special kind of deformation exists under some conditions on the q's, provided the 
fourth parameter is a cubic root of -1. The R-matrix for this unusual case has 
the form (61), with 
(78) Rl =I'M~Mi. 

We thank Moshe Flato, Georges Pinczon and V.S. Varadarajan for consultation. 
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