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Abstract 

Tests of QeD in deep inelastic scattering of leptons on hadrons are reviewed .. J~ .. 
and the potential of HERA for exploring particularly the small x region is 
stressed. Ways to measure the gluon distribution at small x are described 
and the importance of these measurements is emphasized. The reason for 
the failure of the Altarelli Parisi and Lipatov equations for very small x phe
nomena is explained and the physical input underlying the Gribov Levin 
Ryskin equations, which more correctly account for the low x parton inter
actions, is discussed. \Vhat relevance shadowing and saturation might have 
for HERA is also briefly touched upon. 
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T hese lectures are centered around some of the physics issues that can be 
explored in high energy lepton hadron scattering. With the commissioning of 
HERA at DESY in the proximate future, tuese interactions will be probed to 
hereto unexplored regions of momentum transfer and Bjorken x. Thus it seems 
particularly fruitful to discuss here some of the theoretical ideas that have been 
put forth for this new regime. A useful staring point for my lectures is provided by 
a review of QeD scaling violations in deep inelast ic scattering, using the Altarelli 
Parisi equations. This not only ties in nicely with the introductory lectures of S. 
Drell at this school, 1 but it also provides a very nat ural springboard from which 
to discuss low x phenomena. 

1. 	 Test ing QeD Scaling Violations in D eep Inelastic Scattering of Lep
tons on Hadrons 

As is well known l 
,2 quantum chromodynamics (QCD) provides a theoretical 

justification for the parton model calculations in deep inelastic scattering3 and 
predicts logarithmic modifications for the scaling behaviour suggested by Bjorken 
long ago. 4 In the parton model the deep inelastic scattering cross section for 
leptons on hadrons can be written as a convolution of the lepton-parton cross 
section, times the distribution function Ji(~) of partons within the hadron. 

(1) 


Here x and yare the usual (hadronic) variables* 

q2 p. q 
x=--- (2); y = p. f ' 2p· q 

while Xp and YP are their partonic counterparts, 

q2 X P . q
Xp = --- == - ; YP = -- = Y (3)

2p . q ~ p. f 

The kinematics for the process is exemplified in Fig. 1 
The lowest order process in QCD is two-body scattering of leptons on quarks 

and ant iquarks. Because the scattering is two- body, the partonic differential cross 
section is proportional to a 8-function: 

dai 
(4)

dXpdyp 

In turn this implies that, apart from trivial kinematical dependences on q2, the 
deep inelastic cross section has no q2 dependence in this approximation. Thus the 

*My metric is (-1, 1, 1, 1), so that for q2 space-like, as is the case in deep inelastic scattering, 
then q2 > o. 
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Figure 1: Parton model kinematics for deep inelastic scat tering. 

lowest order processes in QeD give precisely Bjorken scaling4 for the hadronic 
structure functions. For instance, in this approximation, the structure function 
F;m for the deep inelastic (electromagnetic) process ep --+ eX is just 

(5) 

Here qi(~) a.nd qi(~) are, respectively, the distribution functions of quarks and 
antiquarks in a proton, while the term in curly brackets above, containing the 
characteristic 8-fun~tion, is the partonic contribution to the F2 structure function 
coming from electron-quark and electron-antiquark scattering. 

The lowest order QCD process underlying lepton scattering involves q + 
V· --+ q and q + V· --+ q subprocesses, where V· is a virtual vector boson (V· = 
{ 1', W, Z} ). These subprocesses get modified in higher order QCD, involving the 
emission of gluons and virtual self energy and vertex gluonic corrections. Both the 
real and virt ual modifications to O( ct.,) to V· -quark scattering are shown in Fig. 2 
In addition to these corrections, to O( 0',,) the virtual vector boson in deep inelastic 
scattering can interact directly with a gluon in the hadron producing a quark
antiquark pa.ir, V· +9 --+ q + ij. The corresponding graphs for this subprocess are 
shown in Fig. 3. 

The QeD corrections to O(Q,,) to the subprocess V'" + q --+ q modify the Oth 

order 8 function contribution to the partonic cross section. Schematically, one can 
write instead of Eq. (4) the expression 
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Figure 2: O( as) corrections to V· - quark scattering: a) real corrections (V· + q ---+ 

q + g); b) virtual corrections. 
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Figure 3: Graphs contributing to the subprocess V· + 9 ---+ q + if. 

dG'i Qs(q2) 2 
d d '" [8(1 - xp) + 2 {Pqq(xp)fnq + R(xp)}] (6) 

xp YP ~ 

These corrections are q2 - dependent for two reasons: 

i) The QeD coupling constant is not a fixed number, but varies depending on 

which momentum transfer q2 the partons are being probed with t. 

tThis "running" of 0 .. is, actually not seen for the 0(0.. ) graphs of Fig . 2. It arises from summing 
up via the renormalization group further corrections to V· quark scattering like those shown, 
for example, in Fig. 4 . 
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ii) Gluonic emission has an associated bremsstrahlung spectrum which, upon 

integration, gives rise to the f nq2 terms in Eq. (6)) 

(7) 


It is clear from Eq. (6) that although the Q s R term is perturbatively small at 
large momentum transfers, the logarithmic term is not small at large q2 since 

(8) 

So the presence of additional gluon bremsstrahlung appears to vitiate the pertur
bation expansion! To be able to recover the parton model as the oth order term in 
a QeD perturbation series, it is necessary to understand what to do with these 
terms. 

The solution to this conundrum was obtained in the late 1970's when it was 
understood that these dangerous terms can act ually be factorized into the parton 
distribution functions,S making these functions also run with q2. Although I will 
not enter into the proof of factorization here6 ~ S I will indicate how factorization 
works in a simple example. For these purposes, let me consider again F;m. How
ever, now for the parton contribution I will take the O(Qs ) expression in Eq. (6), 
rather than just the 8-function term. Then 

fl d< x Qs(q2) X X 
F;m(x;q2) = x~e; ix T[qi«)+qi«)]· [8(1- )+ 27r {Pqq (Z)fn q2 +R(Z)}]

Z 
(9) 

To the order in Q s that I am working to, Eq. (9) can be rewritten in the following 
product form 

In this "factorized" form the redefined parton cros '7 .,ection contribution has a well 
defined perturbation expansion in Q s ( q2). The dangerous term involving f nq2 has 
been isolated into the parton distribution functions and makes these functions q2 
- dependent: 

(11 ) 

tSome of this dependence also arises from infrared sensitive part of the virtual graphs in Fig. 
2.2 . 
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In terms of the running parton distribution functions, the hadronic structure func
tions have a well defined perturbative expansion in Q,,(q2): 

(12) 

To the order in Q" we have considered, Eq. (11) is equivalent to the Altarelli 
- Parisi1 equation for the quark distribution function 

(13) 


Figure 4: Typical high order graph which contributes to the running of Q,,( q2) in 
Eq. (6) . . 

Actually, Lhis equation is not quite cOlnplete since to O(Q,,) there is an additional 
contribution to F~m coming from the subprocesses 9 + V· ---+ q + q depicted in 
Fig. 3. These contributions provide an additional term for the Altarelli Parisi 
equation, proportional to the distribution of gluons within a proton. Thus the 
correct Altarelli Parisi equation for the quark distribution function is not Eq. (13) 
but 

dqi(~;q2) Q,,(q2) fl de[p (~) (' 2) P (~) (' 2)] (14)d f nq2 = 21r J{ f! qq ~' qi ~ ; q + qg ~' 9 ~ ; q . 

Here the, so called, splitting functions Pqq(f,) and Pqg(f,) give the probability, 
respectively, of finding a quark with momentum fraction ~ inside either a quark 
or a gluon of momentum fraction e. Corresponding to Eq. (14) there is also an 
analogous Altarelli Parisi equation describing the q2 evolution of the gluon dis
tribution function, from branching processes of gluons and quarks. This equation 
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Figure 5: Basic QCD processes giving rise to the splitting functions (16). 

reads 

d~~~::l = a,;:2 l l ~~' [Pgg(J,lg(Cll + ~Pgq(J,l[q;((;ll + q;((;lll] 
(15) 

where Pgg ( f;) and Pgq ( f;) are the corresponding splitting functions for gluons and 
quarks of m01nentum fraction ( .to become a gluon of momentum fraction ~. 

The splitting functions just reflect the basic QCD processes, shown in Fig. 
5, by which quarks and gluons of higher momentum becomes quarks and gluons 
of lower momentum. The splitting functions are independent of quark flavor and 
they can be determined by computing the coefficients of the f nq2 term in the 
appropriate parton scattering subprocesses. I record here for later use the expres
sion that one deduces in lowest order for each of the four splitting functions in 
Eqs. (14) and (15)7.2: 
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( 16a) 

(16b) 

(16c) 

( 16d) 

Here J is the number of quark flavors, while CA and CF are weight factors associated 
with the gluons and t he quarks [CA = 3 and CF = ~ for QCD]. The + instruction 
in the denominators in Eqs. (16 ) removes the singularity as z -t 1 by a principal 
value prescription7 

: 

fl d J(z ) fl dzJ(z) - J(l) . (17)10 z (1 - z)+ 10 1 - z 

----.l...~ low q2 


x 

Figure 6: Evolution with q2 of the parton distribution functions which follows for 
the Altarelli Parisi equations. 

The Altarelli Parisi equations encompass all the information coming from 
QeD for the deep inelastic region, where q2 -t 00 and - q . P -t 00, but x 
is fixed. The predictions one obtains for the hadronic structure functions using 
these equations, along with the QCD corrected parton cross sections, are entirely 
equivalent to those obtained using the more formal operator product expansion 
methods.8 However, in many ways the physics of what is going on is much clearer 
in t he Altarelli Parisi language. As q2 increases, when a point-like object probes 
a hadron it has less and less probability of scattering off a parton at large x, 
for partons of larger momentum fraction naturally evolve by gluon emission, or 
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quark-antiquark production, into partons of smaller momentum fraction. From the 
Altarelli Parisi equations one sees that, as q2 increases, the parton distribution 
functions at large x are depleted, while there is a concomitant enhancement of 
small x partons. This behavior is shown schematically in Fig. 6. 

The evolution with q2 of the parton distribution functions produces a loga
rithmic variation with q2 of the hadronic structure functions. This variation is a 
violation of Bjorken scaling. Furthermore, the specific behaviour with q2 predicted 
for the structure functions is a direct test of QeD. Because of the presence of the 
gluon distribution function, there is an important practical difference between, 
so called, singlet and non singlet hadronic structure functions. Non singlet 
structure functions always involve the difference of quark and/or antiquark dis
tributions. Because the splitting functions are independent of the quark flavor, or 
whether one is dealing with a quark or an antiquark, non singlet structure func
tions are independent of the gluon distribution function. For example, a structure 
function like x F3 for charged current neutrino scat tering off isoscalar targets, in
volves the difference between quark and antiquark distributions for u and d quarks. 
Thus 

[XF3(X; q2)]i;oscaJar = x [u(x; q2) + d(x; q2) - u(x; q2) - d(x; q2)] (18) 

is a non singlet structure function. As a result XF3, as well as any other non singlet 
structure functions, fNS(~; q2), obeys the simple Altarelli Parisi equation given in 
Eq. (13): . 

(19) 

Singlet distribution functions - which we will denote by fS(~; q2) - on the 
other hand always obey the coupled Altarelli Parisi equations, Eqs. (14) and (15), 
which involve the gluon distribution function. Because the evolution of these dis
tributions needs knowledge of the gluon distribution function, QeD tests involving 
singlet structure functions are more challenging. In general, rIlost hadronic struc
ture functions will involve both singlet and non singlet pieces, so to do appro
priate QeD tests one also needs to know something about the gluon distribution 
function. For example, assuming for simplicity that only the u and d quarks dis
tributions are relevant in the proton, one can write F2m as the following sum of 
singlet and non singlet pieces: 

F'{m(x; q2) = L e~x[qi(X; q2) + qi(X; q2)] 

= 158x[u(x; q2) + u(x; q2) + d(x; l) + d(x; l)l 
1· 2 2 - 2+ 6"x[u(x; q2) + u(x; q ) - d(x; q ) - d(x; q)]. (20) 

Deep inelastic data shows clearly the qualitative behaviour expected from 
QeD, in which at low x the structure functions grow with q2, while they decrease 
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with q2 for large x. This can be appreciated from the compilation of data on 
F2 obtained in deep inelastic scattering of neutrinos and muons on an isoscalar 

t arget§, shown in Fig. 7. Quantitative tests of QCD, however, are more difficult 
to perform because: 

i) Present data is still taken at rather low values of q2. 

ii) There is some discrepancy between the various experiments, particularly at 
low val ues of x. 

iii) Structure functions wi th a singlet component are rather sensitive to the poorly 
known gluon distribution, particularly at low x. 

Nevertheless, particularly when one restricts onesuf to data taken by an individual 
collaboration and does not combine data sets, there appears also to be quantitative 
agreement with QCD predictions. 

I will not delve on how well QCD is being tested with present deep inelastic 
data, as this has been discussed in much more detail in the lecture of Traudl Hansl 
Kozanecka10 in this school, as well as in the seminar by l\lishra11 on the new results 
from CCFR. Nonetheless, I would like to make a few remarks on these matters to 
make these lectures somewhat self contained. Present day data encompasses still 
a rather limited q2 range (q'l;S 100 GeV2

). Furthermore, it is questionable how far 
down in q2 one can push the comparison of data with QCD without the inclusion 
of non leading 1/q2 corrections (the, so called, higher twist terms). Given these 
facts, it is understandable that the QCD tests so far performed with deep inelastic 
data essentially reduce to checking that the struct ure function's q2 - variation, at 
different x values, is described by the same scale parameter which enters in 
a,,(q2). 

The running coupling constant a,,(q2), including terms of order (En q2)-2, is 
given by the expression2 

(21) 

where the constants b anb b , which depend on the number of flavors f which are' 
active, are 

1 2 
b = 41r [11 - 3' f] ; b' = ~ [306 - 38/1 . (22)

41r 33 - 2/ 

The scale parameter A in Eq. (21) can be extracted from deep inelastic experiments 

from the evolution of the structure functions with q2. The 0 ( (en q2) - 2 ) corrections 

in Eq. (21), as well as the non leading logarithmic's corrections to the evolution 

§The neutrino and muon data can be plotted together for an isoscalar target after multiplying 
8the muon data by 15 , to account for the quark charges [cf Eq. (20)]. 
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Figure 7: Compilation of data on F2 for various values of x, as a function of q2. 

Adapted from. 9 
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equations, are important to specify precisely the A parameter one is measuring. 
The part icular parameter one usually quotes from analyses of deep inelastic data 
is AMS(f = 4), where M 5 denotes the renormalization scheme used to compute 
the nonleading logarithmic corrections12 and 4 flavors (u, d, s and c) are taken as 
active. T he way this analysis is done by the various experimental collaborations 
is to evolve the structure functions measured at a given q2 value (q2 = q6) to a 
larger q2 value, keeping A as parameter to be determined from the fit. For non 
singlet structure functions this procedure requires, in principle, no further inputs. 
However, for the singlet case, in addition, one must input some assumed gluon 
distribution at q6 and there results - in general - some correlation between the 
value of A extracted and the functional form of g( x; q6) assumed. 

Let me expand briefly on each of the points alluded to above. The impor
tance of including correct ions beyond the leading order to properly fix A can be 
best appreciated by considering not the structure functions themselves, but their 
moments.s For simplicity, let me just examine the non singlet equation, Eq. (19), 
and consider the moments of the non singlet distribution fNS(~; q2): 

(23) 

Defining the moments of the splitting function Pqq(~) by 

(24) 

it is easy to see that Eq. (19) implies the following simple differential equation for 
the moments 

(25) 

Using for Q~(q2) only the lowest order term in (in q2)-1 in Eq. (21), it follows 
that the moments depend on q2 as powers of inq2: 

(26) 

However, if one wants a more accurate description it is necessary both to include 
the higher order terms in Eq. (21), as well as include O(Q~) corrections to the 
parton m odel. If one does not drop the O( Q~) terms, then it no longer is true 
that the hadronic structure functions are the same as the parton distribution 
functions [cf. Eq. (12)]. If we denote the non singlet hadronic structure function 
by FNS(x; q2) and its moments by Mn(q2) then, including O(Q~) corrections, one 
has 

(27) 

and 
(28) 
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The function j( x: q2) and the coefficif'nt En are dependent on the scheme one 
adopts for renormalizing the theory, with a convenient scheme being the minimal 
subtraction (MS) scheme of 't Hooft,13 or its modification - the AtS scheme. 12 

Similarly, in the Altarelli Parisi equation Eq. (19) for the non singlet distributions, 
the splitting functions Pqq will have 0(0',,) corrections, beyond the leading terms 
given in Eq. (16a). These need to be calculated in the same scheme in which j 
was extracted . Thus, including 0(0',,) corrections, the parton moments are given 
by 

(29) 

Here the coefficient Zn - as well as the coefficients En above - are calculable, but 
depend on the renormalization scheme. Finally, using both Eqs. (28) and (29), and 
including the O( (fnq2)-2) term in Eq. (21 Lthe moments of the hadronic structure 
functions are seen to obey the following equation 

(30) 

where 

(31) 

The term involving Rn(q2) in Eq. (30) contains the first non leading correc
tions to the lowest order QeD expectation for the structure function moments, 
Eq. (26). Including these corrections, calculated in a particular scheme, one spec
ifies which scale parameter one uses. Indeed, it is easy to see that a change in A 
implies a cha.nge in En + Zn and vice versa. For if A -+ ek A then 

(32) 

so that En + Zn -+ En + Zn + 4Ank . I note, parenthetically, that it is possible to 
invent schemes where to O( 0',,) some structure function is the same as the corre
sponding parton distribution function. That is, one can invent a scheme where, for 
example, Bn = 0 so that Mn = Mn and the non singlet structure function is the 
same as the non singlet parton distribution: FNS(x; q2) = fNS(x; q2). In practice, 
actually this is done for F;m(x; q2), where in the, so called, DIS scheme14 

(33) 

However, because one can make such an identification for only one structure func
tion, for exarnple, in the DIS scheme FL does indeed contain 0(0',,) corrections to 
the parton model formulas. Because of this, I believe it is preferable to use the M S 
scheme, where the corrections to all structure functions and parton distributions 
are treated in a symmetrical fashion [i.e. one has both En and Zn corrections, in 
the language of Eq. (31)]. 
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Fits of deep inelastic data fo r non singlet structure functions can, in principle, 
provide a better value for AM S (4) than those involving singlet structure functions. 
Because both the gluon and non valence quark distributions are concentrated at 
small x, one can, in fact, do a non singlet fit for FIm for large x. Such a fit, for 
the variation of F~m wi th q2 , hac; been done by the BCD1-'1S collaboration15 and 
is displayed in Fig. 8 for both their Carbon and Hydrogen data. From these fits 
the collaboration deduces a value 

(4 ) = (220 ± 55) MeV (BCDA1S) (34)AM S 

for the QCD scale parameter. This value is compatible with the value that the 
CDHSW collaboration extracts by examining the XF3 distribution in neutrino 
deep inelac;tic scattering. However, the central value obtained by the CDHSW 
collaboration9 for Alvis is about a factor of two smaller'[AMs (4) = (100 ! ~) MeV] 
and the overall fit - at least to my eyes - looks rather poor. Indeed, it appears to 
me that probably this value should be disregarded, particularly in the light of the 
new data of CCFR.l1 Although no official value for :\.~fS (4) has been given yet 
by the CCFR collaboration, it is clear that their data is much more compatible 
with. the BCDMS value for AMS (4) given in Eq. (34). 

Further evidence that AM S (4) is closer to 200 .~1eV, rather than 100 MeV, 
comes from the singlet analysis done by BCD~'IS. Fig. 9 shows the variation of 
dfnF2 / dfnq2 with x for the muon deep inelastic scattering data on Hydrogen of 
BCD MS. 15 As can be seen, the data is well fit by the solid curve which corresponds 
to AM S (4) = 220 MeV. The slope of the F2 variation wi th f nq2 sharpens ac; x ~ 0 
due to the gluon distribution in the proton and the figure shows the importance 
of this distribution at small x. The BCOT\1S fit assumed that at q5 = 5 GeV 2 the 
gluon distribution could be parameterized by 

(35) 

with 1]9 = 8. 
Even though a value of AMS (4) around 200 MeV is perfectly compatible 

with other tests of QCD carried out with other hard scattering data,16 in deep 
inelac;tic scattering the value of AMS extracted appears to be correlated with the 
softness of the gluon distribution. This is nicely de . onstrated by the recent analy
sis of Harriman et aP7 in which contour plots are presented showing the correlation 
between AMS and 1]9' for both BCD1-1S data15 and EMC data,I8 augmented by 
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Figure 8: Non singlet analysis for large x done by the BCDMS collaboration15 for 
deep inelastic muon scattering on both a carbon and hydrogen target. 
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Figure 9: Variation of F.;m with q2 for all values of x obtained by the BCDMS 
collaboration for deep inelastic muon scattering on a Hydrogen target. I5 
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Figure 10: Correlation between AMS and 7]9 for: a) Ei\fC data; b) BCDMS data. 
Adapted from. 17 

neutrino deep inelastic and prompt photon 19 data. These plots are reproduced 
in Fig. 10. One sees that the EMC data prefers a smaller value for both 7]g and 
AMS [7]g = 4.4;A MS (4) = 100 ± 20 AleV) while the BCDMS data has larger 
values for both these quantities [7]9 = 5.1; AMS (4) = 190 ± 20 MeV]. Part of this 

difference may be due to some experimental differences between the data sets. ~ 
However, it is clear from the figure that. the uncertainty in the gluon distribution 
shape at q'6 introduces a corresponding variation in AMS ' Thus, it would be par
ticularly nice if one could obtain some independent information on g(x; q2). As we 
shall see in the next Section, this should be possible at HERA. 

2. QeD 1['ests and the Gluon Distribution at HERA 

The present, somewhat unsatisfactory, situation regarding QCD tests in deep 
inelastic scattering should be considerably improved at HERA. First of aU, as can 
be appreciated from Fig. 11, at HERA there will be a substantial q2 and x range 
accessible. Secondly, HERA affords the possibili t ·· to extract directly from data 
the gluon distribution g(x; q2) by a set of independent measurements. Even though 
the above two points make the experimental measurements which will be obtained 
at HERA very interesting, one cannot hide concomitant difficulties. For instance, 
although the large values of q2 to be explored at HERA will lead to theoretical 
pristine data., since one can now really neglect higher twist corrections in the QeD 
tests, the electron proton cross section at large q2 is small- scaling as (q2)-2 - and 

'These differences, however, appear to be resolved by the latest data obtained by the successor 
collaboration to EMC. 20 
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Figure 11: Kinematical range in the x - q2 plane accessible at HERA. 

one will be statistically limited. Furthermore, at large q2, the logarithmic QeD 
variations one is looking for in the data are themselves small. 

A few years ago Bliimlein. Klein, Ingelman and Riickl (BKIR)21 performed 
a phenomenological Monte Carlo analysis to ascertain how well one could test the 
scaling violations predicted by QCD at HERA. The result of their analysis was 
that of all structure functions accessible at HERA, only for F~m could one per
form adequate QeD tests. Furthermore, because of the x-range probed, a singlet 
analysis is required in this case. Both of these statements are easily understood 
if one considers the number of events expected for q2 2:: 10 - 100 GeV2. For an 
integrated luminosity J .[ dt = 100 pb- 1

, typical for a long run at HERA, only 
for the electromagnetic dominated processes e±p ---+ e± X one expects over 104 

events. These events, as can be seen from Fig. 11, are concentrated at x values 
below x ~ 0.1. 

Because F~m has both singlet and non singlet pieces [c.L Eq. (20)] the 
corresponding QeD analysis needs information on the gluon distribution. Let me 
rewrite Eq. (20) as 

5
F{m(x; q2) = ix 6.(x; q2) + 18 xF'(x; q2) . (36) 

Then while the evolution with q2 of the non singlet component ~(x; q2) is that of 
Eq. (13 ) 

(37) 


the evolution of F3(X; q2) is coupled to the evolution of the gluon distribution 
function g(x; q2). If / is the number of active flavors (/ = 4 for HERA) then one 
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Table 1: Results of the !\1onte Carlo fits of BI"':IR for HERA 


I Fit 18/\ (J\tfeV) < q2 > (GeV2) I
r 

has 

Non singlet ±176 2800 
~lFS,g ±135 400 
Fixed input 

glue 
±25 400 

(38) 

2
d 2 Q S ( q ) f 1 d~ [ X 2 X S 2]

d f 29 (X; q ) = 27r ix T Pgg ( Z)g(~; q ) + Pgq ( Z)F (~; q ) (39) 
nq 

Three Hts were done in the BKIR phenomenological analysis: 

i.) A non singlet fit, which by necessity required that one restricted oneself to 
x ~ 0.25. Because of this restriction, the fit was statistically very poor. 

ii.) A global fit of ~, FS and the gluon distribution g. This fit was dominated by 
the uncertainty in the input for this latter distribution. 

iii.) A fit of ~, FS and 9 in which one assumes that the input gluon distribution 
g( x; q6 ) is known. This fit gave, by far, the best results. 

The result of these three fits are detailed in Table 1. II 
It is ea.sy to understand why the fit with a given input glue distribution, 

g(x; q5), gives so much better results by looking at the various contributions to 
the q2 evolution of F;m. As can be seen from Fig. 12, for x below about 0.1 the 
gluon contribution fully dominates. I should note that the results of the fit with 
a fixed input glue distribution quoted in Table 1 came from a fit in which only 
data for x > 0.01 was included. As I shall discuss in much more detail later on, 
for x values below this value there are other effects which alter the Altarelli Parisi 
equations. Including these additional contributions would allow one to probe even 
lower x values, which become accessible at HERA, and would further improve 
the results on 8/\. It is clear, at any rate, that if one really wants to perform 
meaningful QCD tests at HERA, it is important that one be able to measure the 
input gluon distribution, g( x; q5), independently, since this function is a key to 
the QCD tests. 

IIBKIR for simplicty onlY"used lowest order QeD formulas, so that the A parameter, whose 
error is quoted in Table 1, is not AMS(4). Nevertheless, one expects that cA :::: CAMS. 
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Figure 12: Contributions to the variation of F;m with q2 at different x values. 
Adapted from. 21 
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At HERA three ways have been suggested to obtain a direct measurement 
of the gluon distribution: 

i) One may be able to extract g(x; q2) from a measurement of the longitudinal 
distribution FL(X; q2). 

ii) g(x; q2) can be obtained, in principle, through a study of inelastic "p photo
production: ,p ~ "pX. 

iii) One may be able to determine g(x; q2) from inclusive charm and b quark 
production. 

In what follows, I will make a few theoretical and phenomenological comments on 
each of the a.bove methods for extracting g(x; q2). 

2.1. FL Measurement 

Neglecting the contribution from Z exchange, the cross section for deep 
inelastic e±p scattering reads 

(40) 

where the longitudinal structure function FL(X; q2) is given by 

(41 ) 

In the parton model (Othorder QeD) FL vanishes identically because of the Callan · 
Gross relation22 : 

(42) 

The Callan Gross relation follows as a ~imple kinematical result, if the scattering 
of the electrons (or positrons) is done on spin 1/2 partons. 

In higher order in 0'", the partons which interact with the virtual photon 
exchanged now no longer encompass just quarks and antiquarks, but also include 
the spin 1 gIuons. Thus one expects violations of the Callan Gross relation in 
QCD at non trivial order in 0'". Indeed, to leading order in 0'",23 one finds that 
the longitudinal structure function FL is given by 

(43) 

Hence FL ( x; q2) contains indirectly some information on the gluon distribution 
function. 
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Martin, Roberts and Stirli ng24 made the important observation that, because 
x is very small in the experiments to be done at HERA, one can well approximate 
the integrals occuring in (43) by the act ual val ues for F2 and 9 at some fixed 
multiple of x. That is, one can approximate the integrals by their lower limit. 
Thus, for example, ** 

(44) 

and 

(45) 

Using the above and CF = 4/3 and Li E; = 19°, one arrives at an approximate 
formula for xg(x ;q2) = G(x; q2): 

( 46) 

That is, one can deduce the gluon distribution at a given x value from a measure
ment of both FL and F2 at smaller values of x. 

Because FL is sizable at small x, the dominant contribution to xg( x; q2) 
will come from the contribution of the longitudinal structure function itself. One 
must make sure, however, that the q2 value one is measuring FL(X; q2) at is large 
enough, to avoid having higher twist effects spoil the simple QCD formula (43). 
Indeed, for the small q2 values where FL is measured at SLAC (q2 ::: 5 GeV2) 
there appear to be substantial higher twist effects,25 with the QCD and higher 
twist terms being comparable in magnitude: 

. 2] _ QCD . 2 8K2 . 2 
[FL(x, q ) exp - FL (x, q ) + -2F2(x, q ) + .. (47) 

q 

with K2 ::: 0.05 GeV 2. At HERA, even for rather small x, q2 values of the order 
of 50 - 100 GeV 2 are attainable, so higher twist effects should be substantially 
reduced. 

To extract g(x; q2) one needs to separate 2xF1 (x; q2) from FL(X; q2), for 
fixed x and q2. This requires doing measurements at different energies. This is 
clear, since the total energy squared s = q2/xy, and to separate FL from 2xF1 it 
is necessary to obtain the differential cross section (40) at different values of y. 

Cooper-Sarkar et aP6 have investigated how well one can determine xg( x; q2) at 
HERA from measurements at Js = 245 GeV and Js = 314 GeV, with a total 
integrated luminosity of 100 pb- 1

• The results of this phenomenological analysis 

··The analysis 0(24 is slightly more sophisticated. However, the examples shown give the essence 
of the idea. 

21 




are shown in Fig. 13 for two values of q2, big enough so as to avoid large higher 
twist contributions. The plots show the expected errors one will obtain at HERA, 
for two different types of gluon distributions. As can be seen from the figure the 
gluon distribution for rather small values of x (3 x 10-3 ;S X ;S 10-2 ) appears to be 
accessible and potentially well measured at HERA, independently of its detailed 
small x behaviour. 
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Figure 13: Errors expected to reconstruct two different gluon distributions at 
HERA from a measurement ofFL(x; q2). Adapted from. 26 

2.2. Giuon JDistribution from 'ljJ photoproduction 

The second method proposed to extract the gluon distribution function at 
HERA makes use of the fact that the ep collisions gi ve rise to a very large high 
energy photoproduction cross section. For nearly real photons [q2 ~ 0] the ep cross 
section can be computed in the Weizsacker-Williams approximation, in which 
the photoproduction cross section is convoluted with the probability of finding a 
photon in the incident electron 

2 

C7ep = ~JdyP.·ye(y) en qr;ax C7-yp(E-y = yEe) (48)
27r qrrun 

Note that P-ye is precisely the same splitting function as the quark-gluon splitting 

function Pgq of Eq. (16c), except that the weight factor here is CF = 1 tt. Eq. (48) 

tt Of course also a, - a in Eq. (48). 
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makes it clear that HERA is an ideal place to study high energy photoproduction, 
with S"'(P ~ ys. 

Although high energy photoproduction is interesting per se, what is of most 
interest to study is heavy flavor production because, as is shown schematically in 
Fig. 14, this can occur through photon-gluon fusion. In principle, such a process 
provides a direct measurement of the gluon distribution function g(x g ; Q2). Here 
Xg is the fraction of momentum of the proton that the gluon carries, while Q2 
is a scale related to the production process. Obviously, before one can think of 
using heavy flavor photoproduction as a means of extracting information on the 
gluon distribution function , it is important to ascertain to what extent photon
gluon fusion dominates and to establish what is the relation of Xg and Q2 to the 
scattering parameters. 

Q 

Q 
,'g 

I 
I 

p 

Figure 14: Schematic diagram illustrating heavy flavor production VIa photon
gluon fusion. 

One possible way to isolate particular values of Xg (and Q2), which has been 
suggested by Martin N g and Stirling,27 is to look for photoproduction of 7jJ's. This 
process results again from photon gluon fusion, with the produced cc pairs binding 
into a 7jJ. Since the 7jJ is a color singlet, for this process to occur requires that an 
additional gluon be produced in association with the 7jJ, as shown schematically 
in Fig. 15. The scale Q2 associated to the gluon distribution is related to the 7jJ 
mass and the transverse momentum Pl. of the produced 1/J's. Whether one should 
take Q2 to be simply Q2 = m~, or one should use Q2 = Pi + m~, or instead 
some other intermediate value, cannot really be resolved without a higher order 
calculation. However, because the relevant transverse momentum of the produced 
7jJ's is quite limited, there is not much difference between these two scales and the 

choice Q2 ~ m~ seems a sensible first approximation27tt 

tt I will return at the end of these lectures to the issue of scales in heavy flavor production. 
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Figure 15: Diagram leading to l/J photoproduction. 

The cross section for rP --+ '!jJx is dominated by values of the gluon mo
2 

mentum fraction Xg near its lower limit, (Xg)min ~ ~. The actual cross section 
S-,p 

depends on the knowledge of the wavefunction of the l/J at the origin, which enters 
to typify the binding of the produced cc pair to form a l/J. Fortunately, this wave
function is known experimentally from the size of the leptonic width of the l/J. The 
analysis of Martin, Ng and Stirling27 shows that the differential cross section for 
l/J photoproduction can be written as 

(49) 

Here the function ]([Xg; ~] is a known kinematic function which is sharply peaked 
m,p 

near Xg ~ (Xg)min. Using cuts of pi > O.lm~ and Z = ptIJ . P/q . P < 0.8, Martin, 
Ng and Stirling give an approximate handy formula for the integrated l/J photo
production cross section which is directly proportional to the gluon distribution 
at some average effective value of x g , near (Xg)min. They find, using Q2 ~ m~, 

(50) 


where Xg ~ 3.4m~/ s-yp = 3.4 m~/ys. Thus, using Eq. (48), one sees how l/J 
production at HERA, in principle, can be used to extract the gluon distribution 
in a restricted range in x and q2[x ~ 10-3 ; q2 ~ 10 GeV2J: 

do·( ep --+ l/JX) 

dy 
(51) 
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Figure 16: Errors expected to reconstruct various possible gluon distributions 
using'l/J production in a 100 pb- 1 HERA run. Adapted from. 28 

Fig. 16, taken from the phenomenological study of Tkaczyk, Stirling and Saxon,28 
shows how well one could determine g(x; m~) with 'l/J production in a 100 pb- 1 

HERA run. 
Even though Fig. 16 is rather impressive, it is important to ask how reliable 

is this determination of g(x; q2). At least two issues need to be answered: 

i.) Will all the 1/J's which will be produced at HERA originate from photon gluon 
fusion? 

ii) How trustworthy is the computation of 'l/J photoproduction from the diagram 
of Fig. 15? 

Although not all the 1/J's produced at HERA will originate from photon gluon 
fusion, studies by Kunszt and Sterling,29 Fletcher, Halzen and Robinett30 and 
Martin, Ng and Stirling27 show that one can successfully isolate the 'l/J's produced 
from the process ,g --+ 'l/JX from all other produced 'l/J's. For instance, although 
t here will be a substantial number of 1/J's produced through radiative X decay 
(X --+ 'l/J,), since X production itself through gluon gluon fusion is expected to be 
large,30 these "background" 'l/J's can be eliminated by an angular cut. As shown 
in F ig. 17, the 'l/J's produced from radiative X decay are produced very much more 
along the proton direction and a cut of, say, cos () ;S 0.5, should effectively eliminate 
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this background. Because HERA will photoproduce an abundant number of B 
mesons, and the B -+ 'l/JX branching ratio is rather large, one must also worry 
about 1/J's produced in this fashion. Fortunately, again kinematics can help. The 
1/J's coming from the decay of a B meson have much larger P1. 's, as is shown in 
Fig. 18. Thu.s a P1. cut of a few GeV, say P1.;S 3 Ge V, should eliminate most of 
these other unwanted 1/J's. 

For the second question above, however, the answer is not quite so sanguine. 
In fact, it is quite difficult to judge the theoretical reliability of the calculation of 
the process "'yg -+ 1/Jg from Fig. 15. In effect, one needs really to compute the O( ct.,) 
corrections to this process - a rather prohibitive task - before one can answer this 
question. However, perhaps one can gain some insight from the, diagramatically 
similar, decay process '!jJ -+ gg,. Unfortunately, this latter process is known to 
have large corrections in the AIS scheme,31 where one finds 

(52) 


Using Os = 0.29 ± 0.02,31 the higher order corrections reduce the rate for this 
process by JTIore than a factor of 2. Whether the same thing obtains for the 
process ,g --+ 1/Jg is an open question, but the result (52) certainly should give 
one pause. 

2.3. Detenning the Gluon Distribution from Heavy Flavor Production 

The gluon distribution function can also be determined at HERA by study
ing directly the production of heavy flavors. Both charm and bottom quarks will be 
abundantly produced at HERA, with the dominant mechanism being the photon 
gluon fusion shown in Fig. 14. Roughly speaking, the cross section for producing 
a cc pair through photon gluon fusion is near 1 Jib, while bb production is about 
10 nb. The heavy quarks are produced with a rather fiat rapidity distribution and 
a P1. spectrum which has a much broader tail for b quarks than for c quarks32 .33 

26 


http:quarks32.33


Q)-
I 
I 
I 

r~ 
I 
I 

fn I 
~_.Jo 
IU 

~ r - .J 
....... 
 ,.--'
b --'" J I~ via X production :---'"'0 

"'--~ ~---..,
L_~-'-_'- ____:--"'_r_-t-~ 

-0.5 o 0.5 1.0 
cos (8 ) 

Figure 17: Polar angle distr ibution of v's produced via photon gluon fusion and 
through radiative X decays. From. 29 

(GeV/c)PT 

Figure 18: The P.l. dependence of ,,;.,'s produced via photon gluon fusion and from 
B decay at HERA. From. 21 
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The cross section for QQ production - where Q is a hea\"y quark - at HERA 
can be obta.ined from the analogous photoproduction cross section by using the 
\Veiszacker 'Williams formula, Eq. (48). In lowest order in QeD, the photoproduc
tion cross section is proportional to the gluon distribution function g(xg ; Q2), and 
one finds 33 

d(j(,p~~)QX) 2 [ 0'0'" 1 { l+X }" = g(xg ; Q ) 27r- eb . (1+w-w 2 
) in---x(1+w) . (53)A
dXg s 

-

1 - X 


Here s is the invariant mass squared of the QQ pair, while w = 4mb/sand 
X = [1- w]I/2 are related to the velocity of the heavy quark. Note that the gluon's 
momentum fraction is directly related to the invariant mass of the QQ pair 

s 
Xg = - . (54) 

ys 

To be able to use the above formula to determine the gluon distribution 
function one needs to know what scale Q2 one should take and, further, what 
scale is relevant for 0'" in Eq. (53). As I alluded to earlier, and will explain in 
more detail towards the end of these lectures, one cannot really determine what 
Q2 to use, or what 0',,(/12) to take, until higher order corrections of 0(0'0';) are 
co~puted. Ellis and Kunszt,32 on the basis of a partial calculation of the higher 
order corrections, noted that the product g(xg ; Q2)Q,,(/12), which enters in Eq. (53), 
has compensating tendencies if one takes Q2 ,...., /1 2. As Q2 decreases the gluon 
distribution ~ at fixed X g , also tends to decrease, while the opposite is the case for 
0',,(/12). Fro[n their analysis, Ellis and Kunszt32 suggested that a sensible choice 
to take for these scales is 

Q2 2 2 2= /1 = Pl. + mQ ' . (55) 

This choice remains reasonable also in the light of the full O( aQ;) calculation of 
the process ,g ~ QQ(g) which has now been completed by Ellis and Nason.34 

However, a theoretically more consistent approach incorporates these corrections 
directly in a transverse momentum convolution rather than just as some overall 
effective mOlnentum scale.35 I will return to give a fuller explanation of this point 
at the end of the next Section. 

Besides the question of which scales enter in Eq. (53), a crucial other issue 
is how one determines experimentally Xg or, equivalently, the QQ invariant mass. 
Here a nice trick has been suggested by Schuler and collaborators.36 In the case 
of photoprodluction, the HERA lab frame in which the electron and proton collide 
head on, and the QQ eM frame are just related by a boost. Thus the corresponding 
rapidities add, and one finds36 

1 [ yEe 1 (56)YHERA = YQQCM + 2' in xgEp , 
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where E e , Ep are the energies of the electron and protons in the HERA frame. If 
one studies the heavy quark production through the subsequent leptons produced 
in the heavy quark decay, i.e. ep --+ eQQX --+ ef+ e- X, then one expects that in 
the QQ eM frame the i + e- rapidity vanishes. If y( f+ f- )QQcM = 0, by measuring 
the f+ f- rapidity in the HERA lab frame one reconstructs directly xg • Using 
Eq. (56) it follows that 

(57) 

Fig. 19 shows the result of a phenomenological study of this procedure for 
the proposed ep collider that would result from colliding LEP electrons with the 
protons of the LHC. In this Monte Carlo study, Eq. (57) was used to determine 
Xg and the figure shows how well the reconstructed gluon distribution compares to 
the input gluon distribution. It is clear that the method appears to work very well. 
Thus, if the theoretical underpinnings related to higher order QCD corrections to 
Eq. (53) can be successfully handled, it appears that heavy flavors production 
in ep collisions can provide a very good independent determination of the gluon 
distribution function. 

3. Deep Inelastic Scattering at Small x 

Besides trying to measure in an independent manner the gluon distribution 
function, HERA will naturally explore deep inelastic scattering at extremely low 
values of x [ c.f. Fig. 11 where the x - q2 range which can be accessed at HERA is 
detailed]. This is an extremely interesting region theoretically. Furthermore, pre
dictions for high energy experiments at the SSC and LHC will depend considerably 
on our knowledge of the structure functions of quarks and, particularly, of gluons 
at small x. Thus it behooves us to spend the rest of these lectures discussing what 
are the theoretical expectations and what are the uncertainties, concerning deep 
inelastic scattering in this region. 

What makes the small x region in deep inelastic scattering interesting is that 
new dangerous logarithms, involving Do! fnx enter. Through the Altarelli Parisi 
equations and factorization we learned in Sec. 2 how to handle the large infrared 
logarithms that threatened perturbative QCD. For small x physics we have to 
understand what to do with these new Do! fnx terms. In fact, as Levin and Ryskin 
have emphasized,38 there are 3 interesting regions to explore in the x - q2 plane. 
These are depicted schematically in Fig. 20. These are: 

i) The purely deep inelastic region, where q2 is large (q2 > > q5) and x is moderate 
(x ~ xo). 

ii) T he deep inelastic, small x region, where q2 is large (q2 > > q5) but x is small 
(x «xo) . 

iii) The Regge region, w here both q2 and x are small (q2 ;S q5 ; x < < xo) . 
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Figure 19: Comparison of the reconstructed gluon distribution, obtained by study
ing the dil~ptons produced in heavy quark decays, compared to an assumed input 
gluon distribution. From.37 

Although it is difficult to draw strict boundaries between the regIons, sensible 
choices for q6 and Xo are q6 ~ 4 Ge V 2 , Xo ~ 10-2 • 

In the deep inelastic region the only important large logarithms involve 
as f nq2 and their proper handling eventually leads to the running of the parton 
distribution functions. How these functions run is detailed by the Altarelli Parisi 
equations. I~ the small x, deep inelastic region, one has both a" fnx and a" f nq2 

terms, along with double logarithms like a" fnx fnq2. These logarithms, as we 
shall see, if left unchecked give rise to unphysical characteristics. However, when 
parton-parton interactions at low x values are included through the, so called, 
Gribov Levin Ryskin (GLR) equation,39 one again can control these dangerous 
logarithms. The GLR equation will also help tame some of the difficulties caused 
by the a" fnx logarithms, which enter in the Regge region. Although there has 
been considerable theoretical work in the low x region, the status of the theory 

here is considerably less well established than in the purely deep inelastic region. 
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Figure 20: Interesting regimes in the x - q2 plane. Adapted from. 38 

To begin to understand some of the new elements involved in low x physics, 
it is useful to return to examine the Altarelli Parisi equations. Recall that the 
Altarelli Parisi equation for the moments of the non singlet structure function 

where 

(58) 


(59) 


and 

( 2) fl d~ n P
An q = 10 T~ qq(~) 1 (60) 

had a very simple solution [c.f. Eq. (26)]: 

(61) 


It is useful to rewrite Eq. (61) in terms of a power series expansion. By doing so 
one can associate each term in the expansion with specific Feynman diagrams, 
whose set when summed gives the full moments of the non singlet distribution 
function. 40 Expanding Eq. (61) one has 

(62) 


T his formula can also be derived from a diagrammatic analysis of specific 
Feynman graphs which contribute to the non singlet structure functions - and 
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Figure 21: Ladder graph whose discontinuity in the axial gauge contributes to the 
hth term in Eq. (62). In this diagram the gluon transverse momenta are ordered 
(q2 > > kil ... > > kih) as are the momentum fractions carried by the quarks 

~h > ~h-l > ... > 6 . 

hence to their moments. Because one is only interested in the leading logarithmic 
behaviour, one can simplify both the structure of the terms one keeps and their 
associated phase space factors. Effectively, one retains in these diagrams only those 
pieces in which the momenta of the produced partons are ordered in a particular 
way.4l I claim, without particular justification at this moment, that the hth_ term 
of Eq. (62) can be associated with the absorptive part* of the diagram in Fig. 
21 containing h gluon rungs. Indeed, it is easy to check that one can reproduce 
the formula (62), if one assumes furthermore that the transverse momenta of 
the gluons are ordered, so that the gluons farther away from the incoming virtual 
vector boson have smaller transverse momenta. That is, q2 > kil > k1.2 ... > kih. 
In addition, to reproduce Eq. (62), the longitudinal momentum fraction of the 
quarks in between the emitted gluons must also have decreasing value, as the 
quarks get progressively farther and farther away from the incident proton. That 
is, ~h > ~h-l •.• > ~1 > x. The result for Mn(q2) is recovered if the contribution 

*That structure functions are associated with absorptive parts of Feynman diagrams is partic
ularly clear in a parton picture, ~ince in calculating the deep inelastic cross section one sums 
over incoherent parton production processes. 

32 




of the qqg vertex to the absorp t ive part of the non singlet structure function, in 
this specified kinematical ordering, is simply given by 

(63) 

The vertex associated with Eq. (63) is shown in Fig. 22 . 
To obtain the contribution of graphs of the type shown in Fig. 21 to the 

non singlet structure function, one must perform the phase space integrals for 
the h-rung gluon diagram with the restrictions indicated, and then sum over the 
number of produced gluons from h = 1 to h = 00. Let us check that indeed the 
h-rung term precisely gives the right contribution to Eq. (62). The contribution 
to the non-singlet structure function is 

Figure 22: The qqg vertex of Eq. (63), with the corresponding kinematics shown. 
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where f(~) is the parton distribution of the initial quark in Fig. 21. In this language 
it is the emission of the h - gluons - with h going from 1 to 00 - which makes the 

structure function FNS(x; q2) run. t Taking the moments of Eq. (64) gives for the 
h-rung contribution of Mn (q2) the following expression: 

(65) 

Using that C(,(kiJ = lib In(kiI1\2) it is easy to check that the nested 
integrals in the curly bracket in Eq. (65) just give 

(66) 


Hence, indeed Eq. (65) reproduces the hth term of Eq. (62), provided one identifies 
the coefficient Cn as the nth Inoment of the "fixed momentum" parton non singlet 
distribution: 

Cn = fl d~h ~~fNS(~h) (67)io ~h 
Several comments are in order: 

i) We have demonstrated that the contribution to the non singlet structure func
tion due to the h-rung gluon graph of Fig. 21, with the kinematics as we 
specified and with the qqg vertex of Eq. (63), reproduces precisely the hth 

term of Eq. (62). This equivalence of the Altarelli Parisi equations with 
ordered ladder graphs, with vertices given by the splitting functions of 
Eq. (6~~), actually holds only in an axial gauge. 41 In any other gauge, the 
most singular contribution to the structure function arises not only from di
agrams in which the gluons are emitted from the initial partonic leg, but also 
from graphs where the gluons are emitted from the final partons. Of course, 
since the structure functions are gauge invariant, the answer one computes is 
gauge independent. Obviously, however, it is physically much more intuitive 
to present the calculation in an axial ga.uge, where the only diagrams which 
give logarithmic enhancements of lnq2, reflecting the collinear singularities 
caused by gluon emission, are the ladder diagrams of Fig. 21. 

ii) It is clear, either from Eq. (62) or from computing the ladder diagrams of Fig. 
21, that the Altarelli Parisi equations in leading order in QeD just give the 
leading logarithmic contributions. That is, the Altarelli Parisi equations sum 
up all contribution of order (a" lnq2 I 1\2)h in graphs with h-rungs, yielding 

tNote that, in this effectively "lowest order" treatment, the hadronic structure function 
F NS (.r; q2) coincides with the partonic non singlet distribution function INS (.r; q2). 
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a factor of (tnq2 / A2)h. Because o3[nq2/.\ 2 ~ O( 1), such a sum is necessary 
and the Altarelli Parisi equations just gi ve one the results of such a leading 
logarithm sum. 

This reinterpretation of t he Altarelli Parisi equations In terms of ladder 
diagrams sums is very useful for understanding what happens at low x. In the 
low x region, one encounters new logarithmic effects associated with inx, or more 
precisely, with in 1/x. In the Regge region, as we shall see, it will be important to 
sum up all terms of 0([0 3 in l/x]h), while in the low x, deep inelastic region one 
will need to account for, in addi t ion, of all terms containing (0 3 in q2)h, as well as 
mixed terms like (03 in q2 in 1/x)h. Because q2 and x are different ki nematical 
parameters and Os depends only on q2, 0 3 (q2) ~ (inq2) -1, it is clear that in both 
regions one will obtain progressively worse behaved terms as x -+ O. Thus, unless 
one includes some more physical input in this region, it is not surprising that one 
eventually runs into trouble. 

To begin to appreciate the problems one encounters, it is useful to start by 
looking at the Altarelli Parisi equations in the lo\\' x limit. Although we know 
that these equations sum up correctly all the in q2 terms, they do not account 
completely for all the small x physics. This physics, as we have just argued, can 
generage further logarithms of in 1 / x which need not be contained in the ladder 
graphs of Fig. 21. Because the gluon distribution g(x; q2) dominates over the quark 
distributions at small x [c.f. Fig. 12], it is sensible to just retain this distribution 
function in the Altarelli Parisi equations. That is, let us consider Eq. (39) in which, 
however, we drop altogether the singlet contribution due to fS(~; q2). In addition, 
since we are interested in the limit as x -+ 0, we can retain in the gluon-gluon 
splitting function only the leading term as z = Z-+ 0, namely 

x ~ 
Pgg ( -) ::: 2CA - . (68) 

~ X 

Thus, in the low x - limit, the Altarelli Parisi equation we want to examine just 
reduces to the following equation for the gluon distribution function: 

(69) 

Eq. (69) can actually be rather readily solved, if one assumes sufficiently simple 
boundary conditions. For these purposes, following Gribov, Levin and Ryskin,39 
it is useful to change variables from x and q2 to z and a, where 

Z = -CA 
en -; 

1 
a = in inq2 / A2 

• (70)
7rb x 

Then, defining G(z; a) = xg(x; q2), it is easy to see that G obeys the integro
di fferential equation 

(71) 
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If one takes as a boundary condition that at a = ao G(=; ao) = 1 ~ then it is easy 
to show39 that the solution of Eq. (71) is precisely given by a modified Bessel 
function of imaginary argument: 

(72) 


We will be interested particularly in the small x case where za > > 1. In this case 
Eq. (72) just gives that G(z, a) '" exp 2[zaP/2, so that in the small x limit the 
gluon distribution function takes the form 

(73) 

As we shall see, this result is precisely that which arises from summing a series of 

double logarithms involving terms of 0 ([a. en ~ en en f,lh). 
The reslLllt (73) is obtained again by summing the discontinuities of a set 

of ladder graphs quite similar to those of Fig. 21, but where now all rungs are 
gluons except for a final quark-antiquark pair where the external currents V· 
attach themselves. The relevant h-rung graph is shown in Fig. 23. In this graph, 
to reproduce Eq. (73) one must assume that besides the transverse momentum 
ordering of the emitted gluons, q'2 > > kil > > ... > > kl.h' these excitations have 
also a longitudinal ordering in which the rung closest to the external current has 
the least longitudinal momentum fraction: x < < Xl < < ... < < Xh. Finally, the 
triple gluon vertex reflects the form of the gluon gluon splitting function (68)t: 

(74) 


U sing the vertex (74) and the ordered phase space described above, the contribu
tion of the h-rung ladder or Fig. 23 to xg( x; q'2) is 

(75) 

tThe factor of xl£. is absorbed into the phase space factor. 
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Figure 23: Ladder graphs whose discontinuity produces the gluon distribution 
function given in Eg. (73), when one uses the gluon vertices of Eg. (74) and a 
phase space which is ordered in both longitudinal and transverse momentum. 

The integrals within the c.urly bracket above contain two kinds of nested 
integrals. The transverse momentum nested integrals will give as before a factor 
of [cf Eg . (66)] 

. 1 
Transverse nested Integrals = h! (fn f nq2/ A2)h (76) 

The longitudinal nested integrals, on the other hand, will give a factor of 

Longitudinal nested integrals = ~! [:~ in;]h . (77) 

Thus the sum over h of the h-rung integrals of Fig. 23 gives for the gluon structure 
function 

2 L 1 CA 1 q2 h
xg(x; q ) = --[- fn- fnfn-] . (78)

h (h!)2 7r x A2 

As anticipated, this is indeed a sum of double logarithms in Q" fn~ fnq2, This sum, 
in fact, can be performed and gives precisely the Bessel function 10 encountered 
previously: 
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which establishes our contention. 
The result of Eq. (79), however, cannot be correct as x --+ 0, since it leads 

to a violation of unitarity! It is easy to check that Eq. (79) as x --+ 0 grows faster 
than any power of (ens). But we know that unitarity restricts the ep cross section 
to grow at rnost as (ins)2 since: 

00" 2 2 
f7ep ,...., -2-Xg(x; q ) ~ f7pp ~ const (enS) (80)

q 

where the second inequality is the famous Froissart42 bound. Hence, it follows that 
the Altarelli Parisi evolution equations do not give a complete description of the 
problem for small x and must be suitably modified. 

Before discussing these modification, it is useful to consider also the expec
tation in the Regge region (q2 ~ q5, x < < xo) for very small x. As we shall 
see, also here similar problems with unitarity are encountered. The appropriate 
equation to describe the behaviour of the structure functions in the Regge region 
was first discussed by Lipatov43 and then derived and discussed in more detail by 
Balitsky, Fadin, K uraev and Lipatov in a series of papers.44 This equation - the 
BFKL equation - again can be obtained by looking at the sum of ladder graphs 
containing gluonic rungs shown in Fig. 23. However, in contrast to what happens 
for the small x deep inelastic region, because q2 is not large, the gluon rungs will 
only have longitudinal ordering (x « Xl •.• « Xh) but no transverse ordering. 
Because of this, furthermore, the three gluon vertex which enters in the ladder 
graph sum, in contrast to the vertex of Eq. (74), now depends on both kii-l and 
ki i . The idea that, in the Regge region, deep inelastic scattering is dominated 
by only longitudinally ordered ladder graphs gives an explicit realization of the 
Pomeron for these processes and was first formulated by Lipatov.43 It embodies 
the suggestion of Low and Nussinov45 that the Pomeron can be represented as a 
t - channel 2 gluon exchange process. 

The BFKL equation is more complicated than the corresponding Altarelli 
Parisi equation since there is no transverse ordering and the three gluon vertex 
has a non trivial dependence on both kih-l and kih' As a result, I will content 
myself to examine only the structrue of its h-rung factor, rather than the whole 
equation. Because in the ladder graphs of Fig. 23 the longitudinal integrals are 
nested, the BFKL equation will also have for the h-rung contribution a factor 
of t (in ~)h. However, the transverse moment urn dependence in the BFKL case 
is more complex. One finds for the h-rung contribution to the gluon structure 
function the expression 

• 2)]BFKL = 1 1 hJ2 22[xg ( x , q h-rung h! (in;) { d kl.l V(kl.' k1.1) 

... Jd2 
kl.h V( k~h-l, k~h)} (81 ) 

Here ki is the qij transverse momentum in Fig. 23 and ki ~ q2. The BFKL vertex 
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V above depends on the adjoin ing momenta in the ladder and is given by: 

(k2 k 2 ) - CA ( k2 ) [ ki i-I ( k 2 ) 8 ( A' 2 k 2 )1 (82)V l. i-l' 1.i - -0" l.i k 2 ,Ik 2 , _ k 2 ' I - l.1.i '.1.i-1 -.1.i , 
7r 1.1 1.1 -1 .1.1 

where 

(83) 

Note that the above vertex reduces precisely to the three gluon vertex V3g(i) in the 
limit in which the transverse momenta are strongly ordered, so that kl i - 1 > > k1.i: 

(84) 

Because in Eq. (81) the transverse momenta kL are not strongly ordered, 
the cont ribution in the curly bracket in this equation does not reduce simply to 
powers of the log-log of the virtual current momentum transfer q2 [cf Eq. (76)). 
One can, nevertheless, get some idea of what might be expected in the Regge 
region by considering a somewhat crude first approximation to V (kii-l , kl i ), in 
which one supposes that the dependence of kL-1 and ki i factorizes. 39 If the BFKL 
vertex were factorizable 

(85) 

then the transverse momentum integrals in Eq. (81) are again trivial to do and 
the curly bracket in the equation reduced to 

(86) 

where 

(87) 

In this approximation, the behaviour of xg(x; q2) in the Regge region is just 

(88) 

If A is positive, this is a singular behaviour as x -t 0, which again violates the 
Froissart bound of Eq. (80) since, for q2 = q5, x "-' q5/ s. 

Although the actual BFKL vertex is not factorizable, the result of the anal
ysis of Balitsky Fadin Kuraev and Lipatov44 shows that the gluon distribution 
function xg(x; q2) is given by a sum of terms of the above type, with various 
eigenvalues Ai. The maximum eigenvalue in this sum then gives the most singular 
behaviour as x --+ 0: 

. 2)] Regge ----+ A(q2)
[xg ( x,q x-o -,  (89)

x"mAl! 
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One can show, furthermore, that this maximum eigenvalue lies somewhere in the 
range 

3.6 2 12fn2 2 
-os(kO ) 2: Amax 2: --os(kO ) • (90) 

7r 7r 

where k5 is some appropriate infrared cutoff, beyond which one cannot trust the 
calculation.415 

The singular behaviour displayed at small x by the gluon distribution func
tion of Eqs. (79) and (89) is an indication that the Altarelli Parisi equation (in 
the deep inelastic regime) and the BFKL equation (in the Regge regime) give an 
incomplete description of the physics at small x. Before trying to consider alter
natives to these equations at small x, it is useful to try to understand physically 
what is the origin of the troubles one is encountering. A nice intuitive picture of 
what is happening has been put forth by Mueller.47 

Consider for these purposes ep scattering in a frame where xp > > VQi. Then 
a measurement of g(x; q2) probes gluons which have a transverse size ~Xl. 1/VQi,"-J 

but negligibile longitudinal size ~xll l/xp. In this frame, one can ask how much"-J 

of the area of the proton disk (7r R2) i~ occupied by gluons. If the gluons occupy 
an area much less than 7r R2, as shown schematically in Fig. 24a, then the QCD 
parton model should be OK since - even at low x values - there is not much gluon 
overlap and one can sensible imagine that there are no additional contributions. 
If, on the other hand, the gluon density in the proton is very high, as shown 
schematically in Fig. 24b, then the parton picture idea that the external current 
probes just one constituent parton in the proton (and its descendants) ceases to 
be a sensible approximation and one must include further interactions. 

The area occupied by the gluons is, approximately, 

dx 
Area glue transverse size. number gluons per "-J 

x 

(91) 

So, as long as 
xg(X;q2) R2 

2 «7r , (92) 
q 

one should be able to trust the results of the Altarelli Parisi or BFKL equations. 
However, when xg( x; q2) ~ 7r R2q2, corresponding to the schematic picture of Fig. 
24b, then the gluon density within the proton is so great that one must include 
more than the single ladders of Fig. 23 to account for the effects of the high gluon 
density. 
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Figure 24: a) Sparse gluon distribution in the proton for which the Altarelli Parisi 
and BFKL equations hold; b) gluon distribution in proton which leads to impor
tant corrections to the simple ladder contributions. 

When the inequality (92) is violated, it no longer makes sense to consider 
that under the probing of the virtual current a proton is "made up" of a linear 
chain of gluons, which are emitted independently but with well ordered momenta 
[c.f. Fig. 23]. At high gluon density effective gluon-gluon interactions are important 
which, in a Feynman graph language, correspond to having more than one gluonic 

chain participate when the virtual current V· probes the proton.§ These effective 
gluon gluon interactions lead to modifications of the Altarelli Parisi and BFKL 
equations which serve to restore unitarity. The relevant equation which includes 
these important effects is known as the Gribov Levin Ryskin equation (GLR 
equation) and was derived in the early 1980's by these authors.39 

Before discussing the GLR equation, it is interesting to see for what values 
of x and q2 one gets into trouble, as a result of Eq. (92) not being satisfied. For 
definitiveness, let us consider the deep inelastic low x region where the gluon 
distribution is given by Eq. (79). Setting xg(x; q2) in Eq. (79) equal to 7r R2q2 
determines the region in x - q2 space where effective gluon-gluon interactions 
become important. As is easily seen, this region is essentially a parabola in the 
in 1/x - in q2 plane given by the equation 

(93) 


The quantity in the square brackets above in the HERA energy range is of the 
order of 0.2. Fig 25 shows the intersection of the line given by Eq. (93) for two 
values of R [R = 5 GeV-I and R = 2 GeV-I] which as we shall see below are 
sensible, along with the kinematical region accessible at HERA. For regions to 

§That is, the current V· resolves more than one gluon (and its descendants) in the proton. 
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Figure 25: Kinematical region accessible to HERA. The diagonal lines correspond 
to a solution of Eq. (93), so that to the left of these lines multiparton interactions 
should begin to become important. 

the left of the diagonal lines the multi parton interactions should begin to be 
important. Obviously, in this respect HERA is a very interesting machine, for it 
will begin to probe this new kinematical regime. 

After this qualitative discussion, let us begin to consider more seriously how 
the very singular behaviour as x -. 0 in the Altarelli Parisi and BFKL equations 
[c.f. Eqs. (79) and (89)] gets fixed. What cures the very singular x -. 0 behaviour 
in these equa.tions is the incorporation of more than one gluon ladder (and the 
interaction of the gluons in these ladders) to describe the partonic content of the 
proton. These further contributions give a shadowing correction to the original 
very singular behaviour of xg(x; q2) as x -. 0, yielding finally a function which is 
better controlled in this region. 

In diagrammatic language, the shadowing corrections arise from the Feyn
man graphs shown in Fig. 26, in which one is instructed to take the discontinuity 
coming from all the possible cuts. These graphs lead to a decrease in the growth 
of xg(x; q2) a.s x -. 0, with this function eventually reaching some limiting distri
bution for extremely low x values. The precise value of this limiting distribution 
is, however, not a matter that is totally resolved, because as x -. 0 further cor
rections beyond those shown in Fig. 26 can intervene. ~ Mueller,47 for instance, 

.These corrections correspond to probing multigluon states (Ng > 2) and their associated 
ladders in the proton. 
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Figure 26: Ladder interactions whose effect is to shadow the singular contribution 
as x -+ 0 coming from the contributions of a single ladder. 

argues on the basis of the Froissart bound42 that as x -+ 0 the gluon distribution 
should approach 

--+ 
xg(x; q2) X -+ 0 q2 R2 h(x; q2) . (94) 

with h(x; q2) being weakly dependent on x and q2, with perhaps h(x; q2) ~ fn 21/x 
The ladder diagrams of Fig ..23 lead to either the BFKL or the Altarelli Parisi 

equations, depending on what the assumed vertices and transverse momentum 
orderings are. Including the diagrams of Fig. 26 leads to a nonlinear modification 
of these equations, whose principal characteristic is to damp away the unphysical 
behaviour at low x. The inclusion of the diagrams of Fig. 26 is what gives rise to the 
Gribov Levin Ryskin equation. In this equation,39 at small x a new fundamental 
object becomes important for the description of the relevant physical phenomena: 
the triple ladder vertex shown in Fig. 26. 

To understand the role of the triple ladder vertex, it is useful to give a 
pictorial description of the Altarelli Parisi equation for the gluon distribution 
function. The differential form of the equation, given in Eq. (69), is easily see- to 
be equivalent to the following integral equation 

2 2 jq2 dk'i fl d~ CA 2 2 
xg(x; q ) = xg(x; qo) + ki Jx T-;-Q,,(k.L)Cg(C; k.L) , (95) 

where xg(x; q5) is some input gluon distribution. This integral equation associates 
diagramatically xg( x ; q2) to the graph of Fig. 27a, while the second term of Eq. 
(95) corresponds to the graph of Fig. 27b, in which there is an extra gluon rung. 
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The diagram of Fig. 26 - which because of its shape has become known as 
a fan diagralTI - corresponds to the (fir~t) non linear modification to Eq. (95). To 
the right hand side of Eq. (95) one must add the contri bu tion of the fan diagram, 
shown more schematically in Fig. 28. Note that, as I already mentioned earlier on, 
since in the fan diagram there is more than one way to take the discontinuity, the 
resulting contribution to xg( x; q2) is the su~ of all these discontinuities. A rather 
involved COITlputation39 

48 secures the following contribution to xg(x; q2) coming 
from the fan diagram: 

(96) 

y'l ::I (Y 
I I I 
I I:- - t- -I 

p p P 1-. p 

Figure 27: a) Pictorial representation of xg(x; q2) and of b) its one gluon interac
tion. 

where the triple ladder vertex VTL(ki) above is given by 

(97) 

Various remarks are in order: 

i) The contribution of the fan diagram depends - rather naturally not on xg(x; q2) 
but its square. So this contribution is negligible in physical circumstances 
(and kinematical regions) where the gluon density in the proton is low, like 
in Fig. 24a. However, this becomes important when this density starts to 
grow and one arrives at the situation schematically depicted in Fig. 24b. 
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ii) Because of the nlinus sign in Eq. (96)1 the non linearities associated with the 
fan diagram indeed serve to damp the unphysical behaviour of xg(x; q2) at 
low x. The presence of this sign is the result of the shadowing of one ladder 
by another and is characteristic of absorpt ive phenomena where unitarity 

comes into play. II. 

iii) The triple ladder vertex VTL(kl) contains an uncalculable radius parameter 
R. T his parameter is associated with the momentum flow along the gluon 
ladders in Fig. 28 1 which gives rise to an infrared sensitive integral which 
must be cut off at some scale. One can proffer arguments for R lying some
where in the range47 

2 GeV- 1 < R < 5 GeV- 1 
, (98) 

with the lower limit above being associated with the size of a valence quark 
and the upper limit being given by the size of a nucleon. 

iv) The fan diagram contribution is a higher twist effect, since the triple lad
der vertex gives an extra contribution of k~ . This is most easily seen by 

.l.. 

considering the f nq2 derivative of the fan diagram contributions 

(99) 

If one includes the contribution of the fan diagrams, the gluon distribution 
function no longer satisfies the Altarelli Parisi equation (or the BFKL equation 
in the Regge region) but a non linear integro differential equation - the Gribov 
Levin Ryskin (GLR) equation. For the gluon distribution in the deep inelastic, 
low x region, this equation takes the form: 

d 2 
d fn q2 [xg(x; q )] 

(100) 

IIFor further discussion of this point , see48 and, particularly,39 
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Figure 28: Schematic representation of the fan diagram which include the triple 
ladder vertex VTL . Note that all cuts through the ladders n1ust be taken to obtain 
Eq. (96). 

The second contribution on the RHS above comes precisely from the fan 
diagrams [c.f. Eq. (99)]. This equation has been analyzed recently numerically by 
Collins and K wiecinski49 and by Bartels Blumlein and Schuler50 and I will discuss 
here some of their results. Fig. 29, taken from,49 shows how the inclusion of the 
fan diagram contribution modifies the small x behaviour of the gluon distribution 
function considerably. Furthermore the amount of shadowing clearly depends on 
the scale one assumes for the radius parameter R. 

Similar results to those discussed by Collins and K wiecinski49 have been 
obtained by Bartels et al who also included shadowing corrections via the GLR 
equation. Fig:. 30 shows their results for the gluon distribution function in two q2 
regions and flOr two rather distinct x regions. For x 10-3 

- 10-5 the shadowing"J 

effect computed by Bartels et al is qualitatively similar to that shown in Fig. 29. 
However, for extremely low values of x (x:S 10- 15 ne gluon distribution actually! 

appears to saturate to some nearly x independent, but q2 dependent value. The 
saturation of the gluon distribution function at the very small x values shown in 
Fig. 30 should be taken with a grain of salt. Saturation, roughly speaking, means 
that the quadratic term in 9 in Eq. (100) are of the order of the linear terms. But 
when this happens one cannot neglect higher nonlinearities - i.e., fan diagrams with 
multiladders proportional to [~9(~;q2)]Ng. For small, but not extremely small x, 
the ratio of the quadrat.ic to the linear term in the GLR equation is still sensible, 
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as Fig. 31 shows. However ~ this same ratio would begin to go out of control as x 

becomes very small. 

100~--~------.----r----~-----'----1 

N O 
c::r 

1 ~____~______L-____~____~______~_____ 

.000t .0002 .0005 .001 .002 .005 .01 

x 

Figure 29: Plot of xg( x; q2) versus x for three differrent assumptions. The solid 
line is the result of the Altarelli Parisi equation, while the dash-dotted and dashed 
lines incorporate shadowing with R = 5 GeV-I and R = ~ GeV-I in the GLR 

equation. From. 49 

Although the results shown in Fig. 29 and 30 are quite interesting, it is 
important to note that the actual results one obtains are rather sensitive to what 
equation and what input distributions one uses, as well as the strength one assumes 
for the nonlinearities in Eq. (100). This salutory lesson emerges clearly from the 
study of Bartels et al. For instance, Fig. 32 shows that the differences between the 
Altarelli Parisi equation with the simplified low x structure for the gluon-gluon 
splitting function and the full Altarelli Parisi equation is comparable to the effect 
of including the first nonlinearities in the simplified equation through Eq. (100)! 
Similarly, by taking different input distribution functions at some low q2 value 
(normally q5 = 4 GeV 2 

), one obtains quite different amount of shadowing. As it 
is physically clear, the more singular the input function is, the more shadowing 
one is to expect. This is illustrated in Fig. 33 for two radically different input 
distributions. The Morfin-Tung5I distribution function is singular as x --+ 0 

(101 ) 
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while the input distribution of Eichten et aJ52 is x independent: 

[xg(x; q6)]EHLQ const ( 102) '"V 

As a result, as is dernonstrated in Fig. 33, the former distribution function has 

considerably stronger modifications at small x, as a result of shadowing. 
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Figure 30: Plots of xg( x; q2) for two different values of q2, as a function of y ~ 
6.6 loglo( ~). The dashed line is the result of the Altarelli Parisi equation while 
the solid line gives the result of the GLR equation. Note how, for extremely low 
values of x, the gluon distribution function saturates. Adopted from. 50 
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Figure 31: Plot of the ratio P( x; q5) which measures the size of the quadratic 
gluon contribution compared to the gluon contribution itself in Eq. (100), for the 
case when no shadowing is taken into account (solid line) and when shadowing is 
included (dashed line) . Here q5 = 4 GeV2 and R = 5 GeV- 1
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Figure 32: Comparison between the gluon distribution functions obtained by using 
the simplified Altarelli Parisi equation Eq. (69) [DLA], the full Altarelli Parisi 
equation [LL(Q2)A] and the GLR equation, Eq. (100) [DLA + fan]. From.50 
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Figure 33: Comparison of shadowing for different input distribution functions: a) 
The input distributions of Morfin and Tung51 and Eichtein et al 52 at q5 = 4 GeV2; 
b) The evolved distributions including (dashed lines) and excluding (solid lines) 
shadowing. Adapted from. 50 
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T he above discussion points to the need of further experimental and theo
retical input before one can hope to really understand the low x behaviour of the 
gluon (and quark) distribution funct ions. T his point emerges very clearly from a 
recent paper of K wiecinski, ~1 art in, Stirling and Roberts. 53 These authors have 
done a careful reanalysis of the struct ure functions at low x and have considered 
their evolution to larger q2. The study of Kwiecinski et al 53 was based on the GLR 
equation in which the full splitting functions - including corrections of O( Q.,) - are 
used. Furthermore, for low q2 and small x the linear term in the GLR equation 
used is precisely that of the BFKL equation. The result of their analysis is that 
present day data is incapable of distinguishing between input gluon distribution 
functions which are singular and those which are not. This is illustrated clearly in 
Fig. 34 where the BCDMS data for F2 is obviously fit equally well by either the 
E_ or Eo curve. These curves are generated by evolving xg (x; q5) from two rather 
different input gluon distributions. In the case of the Eo curve, the input gluon 

053distribution at q5 = 4 Ge V 2 has a non singular behaviour as x ----t : 

xg(x; q6) = 2.87 (1 - X)5.I (set Eo) (103) 
I 2The E_ set on the other hand, at q5 = 4 Ge V 2 behaves as x- / as x ----t 0: 

. 2) _ 0.26.5[1 + 20x]( 1 - X )5.5 
xg (x, qo - x / (set B_) (104 ) 

1 2 

Although both the E_ and Eo sets fit the existing data equally well, they 
begin to depart from each other at values of x :S (2 - 5) X 10-3 • In both sets 
the effects of shadowing are beginning to be felt in the HERA range, although 
numerically the singular set with shadowing, using R = 2 Ge V-I, gives roughly 
the same contribution as that of the unshadowed non singular set!** This is shown 
in Fig. 35, both for F2(x; q2) and for the longitudinal structure function FL(X; q2). 
Because HERA will be able to measure xg(x; q2) at small x, it is clear that it will 
give important new input information for extrapolating these structure functions 
to the even smaller x 's of interest for the LHC and the SSC. Furthermore, if at 
HERA one could also measure xg( x; q2), for different values of q2 one could already 
get some information on how important the shadowing is in the q2 evolution. 

In Section 2 we already discussed various ideas of how to extract xg(x; q2) at 
HERA from measurements of FL(X; q2) and by studying heavy quark production, 
both at the 1/J and in the continium. As a last topic in these lectures I want 
to briefly return to this issue - particularly as it concerns the measurement of 
xg(x; q2 ) from heavy quark production. The main formula for QQ production 
which we used in our earlier discussion was based on the lowest order graph for 
photon gluon fusion, shown in Fig. 36a, which yields 

(105) 


**This kind of ambiguity is similar to the one found earlier by.50 
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Figure 34: Fit to to F2 ( x) at q2 = 20 Ge V2 using as inputs the gluon distributions 
of either the B_ set or Bo set. From. 53 

This formula can be perturbatively improved by calculating the O(Q!) corrections, 
and this was done by Ellis and collaborators32.34 However, as we discussed in this 
Section, since one is interested really in the low x behaviour, one should really 
sum the whole set of gluon ladders, shown in Fig. 36b, which build up the small 
x behaviour of the gluon distribution function. 

Catani, Ciafaloni and Hautmannn35 have pointed out, however, that the 
inclusion of the gluon ladders does not simply replace Xg9(Xg; Q2) in the naive 
formula (105) by an "improved" gluon distribution, such as would emerge from 
solving the Altarelli Parisi equation (95) or its improvement, the GLR equation, 
Eq. (l00). Rather, the inclusion of the ladders of fig. 36b results in a formula for 
r7-yp which, more correctly, involves a kl. -space convolution: 

(106) 
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Figure 35: Expectation for the structure functions F2(x; q2) and FL(x; q2) in the 
HERA energy range using the B_set (unshadowed-solid line; with shadowing 
[R = 2 GeV-l]-dashed line) and the Bo set (unshadowed-dotted line). From.53 
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Figure 36: a)Lowest order photon gluon fusion graph for QQ production; b) gluon 
chain entering in photon gluon fusion which builds up the small x behaviour of 
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Here ;' is the cross section for -; g( k) ~ QQ in which the gluons have a trans
verse momentum kl. and F is related to the gluon structure function. when one 

integrates it over ki: 

(l07) 

Figure 37 shows a pictorial representation of Eq. 106. 
Because of the kl. convolut ion of Eq. (106), the final result for a,P is not 

simply given by replacing the gluon distribution function in Eq. (105) by its "im
proved" version at small x. Rather the kl. convolution produces an effective /{
factor, whose magnitude can in fact bp very large. For example, if one uses a gluon 
distribution corresponding to the solution of the BFKL equation 

(108) 

the /{-factor calculated by Catani, Ciafaloni and Hautmann35 is /{BFh'L ;~7r2, 
which is indeed large. Of course, with enough data it may be possible to undo the 
convolution in Eq. (106) by studying the transverse momentum distribution of the 
produced heavy quarks. Nevertheless, this discussion makes it clear that, although 
HERA will provide invaluable information on the gluon distribution function at 
small x, considerable further theoretical analysis will be necessary before this func
tion can be unambiguously extracted from the data. 
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