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ABSTRACT. The Grassmannian analogues of the Legendre polonomials are obtained 

f rom the corresponding Grassmannian Hermite mul tinomials. The generating 

function, recurrence relations and differential equation are given. In 

contrast to the Hermitian case there is no Berezin weight function that 

orthogonalizes these functions. Generalizations to the Tchebyscheff and 

Gegenbauer cases are also possible. 
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1. Introducti on. 

In an earlier investigat i on o f the representations of the s upe r -Poinca r e 

algebra, it was found useful to introduce a Grassmanni a n v e rs i on of t he Hermi t e 

1
functions. In that context these fun c tions appear as eigenfunct i ons of the 

second Casimir in all but 2 mod 8 dimensions . In ten dimensions they a ppear a s 

. . 2 ..
elgenfunctlons of the operat o r s o f the Cart a n subalgebra. Not surprlslngly 

3
they also appear as eigenfunct i ons of t he Gras s mannian oscillator. They are 

simply re l a ted to the Hermite mult i nomi a ls in many variables that were 

4
introduced by Hermite. One may t hen naturally as k about similar Grassmannian 

constructions that correspond t o other classical polynomials. In particular we 

are here interested in the Grassmannian analogues of the Legendre polynomials. 

If the Grassmann elements are interpreted as coordinates on superspace, 

then these multinomials provide a basis in superspace. In the Hermite case 

they are orthogonal in the Berezin sense. If these anticommuting elements are 

alternatively identified with fermionic emission and absorption operators, 

then the same formal express i ons, in which the individual terms represent 

clusters of fermions, may serve as a basis in Fock space where orthogonality 

would be defined in the Fock sense. There is also a geometric interpretation 

according to which these Grassmannian constructions may be regarded as 

simplicial complexes or as the corresponding sums of differential forms. 
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2. Grassmannian Hermite Multinomials . 

The 	extension to many variables of the familiar Hermite pOlynomials was 

3
introduced by Hennite and may be defined as follows: 

--1
H (x)
ml' ... ,~ 

(2.1) 

where (-) - (-1) and 

n 

m m, (2.1a) 
l 

i=l 


n 

--1 	 i j

<j>(x) C, ,x X 	 (2.1b)
lJ 

i,j=l 

i
Here C, , is a real symmetric matrix and the x 	 are commuting variables.

lJ 

, '" 1,2
The Grassmannlan generallzatlon lS 

Om , ... ,~ a
H 1 (q) (2.2) 

where n is even and 

(2.2a)q~ 

qq (2.2b) 

Here the q 
a 

are G:cassmann arguments 

o o a, ~ 1, ... ,n 	 (2.3) 
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and 	C is a hermitian but antisymmetric matrix. 

It is assumed that C is invertible and therefore of even order. Then 

q~ q ( C - l)a~ 	 (2.4) 
a 

~ (C- l ) a.f3 (2.5) 

oqa 

and 

(2.6) 

where 

H (q) 	 (2.7)
~l •• 	·~m 

One may establish a generating function, orthogonality, recursion 

relations and a partial differential equation for both the commuting 

and anticommuting cases. We consider just the anticommuting case. 

The 	generating function is 

E (m) Hal ... Urn (q)exp[-tt+2tq] ) t ... t 	 (2.8a)
m! (Xl Om 

E (m)) t~l ... t~m (q) 	 (2.8b)H~l ... ~mm! 

where the to. also are Grassmannian and also anticommute with the qa 

o o . 	 (2.9) 
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Here 

(_1)m/2 (m-1) .£ (m) (2.10) 

Orthogonality is expressed by 

1
f [dq] exp [- -2 qq] Hal" '~(q) H (q) (2.11)~l •• '~m 

where 

(_1)n/2 PfC . (2.12 ) 

Here a Berezin integration is understood and PfC is the Pfaffian of C. 

3. Recursion Relations and Differential Equations. 

Starting w:_th the generating function (2.8b) one obtains by 

differentiating with respect to q and t respectively 

d
-H (q) -2m C~[Al HA A (q) (3.1)
dqA ~l'" ~m 1\ j...I PZ ••• Pm] 

o . (3.2) 

These may be combined to give the second order equation 

o . (3.3) 

We also know the differential equation satisfied by the complete Hermite 
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o 2
functlon: 

(3 .4) 

where 

1 - ] AI" · An exp [ - "2 qq H (q) (3.5) 

from which i t follows that 

o . (3.6) 

4. Grassmannian Lege ndre Multi nomials. 

One may pass from the Hermite to the Legendre polynomials by the following 

rescaling procedure beginning with the usual expression for the generating 

function for the Hermite polynomials 

00 

exp [2xt-t 2 
] (4.1 ) 

n=O 

After rescaling both x and t and applying the operator 

(4.2) 

one finds 

00 
2 A2_A 2 -- tnr [ _A) --, dA An e H (Ax) = e dA =~n/A (4.3) 

__ n. n 
n=O -00 -00 



where 

- 1/2
A (1-2xt+t L 

) • (4.3a) 

-1/2
But (1-2xt+t 2 

) is the generating function for the Legendre polynomials. 

Therefore 

p (x) (4.4) 
n 

As this procedure is primarily a rescaling it may also be applied to the 

many variable functions. In the commuting case we have 

~ 
H~(x) exp [2C, ,z, x, - C, ,z, z , ] (4.5)> m lJ l J lJ l J 

Then 

-'A2 "1m "I~ 
e A H~(AX) (4.6)> m 

where 

n 

m m, (4.6a) 
l 

1 

and 

1 - 2C, ,'Z,X, + C, ,z,z, (4.6b)
lJ l J lJ l J 

where the repeated indices are summed . . Since A is the many variable form of 
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(4.3a) let us define the corresponding many variabl e form of the Legendre 

polynomial s by 

m. (4.7) 

Then 

--1 -1/2
P (x) (1 - 2 C . ,Z, X, + C,' z,z,) (4.8)

ml ... IDn lJ l J lJ l J 

The extension to Grassmann variables is now immediate. Rescaling the t and q 

elements of (2 .8) by the commuting element, A, one finds 

1 E (~) t~l ... t~m [ ciA (4.9) _ m, 
-00 

and 

- -1/21 E (m) t~l ... t~m P (q) (1 - 2 tq + tt) , (4.10)
~l •• ·~m 

where 

P (q) (4.11)f31 ... f3m 

Again 

(4.12 ) 

The generating function is 



- -1/2
(1 - 2tq + tt) . 	 (4.13 ) 

5. The Explicit: Multinomials. 

We shall obtain these multinomials by expanding their generating 

function. Both the Hermite and the Legendre expressions depend upon the 

bilinears tq and tt which are simply c-numbers. Let us first consider the 

Hermite case 

00 

(2tg-tt) p 
exp [2tq-tt] 	 ') p! 

(5.1 ) 

p=O 

00 p 
1 - s (2tq) p-s) ) p! (~) (-tt) (5.2) 

p=O s=O 

or 

00 [n/2 ] s 
(-) - s - n-2s 

exp [2tq -tt] ') ) (n:s) (tt) (2tq) , 	 (5.3)
(n-s) ! 


n=O s=O 


where 

n = s + P . 	 (5.4) 

The generating function for the Legendre multinomia1s may be expanded in 

the same way 

00 

(1+tt-2tq) -1/2 ) 
(-)p 

(tt-2tq) p 	 (5.5)(2:)22P 
p=O 

()O p 
- s;- ) d (tt) (tq) p-s 	 (5.6)(2:) (~)2P+s 

p:=O s=O 
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by a repeated use of the binomial expansion. Again let 

s+p (5.7)n = 

then 

(5.8) 

and 

00 [n/ 2] 

- - -1/2 - s - n-2s 


(1+tt-2 t q ) ) (tt) (tq) . (5.9) 

n=O s=O 

By comparing (5.3) and (5.9) one sees that the two expansions are both 

functions of (tt)s (tq)r. Written out in detail this common product is 

- s r al ~ s Y1 Yr 81 8 r ) (tt) (t q ) E ( r ) (G A At ... t ) (G ~ ~ t ... t q ... q
alPl·· .asps Ylul·· ·YrU r 

(5.10) 

where 

r(r-1)/2
E (r) (-) (5.11) 

and 

s 

n (5.12) 

k=l 

Here E (r) is the sign induced when the t and q factors are reordered. 
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In Eq. (5.9) r is n-2s. Then 

s - s - n-2s
(-) (tt) (tq) 

(5.13 ) 

n A1 An 
(-) E (n) 	 t ... t G~ ~ q~ q~ (5.14 ) 

1\.1 •• ·1\.2s 1\.2s+1··· I\.n 

Since the 	tIs anticommute, (5.14) may be reexpressed as 

s - s - n-2s 
(-) (tt) (tq) 	 (5.15) 

where 

n 
(-) G ~ ~ q~ ... q~ 	 (5.16)

[1\.1·· ·1\.2s 1\.2s+1 I\.n] 

is completely antisymmetrized. 

We may now return to (5.3) and (5.9). The Hermite generating function 

becomes 

00 [n/2] 

2tq-tt E (n) 
 n-ss] A1 An s 2 (5.17)e 	 -; ) (n-s) ! [ t ... t G A1 ... An ( q) 


n=O s=O 


and the corresponding Legendre expansion is 

00 [n/2] 
A1 An s) -; 	 t ... t G ~ ~ (q) .(5.18) 

1\.1 •• ·I\.n 
n=O s=O 

The expansions (5 .. 17) and (5.18) may be compared with (2.8) and (4.10). We 
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then find 

[n/2J 
1 1 s 

H
Al ... An 

(q) n! ) (n - 2s ) ! s! G A 
1 

• •• A 
n 

(2q ) (5.1 9 ) 

s=O 

1 [)/2 J [:) [2n:2S) s p (q ) G (q ) (5. 20 )
Al ... An 2n Al .. . An 


s =O 


One may check the transform 

[n/ 2J 
1 n

n! ) y
(n-2s )! s! 

s=O 

(5.21) 

But 

n n-2s 
y (2y) 

(5.22) 

~1t 
2 n 

(2n-2s)! 
(n-s)! 

GS 
Al ... An 

(q) (5.23) 

Therefore 

(5.24) 

as required. 

The formulas (5.19) and (5.20) are useful for computing the individual 

multinornials. In these formulas G
S 

(q) is given by (5.16) or 
Al .. :An 
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n 
(-) (5.25) 

Here s counts the number of C factors. Except for alternating signs the 

numerical coefficients are the same as for the usual Hermite and Legendre 

polynomials. 

The basis functions G 
s 

(q) satisfy the following simple relations
Al ... An 

s+l 
G (5.26)

aA1 ... An 

-G
s 

(q) (5.27)
aAl ... An 

(5.28) 

Example: System of 4 anticommuting elements 

(a) Hermitian system 

(b) Legendre system 
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3 5 - ­
-2 C ~ ~ q~ - -2 q~lq~2q~3

[1\.11\.2 1\.3] I\. I\. I\. 

6. Recursion Relations for Legendre Multinomials. 

We have 

00 

- - -1/2
(1+tt-2tq) ) [-1;2] (tt-2tq)P (6.1 ) 

p=O 

00 

- - -3/2 ) [-3;2] (1+tt-2tq) (tt-2tq) P (6.2) 

p=O 

00 

[-1/2]) (2p+1) p (tt-2tq)P (6.3) 

p= O 

Then if we complete the expansion of (6.1) and (6.3) as in (5.18) and 

abbreviate as follows, 

00 [n/2J 

- - -1/2


(1+tt-2tq) ) ) A (-1/2) (n, s) t Al ... t An 
G

S (q) (6.4)
Al ... An

n=O s=O 

00 [n/2] 

- - -3/2 s


(1+tt-2 tq) ) ) A (-3/2) (n,s) t Al ... t An G (q) (6.5)
Al ... An

n=O s=O 

we have 
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(-1/2)A (-3/2) (n, s) (2n-2s+1) A (n, S) , (6.6) 

where 

(-1/2)
A (n, s) (6.7) 

In rewriting (6.1) as (6.4) we have replaced p by n-s. We also have by (5.20) 

and (6.7) 

[n/2] 
S 

E (n) ) A (-1/2) (n, s) G A1 ... A (q) (6.8) 
n

s=O 

a
Then differentiating (4.10) with respect to q 

00 

~ - - . 3/2
Ca.f3t (1+tt-2tq) ) (6.9) 

n=O 

and by (6.5) 

00 [n/2] 

(-3/2) ( ) ~ A1 An s
Ca~ } } An,s t t ... t G A1 ... A (q) 

n
n=O s=O 

00 

A1 An ':I) E (n+1) t ... taP,) ') (q) 
a 1\.1 •• ·I\.n 

n=l 

00 

) 
n=O 

00 

~ ~ A1 An ':I- _I E (n) t t ... t a PA') ') (q) (6.10 ) 
a ..... 1\.1 ••• I\.n 

o 

or 
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[n/ 2 ] 

;- A (-3/2) (n, s) GS 
,\ '\ (q) -E (n) a P (q) (6.11) 
1\.1 •• ·I\.n] a ~A1'" An 

s=o 

By (6.6) 

[n/2 ] 
-1/2 s 

(2n-2s+1) A (n, s) G (q)Ca[~ > A1 ... An ] 
5=0 

(6.12) 

and by (6 . 8) 

[n/2] 
-1/2


(n+1) E (n) Ea[R P (q) + C R (n-2s) A (n, s) 

P A1" .An ] a[p > 

s=o 

(6.13) 

But 

(6.14 ) 

S 
since G is homogeneous of degree n-2s and therefore 

A1 ... An 

(-1/2) s 
(n-2s ) A (n, s) G (q)

A1 ... An 

(6.15) 

Then by (6 . 13 ) 

:-, ([ 0':-, (1)] C ( ) o . (6.16)°aPR'\l .. ''\n q) + q o~ + n+ R P,\ '\ qpI\. I\. v a[p 1\.1" .I\.n] 
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This last equation expresses the derivative of the (n+1) st multinomial in 

terms of the nth multinomial and its derivative. 

Next by differentiating (4.10) with respect to t we obtain, with the aid 

of (6.5) 

A2 An
nE (n) t ... t p~~ ~ (q)

UJ\..2 ... An 
n 

\ \- [ (-3/2) Y A1 An (-3/2) y A1 An]Ccry 1 L_ A (n, s) qt ... t - A (n, s) t t ... t 

n s 

(6.17 ) 

or 

~ \ \ (-3/2) A1 An GS 
C~q __ __ A (n,s) t ... t A ••• A (q)I I 

1 n 
n s 

(6.18 ) 

c·n ....> 

Then 

S 
-(n+1) E (n+1) PaA1 ... A (q) (-) n 1 A (-3/2) (n, s) q[a G Al .. . A ] (q) 

n n 
s 

GS+) A (-3/2) (n-l, s) C [~~1 (q) (6.19)
UJ\.. A2 ... An] 


s 


By (6.6) 
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GS S
) A (-3 / 2) (n, s) (q) (n+1) -;- A (-1/2) (n, s) G (q)


Al ... Al ...
An An 
s s 


\" (-1 / 2) s 

+ _1_ (n-2s) A (n,s) G (q)

Al ... An 
s 

and according to (6.8) and ( 6 .14) 

E (n) [q(J 0 + n + 1J P (q) (6. 2 0)
oq(J Al ... An 

Then (6.19 ) becomes 

- (n+1) E (n+1) P (q)
aAl ... An 

(_)n q[a. {E (n) [q(J0(J+n+1] P (q)}
Al ... An ] 

+ C[~~l {e (n-1) [q(J0(J+n] p (q)} . 
UA A2 ... A ]n
 

(J

where q 0 is excluded from the antisymmetrization. We then have the following(J 

equation which connects three successive orders 

(J (J
(n+1) P (q) + q (q 0 +n+1) P (q) - (q 0 +n) C P (q)

aA1 ... An [a. (J Al ... An ] (J [aAl A2 · .. A ]n 

o . (6.21) 

This equation may be checked for the explicit forms (5.20) with the aid of 

(5 . 26) - (5 . 28 ) . One ha s 

(J 
q (q 0 +n+1) P (q)

[a. (J Al ... An ] 
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-2
-n 

[n/2] 

) 

s=o 

[nS] [2n 
n 
-2S] (2n-2s+1) GS 

aAl 
(q) 

...An 
(6.22) 

a
(q a +n)

cr 
C ~ 

[OA l 
P~ 

1\.2 ] 
~ 

••• I\.n] 
(q) 

2 ·-n+l 
[n+l/2} 

) 

s=1 
[ 
n-l] [2n-2S] 

s-1 n-l 
(2n-2s+1) 

S 
G 

aAl ... An 
(q) (6.23) 

Then 

n+l 

2 n+1 

(n+l) 

[<nr-) /2] [n+l] [2n-2S+2] 

-­ S n+l 
s=o 

P (q)
aAl ... An 

(6.24) 

The second order differential equation 

combining (6.16) and (6.21) which may be 

for P
A 

A (q) 
1 ••• n 

reexpressed as 

may be obtained by 

(6.21) I 

and 

o (6.17) r 

where 

D 
n 

(6.18 ) 



-20­

By (6.16)' 

and by ( 6 . 21 ) , 

Then 

Again by (6.17)' 

o (6.1 7 ) " 

(6.19) 

(6.20) 

or 

where a is not included in the antisymmetrization.
ex 

second order differential equation for PA A (q). 
1 ••• n 

This 

o . 

is the 

(6.21) 

required 

7. Rodrigues ' For.mula. 

The natural transcription of Rodrigues' formula to Grassmannian elements 

is 
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(7.1 ) 

Then 

n 

- n n] - s n-s
(qq-1) s (qq) (-) (7.2)[
 

s=n./2 


where 

- s 
(qq) 

(7.3) 

and 

(7.4) 

Then 

(7.5) 

But 

(2s) (2s-1) ... (2s-n+1) 
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(7.6) 

or 

[n/2J 

2-n ) (7.7) 

t=O 

where 

(7.8) 

and t = n-s. Note that G is completely antisymmetric. 

In (7. 7) the numerical coefficients are exactly the same as for the 

Legendre polynomials but differ by the alternating sign from (5.20). Also 

s ~ s 
G Al" .A is not the same as G A ••. A · 

n 1 n 

To compare (7.7) with (5.20) note that the coefficient in (7.8) is 

(7.9) 

(7.10) 

where 

r = n-2t . (7.11) 

Then 
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r (n-r)
(-) 	 E (l~ ) E (n-2t) E (n) (_) t . (7.12) 

By (7.8) 

E (n) (_l)t C~ ... C~ C~ ~ ... C~ ~ qOn+l ... qOn+r (7.13) 
~lOn+l ~rOn+r ~r+l~r+2 ~n-l~n 

E (n) ( -) 
t+r 

~ ... C~ ~ q~ ... qA
CAr+l~r+2 ~n-l ~n ~l r 


t+r ~ 
E (n) ( - ) G~ ~ q~ ... q~ (7.14) 

~r+l·· ·~n ~l ~n-2t 

By (7.7) 

[n/2] 

-n


2 E (n) 	 ;- (7.15) 

t=O 

where 

n 
(-) G~ ~ q~ ... q~ (7.16) 

~r+l·· ·~n ~l ~n-2t 

Then the numerical coefficients in (7.15) and (5.20) agree except for the 

normalization E (n) . The functions in (5.25) 

also agree since t~he number of C factors in G is ~ (n-r) = t and the number of 

q factors is r = n-2t, while the corresponding numbers in G are sand n-2s. 

Therefore Rodrigues' rule leads to the same functions as our earlier 

definition in terms of the generating function. 
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8. Orthogonality. 

An examination of the Legendre exampl e s in paragraph 5 reveals that these 

multinomials are not all Berezin orthogonal. It remains to be decided whether 

a weight funct ion can be found for which the c omplete Leg endre set is 

orthogonal. 

Therefore consider 

(8.1 ) 

where P(q) and R remain to be determined. Here P(q) is the general weight 

function which has the representat ion 

N 

P (q) ) (8.2) 

j=O 

" "A1 ••• An )By lntroduclng the correspondlng expanslons for P (q and P (q)
1-11 .• ·l-1n 

[see (5 .2 0) for example] one obtains conditions on the coefficients 

p~l ... ~j. Unfortunately one then finds that p~l·· .~j depends on nand m and 

for this reason is not satisfactory as a weight function. In contrast to this 

case the Grassmann Hermite multinomials are Berezin orthogonal with the usual 

, , 1
Gausslan welghts. 

9. Generalizations. 

In both the Hermite and Legendre cases we have followed the simple rule 

of replacing terms like xz, by the symplectic forms q 
m 

C q, 
n 

rnn 

m n m n m m 
q C t, and t C t, where q and t are anticornmuting objects. The 

rnn rnn 

possibility of this construction depends only on the structure of the 

generating function. For example, the same Grassmannian extension is possible 
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for Tchebyscheff polynomials since the generating function again depends on xz 

and Z2: 

00 

l-z2 

l-2xz+z2 1 + 2 ;­
n=l 

Tn(x) zn (9.1 ) 

y-
co 

1 znUn(x) , 	 (9.2) 
1-2xz+z 2 

n==O 

where Tn and Un are the two kinds of Tchebyscheff polynomials. 

The Gegenbauer polynomials are closely related to the Tchebyscheff 

polynomials and are also derivable from a generating function such as we have 

discussed 

00 

n(1-2xz+z 2 )-m ) z 	 (9.3) 

n=O 

where the em (x) are the Gegenbauer polynomials for integral powers of n. 
n 

On 	 the other hand Laguerre polynomials for example cannot be treated by 

this 	simple rule. 
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