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Abstract

The irreducible representations of SL,(2) are obtained by following the familiar pro-
cedures for SL(2).

1. Two-Dimensional Representations.
Although the representation theory of quantum groups has been extensively
discussed,’?* we would like to describe a very elementary approach based on the following

characterization of the 2-dimensional representations of SL4(2):

T'eT = TeT" = € & TeSLy(2) (1.1)

where T* is the transposed matrix and

_ 0 q‘l/Z
€ = <-q1/2 0 s (1.2)

The statement (1.1) implies the usual SL,(2) commutation rules between the matrix
elements of T and exhibits € as the fundamental invariant of SLg(2). Thus € plays the
same role for SL,(2) as the identity does for the rotation group.

From (1.1) closure immediately follows:



(TT'e(TT') = ¢ (1.3)

if all elements of T commute with all elements of T".

In general there is a Borel factorization of any 2 x 2 matrix:

=0 2)=6 NG DG o

but (1.4) and the commutation rules required by (1.1) further imply

T = Po+er0o3 77 (1.5)
where
(B,7)=0
(6,8)=20
6,7) =~ (1.6)
and
A=lIngqg.

Let us now introduce the vector basis whose components satisfy the quantum plane

relation:

x = (2,2) (1.7)

&y

Zz=q1z

(1.8)

where z and Z still commute with all components of T. Then

Ylex = q V%zz —¢'/%:z (1.9)
and by (1.1) x'ex is invariant under TeSL,(2):
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(x‘ex))" = x"ex (1.10)

where
x'=Tx (1.11)

Xt' — XtTt- (1.12)

If ¢ = q1, x'ex vanishes and defines an invariant cone.

2. Higher Dimensional Invariants and Representations.

The two terms of (1.9) commute:

Fg+ 27 = 23 : Fz. (2.1)

Then by the binomial theorem for commuting objects

et =1 (; ) GrtmEy =g 2:2)
and
(ixtex)¥ - : m
%— =Y V(im)V(im)(—q) (2.3)
=0 if ¢g=q (2.4)
where
. Zitmzi—-m —1 .
VGm) = GrmiG oy 49+ (2:50)
- FItmzi—m )
YU = GG -y .
and
e(qln) = ¢"("* V2 (2.6)
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with the following exponential generating function:

X' X = Z V(im)V(jm)g™™ (2.7)
=1 if g=aq. (2.8)

The invariants (2.3) may be expressed as follows:

QU) =V(H)C (-)V () (2.9)

where C7(q) is the diagonal matrix:

qj
Cl(q) = (2.10)
q—i
The invariants Q(7) lie in a 27 + 1-dimensional space.

The 2-dimensional transformation (1.12) induces on V the following transformation:

Za + zc) Y™ (Zb + zc)) ™™
[(G +m)i(G —m)l]'/?
To expand the right-hand side, note

7(jm) = ¢ (a5 +m). (2.11)

(za)(zc) = qug(2¢)(Za)

(2.12)
(zb)(zd) = qi1q(zd)(2b)
Then by the ¢-binomial theorem
V(jm) =Y V(jm')D’(m',m) (2.13)
where
Di(m!,m) = nim S@li=m)
e(q1ls —m')
(2.14)

o ] +m ]— m j—m' —t m+m'+tdlbj—m—t
XZ‘“<J‘—m’—t> < t > o
t 991 991

and



1/2

im _ [ +mlG —m)
m (G4 mI(G - m!)! (2.15)
These are the 25 + 1-dimensional representations. Here
o= (t+m)?+t(m—-m') (2.16)
and
n _ <n >q! (2 17)
p/, <p>!<n-p>; ’
a1
<n >g= g . (2.17a)
qg—1
The corresponding transformation on V(jm) is
V(im) =Y D’(m,m")V(jm") (2.18)
where
D’ (m,m') :q(ml—m)(ZjH)Dj(—m',—m). (2.19)

The product of two 2j + 1-dimensional transformations will preserve the invariant (2.9).

Let the set (abcd) be denoted by «. Then closure is expressed by

D’(a)D’(a') = D?(a") (2.20)

where

a b a b a’ b
(C d) (C' d/> == (C” d//) (2-21)

One may exhibit the inverse transformation by rewriting the basic invariant as

Q =) _ua(jm) u(jm) (2.22)

where



u(jm) = A™v(jm)

(2.23
a(jm) = A"i(jm) A =iq'/? )
Let
u'(jm) = D (m,m )u(jm’
(jm)=>_ D'( ~.) (jm’) 200)
i'(jm) =Y i(jm')D?(m',m)
Then
Dl=D (2.25)
and
(D)) i = (=)™ g™ =™ DI (—m, —m). (2.26)

3. Generators of Quantum Group.

For simplicity consider the special case q; = ¢ and the differently normalized basis

functions
. Zj+mfj_m —1 -
Wiim) = [<74+m><j—m>,l/2 (g™ li +m) (3:1)
N . 2j+m:j—-m )
WOm = (s —m e o
Then

M ' __ arjm —j240 j+m j—m j=m'—t _m4m’' 4+t jtpj—m—t
D(m,m)—ij,Z:q <j——m’—t>q2< 4 >qzc a d'y :
(3.3)
By (1.4)

(-5 )

Define the generators J, J3 by



DI(B,6,v) = D?(0,0,0) + BT +200J7 + 4TI +--. (3.5)

Then the only non-vanishing elements are

<m—-1J|m>=[<j-—m+1 >p<j+m > 2]/ 2gmImmH! (3.6)
<m+ 1|Jj_|m >=<j+m+1>p<j—m >(I:]1/2q_"+'"+1 (3.7
<m|Jzlm >=m (3.8)

leading to the commutation rules

(J4, J-) = [2J3], (3.9)
(Jx,J3) = Jx (3.10)
where
af = L=, (3.11)
q—4q

4. Orthogonality.

Following the classical argument construct

> D' (t)AD*(t)"' =B (4.1)

where D! and D? belong to non-equivalent irreducible representations and A is the appro-
priate rectangular matrix. Here the sum is over the complete set for which closure holds.

Then if s is an arbitrary member of the set one has

D'(s)BD*(s)™' =B (4.2)

by closure. But (4.2) implies



B=0 (4.3)

or
3 3 Dh(D A (D ()7 =o0. (49)
t kk
Let
Apg = 8tmbup- (4.5)
Then
Y Dy ()D*(t),3 = 0. (4.6)
For SU(2)
Y D (D ()} = (4.7)

where D7 is the adjoint matrix. For SU,(2)

Y Dy ()D*(t)}, =0 (4.8)

where by (2.27)

Dy = (=g D(= A, —p) (4.9)

Here D? replaces the adjoint matrix.
It is necessary to interpret Y, in these equations as an integral and at the same time

to provide an invariant volume element dr. For SU(2) one has

dr = /g dOdpdy (4.10)

where g is the determinant of the group metric. For SU,(2) let us represent the multipli-

cation t — st by



st 3 t
a" b a' b a b (4.11)
(C” d”) = (CI d') <C d)

or in terms of the parameters (6, 3,v) of Eq. (1.5)

6—1\0” =Cl(ﬁe—/\0)+dl(e—-/\9)
ﬁue—/\o” — a:(ﬁe-,\o) + b'(e—)‘a)

6—1\0”711 :Cr(e,\o +ﬂe—/\07) +dl(e—/\07) (4.12)

One now finds

49" dg"dy" = J (9"5 il ) d8dBdy (4.13)
68~
= (d'd —b'c") e =9 dgdpdy (4.14)
and
V9" d0"dp"dy" = (a'd' - b'c")\/g d8dBdy (4.15)

where we have computed /g for SU,(2) as one would for SU(2) but with proper regard

for the commutation rules (1.6). In this way we obtain
LA _2ae
- -z ‘ 4.1
Vi= e (4.16)
Then, if we define dr for SU,(2) as in (4.10) for SU(2), we have

dr" = (a'd' - b'c')dr. (4.17)

To obtain an invariant volume element one may now replace dr by the relative volume
element dr/dr, where dr, is a reference element that transforms in the same way as dr.

Then (4.6) may be written



[ DiDiadstt) = 0 (4.18)

where

dw = dr /dr,. (4.19)

For equivalent representations one has by the usual argument through Schur’s lemma

/ D} (D2, (t7)dw(t) = cmpubin. (4.20)

By putting £ = A\ and summing one determines ¢y, in the familiar way.

Finally

. Y Q .,
¢ G = 17 8 mm e .
[ DD 7)) = 555 b (4.21)
where
Q= /dw (4.22)
and
-Dznltl(t_l) == (_)m’_llqilj((’_m’)D(_gl’ _ml) (423)
by (4.9).
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