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ABSTRACT 

Motivated by bubble nucleation in first order phase transitions, we question 
the validity of the effective potential for inhomogeneous configurations. In an at
tempt to get some insight into the importance of derivative terms, we analyze a 
simple model, a kink in (1+1) dimensions and zero temperature. We evaluate the 
energy shift from the quantum fluctuations about the non-uniform background 
(i.e., the effective action) and compare it to the energy from the effective poten
tial. Our results clearly show that for inhomogeneous configurations it may be 
inadequate to omit derivative terms and confi~e oneself to the effective poten
tial. We then couple the kink field to an additional scalar field and perform the 
same comparison. The addition of the second field allows us to vary the mass 
of the fluctuations and their coupling to the underlying kink. If the mass of the 
second field is large, it does not feel the inhomogeneities in the kink field and 
consequently does not give rise to important derivative corrections in the effective 
action. In contrast, if the mass is small, derivative terms are significant and the 
effective potential fails. In the latter regime we can, however, rely on the Born 
approximation to calculate the effective action. 
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1. Introduction 


Phase transitions have played a crucial role in the early evolution of the 

universe. From a possible inflationary epoch at the GUT scale, through the 

electroweak and quark-hadron transitions, phase transitions took a major part in 

shaping our universe. The significance and observable consequences of a specific 

transition depend on its detailed nature, and in particular, on whether it was 

first or second order. To mention only two examples in this connection: If the 

QCD phase transition [1] was first order (which at present seems unlikely), Big 

Bang nucleosynthesis may have taken place in a very inhomogeneous setting [2] 

and the elemental abundances could differ significantly from the predictions of 

the standard scenario. If the electroweak phase transition was first order [3] t, 
the resulting non-equilibrium period may have generated the observed baryon 

asymmetry in the universe [7]. 

In a second order phase transition, the field evolves smoothly from its high 

temperature 'false' vacuum state to its low temperature 'true' vacuum, whereas in 

a first order transition the field is trapped in a local minimum. In the latter case, 

the transition eventually proceeds (at zero temperature) via tunneling through 

the energy barrier, which separates the true from the false vacuum. (At finite 

temperature, thermal fluctuations 'push' the field over the barrier in free energy.) 

This corresponds, in the overall picture, to nucleation of true vacuum bubbles 

in the surrounding false vacuum sea. The bubbles expand and coalesce, thereby 

completing the transition. In general, first order phase transitions are associated 

with supercooling, out-of-equilibrium processes, and the formation of shock waves 

in front of the expanding bubbles. The typical time scale for the first two effects 

is given by the inverse of the bubble nucleation rate or decay rate of the false 

vacuum. To understand a given phase transition, we clearly have to calculate the 

nucleation rate accurately. 

Coleman [8] derived the following expression for the tunneling rate per unit 

t 	See ref. 4 for a clear, analytic treatment which appears to be justified by more recent 
treatments accounting for higher order effects [5]. For a slightly different point of view see 
[6]. 
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volume per unit time t, 

(1.1 ) 

where CPf is the value of the field in the false vacuum; the Euclidean index J-l 

runs from 0 to D, where D is the number of spatial dimensions; S is the Eu

clidean action, a functional of cP; V is the potential; and ¢ is a non-trivial solu

tion to the Euclidean equations of motion subject to the boundary conditions: 

limIXl,T_oo ¢>(T, x) = CPf. The prime on the determinant in the denominator indi

cates that we exclude the (four) zero modes corresponding to translations. Eq. 

(1.1) tells us that the leading contribution to the imaginary part of the energy, 

or the decay rate, comes from the virtual configuration ¢(x, T). The ratio of the 

determinants represents quantum fluctuations about this configuration. 

Our interest in this work is in the quantum corrections, represented by the 

determinant in eq. (1.1). Nominally one expects corrections from the determi

nant to be small, so it is often sufficient to simply evaluate the argument of the 

exponential and estimate the determinant on dimensional grounds. Nonetheless, 

it is precisely these quantum corrections which sometimes transform a second 

order phase transition to a first order one, or vice versa. For example, present 

consensus [4,5] is that the electroweak phase transition is first order because of 

quantum corrections from gauge bosons. 

A standard method for estimating the quantum corrections is to first in

tegrate out quantum fluctuations about a constant background. This gives an 

effective potential for cP which is then used in the equations of motion determin

ing ¢>(x, T). This approach is clearly inconsistent, as the configuration ¢ is not 

constant; one should really integrate out fluctuations about a general inhomo

geneous configuration. Put differently, one should evaluate the effective action, 

including all derivative terms, not just an effective potential, which drops these 

terms Q. In the present work we question the usefulness of the effective potential 

t For reviews, see refs. [9] and [10]. 
q In the context of the electroweak phase transition, several groups have recently estimated 

the "derivative" corrections to the tunnelling rate, see Dine, et al. and Brahm and Hsu in 
ref. [5]. There is a wealth of literature on the derivative terms in t he effective action. See 
ref. [11] for a partial listing. 
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for inhomogeneous configurations. Specifically we ask: How accurately can the 

effective action be approximated by the effective potential, how important are 

derivative terms? 

In section 2 we briefly review the standard technique for calculating decay 

rates and formalize the above questions. If we eventually want to make contact 

with cosmological phase transitions, we will have to consider a bubble at finite 

temperature in a (3+1) dimensions. As we are trying to get as much insight into 

the problem as possible, we will restrict ourselves to a very simple system: a kink 

at zero temperature in (1+1) dimensions. Unlike a nucleating bubble, a kink is, of 

course, stable but evaluating the quantum corrections to its energy is analogous 

to the problem of interest. (After all, a decay rate is really (the imaginary 

part of) an energy.) The advantage of this simple system lies in the fact that 

the determinant can be evaluated exactly [12]; that is, it is straightforward to 

compute all the derivative terms in the effective action. This gives us a mean 

of correctly checking the effective potential technique. In section 3 we therefore 

consider the fluctuations 8¢ in the background of a kink ¢ and see how the 

resulting change in energy compares with the effective potential approach. In 

section 4 we couple a second scalar field to the kink field and again see how the two 

approaches compare. At the end of section 4 we introduce a new approximation, 

which succeeds in the regime where the effective potential fails. Section 5 contains 

our conclusions. We reserve technical details to two appendices. 

2. Quantum Corrections to an Inhomogeneous Configuration 

Consider a field in an unstable configuration ¢ f with energy E f. For definite

ness we take ¢ to be a scalar field. In complete analogy to quantum mechanics, 

the decay rate is given by [8,10] 

2 r -- ImEf
Ii (2.1 ) 

-21m lim T1 In (¢fle-HT/hl¢f) , 
T-+oo 

where H is the Hamiltonian. We can rewrite the matrix element in (2.1) in terms 
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of a functional integral, 

(2.2) 

with ¢ subject to the condition ¢(T/2) == ¢(-T/2) == ¢t; S denotes the Euclidean 

action. The standard procedure is to evaluate the functional integral in the WKB 

approximation, or equivalently to one-loop. Expanding S(¢) about a solution to 

the equations of motion, 4>, and keeping only terms quadratic in the fluctuations 

8¢ == ¢ - 4>, we obtain 

N JV</> e-S(<I»/h ~ N e-S(4))/h [ det ( - 8 8 + V" (¢i)) ]-1/2p p 

(2.3) 

= exp [-Self(¢i)lh], 

where 4> (the "bounce") satisfies the boundary conditions limT--+±oo == ¢t and 

limp:I--+oo == ¢t, and Seff is the effective action which includes all one-loop quan

tum corrections. We can determine the coefficient N in eq. (2.2) by performing a 

dilute-gas approximation, based on the bounce solution [10]. This, together with 

eqs. (2.1) and (2.3), then leads to the final expression for the decay rate given 

in eq. (1.1) . 

The two different expressions on the right hand side of eq. (2.3) represent 

two alternative methods for calculating the quantum corrections. If the effective 

action approach is chosen, it is often convenient to expand Seff about a constant 

¢, i.e., in powers of momentum about a point with zero external momenta. In 

position space this reads 

For constant ¢ only the first term survives and the effective action is entirely 

given by the effective potential. Although different techniques for computing the 

additional derivative corrections have been designed [11], it is computationally 

elaborate to go beyond the leading terms. Alternatively we can evaluate the 
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quantum corrections in the form of the determinant, eq. (2.3), and thereby include 

all derivative terms. However, we only know of one specific higher dimensional 

system (and this system is non-renormalizable) where the determinant has been 

found analytically [13]. In every other case one has to rely on numerical methods 

[14]. This is also true for most lower dimensional systems [15]. One of the 

rare exceptions is the kink in (1+1) dimensions, where the determinant can be 

evaluated analytically [12]. 

We therefore use the kink to probe the effective potential approximation. It 

is our goal to give a clear expose on the evaluation of the determinant about 

an inhomogeneous background and compare it to the estimates of the effective 

potential. Although our motivation stems from the rate of bubble nucleation, and 

the bubble is unstable while the kink is stable, the difference between stability and 

instability is irrelevant. (The only difference is that we do not expect a negative 

eigenvalue, which would signal instability.) The procedure outlined above can 

equally well be used to calculate the energy of the kink to one-loop. 

Before proceeding to the calculation, two points are in order. First, if other 

fields coupled to <p are added to the problem, then the result (2.3) is easily 

extended to 

JD<jJDX e-S(q"x)/~ 
(2.5). 

Second, it is 	perhaps more convenieni to rewrite the determinant as ~ 

[( 
d2V I )] -1/2 [T ]

det - 81'81' + d<jJ2 q,=q, = exp -"2 ~ wn , (2.6) 

where the sum is over the eigenfrequencies of the time-independent Schrodinger 

U To derive this equation we apply det 0 = exp(Tr In 0) and integrate over the time
component of the wavenumber. 
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equation 

(2.7) 

Here the index i runs over the number of spatial dimensions; T has dimensions 

of time. 

3. Quantum fluctuations about a kink - the single scalar field case 

3.1 EFFECTIVE ACTION 

We focus on the classic example of a quantized soliton, first analysed by 

Dashen, Hasslacher and Neveu [12] (henceforth DHN; for a review, see also 

ref. [16]). It involves the following Lagrangian in 1 + 1 dimensions: 

/\\ ( 2 mo2) 2
Vo(¢) == "4 ¢ - T (3.1) 

The subscript on the mass mo will be used to differentiate the bare mass from the 

physical, renormalized value, m. (According to our renormalization scheme (see 

Appendix A) there is no difference between the bare and the physical coupling 

constant A.) The subscript on Vo specifies that this is the zero order or tree level 

potential. There are two degenerate vacuum states, ¢ == constant == ±mo/ J>... 
The kink is an inhomogeneous field configuration which interpolates between 

these two vacua at x == ±oo. Specifically, 

mo (mox)
¢kink (x) == J>.. tanh V2 (3.2) 

For topological reasons, the kink is completely stable against decay to the vac

uum. 

The classical energy of the kink is 

-00 (3.3) 

_ 2V2 m~ 
3 A· 

Within our renormalization scheme, when the bare parameter mo is reexpressed 
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in terms of the physical mass m and the ultraviolet cut-off A, there are no "fi

nite" corrections to Eel. The only new term diverges as A goes to infinity, but 

is eventually cancelled by an appropriate counterterm, arising from quantum 

fl uctuations. 

We now calculate the energy shift due to the quantum fluctuations about 

the zero order kink field. To one-loop order this corresponds to evaluating the 

determinant in eq. (2.3). As in eq. (2.6), the quantum correction to the energy is 

half the sum of all eigenvalues, W n , of the following Schrodinger equation: 

(3.4) 

As shown by DHN, eq. (3.4) has two bound (discrete) states with eigenfre

quencies 0 (the 'zero mode') and J312m t. In addition there is a continuous 

spectrum of states with frequencies wcont(kn) == Jk~ + 2m2. These states are 

very similar to the corresponding plane waves in the absence of the kink, with 

one significant difference: they are shifted in phase by an amount 8( kn ) relative 

to each other. DHN were able to derive an analytic form for the phase shift, 

8(k) == 27r - 2tan-1 (hk/m) - 2tan-1 (hk/2m) . (3.5) 

To determine the allowed kn , we quantize the wavefunction in a box of length 

L (taken to 00 at the end of the calculation) and ilnpose periodic boundary 

conditions. Then the allowed values of kn satisfy 

(3.6) 


Eq. (3.6) tells us that the wavenumber, and therefore the frequency, associated 

with a given mode n is modified in the presence of a kink. This leads to a change 

in the ultraviolet cut-off needed to regulate the theory. Let us call the ultraviolet 

cut-off in the vacuum A. In the vacuum the phase shift is of course zero, so eq. 

t In calculating the corrections of order n, we can replace rno by rn; any error is of O(n2 
). 
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(3.6) shows that imposing the ultraviolet cut-off is equivalent to including only 

those states with n :::; n max == LA/27r. In the presence of the kink we must count 

the exact same states. i. e., only those with n :::; n max . Therefore, denoting the 

ultraviolet cut-off in this case as kmax, we see from eq. (3.6) that 

27rnmax 8(kmax) 

f"V A 
L 

_ 6m 
L 

(3.7) 

- V2AL 

where the last line results from applying tan- 1 x ~ (7r/2) - (l/x) to eq. (3.5). 

The effect of the kink on the wavenumbers and on the cut-off is illustrated in 

fig. l. 

Having catalogued the eigenfrequencies of eq. (3.4), we need only sum them 

up to find the total energy shift. We turn the sum over the continuous frequencies 

into an integral by using the differential form of eq. (3.6), dn = (dkL + d8)/27r. 

Consequently, the correction to the energy due to quantum fluctuations of ¢ is 

Ii Ii
"2 L Wdiserete + "2 L Weont 

+kmax (3.8) 

~ L Wdiscrete + ~ J ~; (L + ~~) Wcont . 

-kmax 

Eq. (3.8) is a general expression for the quantum corrections about a back

ground field . How involved is this computation in general? The continuum 

frequencies are completeiy--equivalent to those in-the arnretree"ofothe background 

field. Thus, the only parts requiring detailed knowledge of the solution to the 

Schrodinger equation are the frequencies of the discrete states and the phase 

shifts. If we go back momentarily to the problem which motivated us, that of 

quantum corrections to tunneling rates in 3 + 1 dimensions, we cannot generally 

expect to solve the corresponding Schrodinger equation analytically. We antici

pate, though, that if there are no bound states and if the phase shift can easily be 

approximated, then the quantum corrections will be relatively easy to evaluate. 

In fact, in the next section we argue that these two conditions - no bound states 

9 



and phase shift easy to approximate - go hand in hand. This is particularly inter

esting, since it is precisely this regime where the derivative terms are important 

and the effective potential a poor approximation to the full action. 

Returning to the problem at hand, we can insert the phase shift (3.5) into 

eq. (3.8) and evaluate the integral over the continuous eigenvalues, 

-kmax (3.9) 

1;. [ 3 I 2k~ax 1]- nm -- n--+
22V21r m VB· 

After inserting kmax from eq. (3.7) and including the bound state energy, we 

obtain 

(3.10)
3 2A2 

hm M In--· 22v21r m 

The second line here consists of terms that go to infinity when A, L ~ 00. These 

infinities, though, are exactly cancelled by the infinities in Eel, when we express 

the bare mass in terms of the physical one and introduce the induced "cosmo

logical constant". Adding up all these contributions, the total kink energy then 

becomes 
3 

Eaction 2V2 m h (1 3) O(h2)
kink 3-T +- m 2VB - V21r + 

(3.11)
2V2 m 3 [ h)" 2 ] 

rv -3-T 1 - 0.4997 + O(h) ,m 2 

where the superscript action indicates that the effective action was used, i. e., 

that the quantum fluctuations were evaluated about the true inhomogeneous 

background field. 
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3.2 EFFECTIVE POTENTIAL METHOD 

Let us now recalculate the shift in the kink energy within the effective poten

tial approach. The recipe is simple: First evaluate the effective potential (i.e., 

integrate out the ¢ fluctuations about a homogeneous background), then solve 

the equations of motion for the kink with this "improved" potential, and finally 

derive the energy of this modified kink. To lowest order in the coupling constant 

(or h) there is, however, a shortcut to this procedure. From basic quantum me

chanics we recall that the first order change in the energy due to a perturbation 

Vl is simply (7/J\Vl\7/J), where 7/J is the zero order wave function. Consequently, 

we only have to separate out the perturbation of order h due to fluctuations of 

¢, V1 
8

</> ( ¢), from the effective potential, 

(3.12) 


Note that Vo(m,.\) is in terms of the physical mass, Vo == ('\/4)(¢2 - (m2/.\))2, 

so it is finitie. In V1
8 

</J we can replace the bare mass by the physical one, only 

making an error of O(h2). According to eq. (A9) of Appendix A, 

(3.13) 

From here we can calculate the quantum corrections to the kink energy, 

E Potentiai - d v,8</J (A.. ( )) J8</J - x 1 \j/kmk x , (3.14) 

where ¢kink is the zero order (tree-level) kink solution, eq. (3.2). The total kink 

energy is then 

EPotentiai _ 
kink -

-00 

32V23.\m [1 - 0.3165 n.\ + O(h)2] .m 2 

(3.15) 

How "effective" is the effective potential technique? By comparing Ek~~on with 
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E~f:~ntial, eqs. (3.11) and (3.15), we see that there is a difference in the quan

tum corrections of about 50 percent. This is a significant discrepancy and clearly 

demonstrates the insufficiency of the effective potential for inhomogeneous con

figurations. 

4. Coupled fields 

In section 3 we focused on a single scalar field 4> and computed the quantum 

fluctuations about its own non-homogeneous configuration. As there exists only 

a single coupling constant, A, this system is rather restrictive; A (together with 

m) fixes the kink, but at the same time controls the coupling of the fluctuations 

to the background. As a result, the Schrodinger equation (3.4) turns out to be 

A-independent. (By rescaling the coordinate x, the dependence on m becomes 

trivial.) There is, therefore, not much of an interesting parameter space to cover. 

But there is a more basic problem with this simplified model. A non-interacting 

scalar field may not adequately reflect the physical situation. As we are eventually 

interested in the tunneling rate within, e.g., the electroweak phase transition, we 

have to treat the Higgs field with all its interactions. 

In the present section we challenge the effective potential in a slightly more 

physical framework and couple 4> to a second scalar field X (still confined to (1+1) 

dimensions). Although this falls short of the real situation, in which the Higgs 

field is coupled to gauge bosons and quarks in (3+1) dimensions, we hope that 

it will give us some hint about the sufficiency or insufficiency of the effective 

potential. In sections 4.1 and 4.2 we will again compute the total kink energy 

to one-loop in the same two approaches discussed in section 3, and compare the 

results. We will see how the introduction of a second scalar field allows us to 

vary the coupling of the X-fluctuations to the underlying soliton and therefore to 

find a regime where derivative terms are indeed negligible. 

There is also a regime in which derivative terms are important. In section 4.3 

we introduce a different approximation, the Born approximation, for use in this 

regIme. We recalculate the kink energy within the Born approximation and 

compare it with the accurate result of section 4.1. 
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4.1 EFFECTIVE ACTION FOR TWO FIELDS 

Let us focus on the Lagrangian 

/\\ ( 2 ma2) 2 1 2 2 
Va ="4 ¢ -T +2 g ¢X. (4.1) 

This model again permits a kink configuration ¢kink, eq. (3.2), along with X =o. 
The classical energy of the kink is unchanged from eq. (3.3) and is g-independent. 

Now consider the quantum fluctuations about the kink. To one-loop, the ¢ and 

X fluctuations are independent, and therefore yield two separate contributions 

to the energy shift. The contributions from the ¢ field were calculated in the 

previous section, here we concentrate on the X-fluctuations. Their contribution 

to the kink energy again amounts to half the sum of the eigenfrequencies w~ of 

a Schrodinger equation, in this case of 

[ -d2 9 2 tanh2 (mx)- ]1j;X(x)- + -m (4.2)
dx2 A /2 n 

The coupling constants do not cancel out, but appear in the combination 9I A and 

can, in principle, attain any value within our perturbation expansion. (Note that 

our expansion parameters are hAlm2 and hglm2.) At times it will prove more 

convenient to use the dimensionless variables, En = 2 (w~)21m2 and z == mxlV2. 
In terms of these variables, eq. (4.2) becomes 

d2 	 g] _ . + E - 2-~ tanh2z -~X(z) o. 	 (4.3)[ dz2 nAn 

First let us consider the bound states of Eq. (4.3). The "potential" in this 

Schrodinger equation is 2(g / A) tanh2 z, its strength governed by the dimensionless 

ratio 9I A. Large 9I A corresponds to deep potentials; we expect these to have 

many bound states. Small values of 9IA should have only one bound state.+ In 

:j: 	 Recall the peculiarity of one spatial dimension, in which there always exists at least one 
bound state, no matter how 'shallow' the potential. 
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fact, as shown in ref. [17], eq. (4.3) has N bound states with energies 

En = 2 ~ - (Y - n - ~r n = 0,1, ... ,N -1 < 'Y -1/2 , (4.4) 

where 

, =J2g/ A + 1/4. ( 4.5) 

Next we find the continuous eigenmodes of eq. (4.3). These have frequencies 

equal to those in the vacuum: W~ont = Jk2 + (g/ A)m2. Corresponding to each 

frequency are two states with definite (and opposite) values of parity and gen

erally also different phase shifts. (Since the potential is invariant under parity, 

we can use a basis in which all states have definite parity.) As we saw in the 

previous section, it is necessary to find the phase shift in order to sum up the 

energy of the continuous modes. To this end, we note that the problem at hand 

is equivalent to a scattering problem. Assuming an incident wave from z = -00, 

the asymptotic form of the scattered wave is [17] 

z ~-oo 
(4.6) 

z ~ 00 

a 

where 

r(l - iq) r( -iq) b = -i cos(1r,) ,= ( 4.7) 
sinh(1rq) 

N is an irrelevant (complex) normalization factor and q = /2k/m is the dimen

sionless wavenumber....lu. .Appendix B--we .deriv.e the phase. shifts for the two parity 

eigenstates (the symmetric and antisymmetric parts of the scattering wave), 

± 'I ( a ) _ + - . (a)8x = 'I, n 1 ± b ' and hence 8x = 8x + 8x = 21, In ~ . ( 4.8) 

For, a half-integer, b = 0, implying that the even and odd parity phase shifts are 

identical: 8~ = 8-;. (In terms of scattering theory, the potential is refiectionless.) 

This was the case for the single scalar field of section 3 (there, = 5/2), and it 

was, therefore, unnecessary to consider even/odd parity states separately. 
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In fig. 2 we show the phase shifts as a function of q for fixed g / A. The behavior 

of the phase shift at low momenta is of particular interest and we therefore plot 

in fig. 3 the phase shifts at zero wavenumber as a function of g/A. 8+(0) (8-(0)) 

changes discontinuously as , passes through 2.5,4.5,6.5, ... (1.5,3.5,5.5, ... ). To 

be specific, let us focus on the regime around, == 2.5, when 8+(0) changes from 

7r to 37r. According to eq. (4.4), at this, a new bound state appears. In fact each 

time a new bound state appears, 8+ (0) or 8- (0) changes by 27r. The connection 

between the phase shift and the number of bound states is, of course, no accident, 

but a manifestation of Levinson's theorem [18,19].~ 
As in section 3, we quantize the continuous states in a box and constrain k 

(separately for the even and odd wavefunctions) by imposing periodic boundary 

condi tions, 

k _ 27rn 8;(k) 
(4.9)n - L L 

Requiring n ~ n max leads again to an ultraviolet cut-off, 

8±(k )
k < k == A _ max 

_max-
x L' (4.10) 

Because 8+(k) ~ 8-(k) for large k, the ultraviolet cut-off for the symmetric and 

anti-symmetric states are identical. 

In summing up the continuous eigenmodes we again replace the sum by an 

integral, but this time separate out the even parity states from the odd ones, 

kms.x

h~ x _ '2 Jdk (L + d8:) x2" ~ Weont - 2 27r dk Weont 

k+,
min 

(4.11 ) 

We have also introduced lower cutoffs k;in' reflecting the fact that below a mini

mum n all states have dropped into the potential well and are counted as bound 

We can count the number of bound states by means of Levinson's theorem for one
dimensional potential scattering. The number of even and odd states amounts to 

N± = L 8~(O) 'f ~ ( exp[i8~(O)1 - 1 ) . 

For a clear discussion of Levinson's theorem in quantum field theory, see ref. 20. 
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states. Due to the periodic boundary conditions, we require 

D~(kmin) 
(4.12)

L 

n;in can be identified with the number of even and odd bound states, n;in = 

n±d' t· One might think that the lower limit in momentum is irrelevant as itlscre e 

goes like 1/L. This is true except for the term in eq. (4.11) which diverges with L. 

Neglecting k;in in this term could lead to a doublecounting of the discrete states. 

It was merely a numerical coincidence that in the one-field case of section 3 we 

could set kmin = O. This is due to the fact that for 'Y half-integer Dx is a multiple 

of 27r , and, together with the exact number of bound states, leads to k!in == O~ 
With the help of kmin, eq. (4.12), we can recast the sum over the continuous 

eigenmodes, 

~2: W~nt = ~ lax ~~ [2L + ddk (8; + 8;) ]w:ont 

o 

- ~ [ n;!;in + n;;;in - 2~ (8;(0) + 8;(0)) ] W~nt (k = 0) 

(4.13) 

where we have made an integration by parts and defined nmin = n~in + n~in 
(recall also that dwldk = -kfWtj-;-Cf-fte-l-ttst term -above --takes ~-err~f ·.t,he--pr-eviously 

mentioned doublecounting: As the integral for the continuum in eq. (4.13) ex

tends over all states, we have to subtract off the contributions from the bound 

states (nmin in total). 

Finally note that the second term in the integral of eq. (4.13) is logarith

mically divergent. When we replace the bare mass with the physical one in the 

U In section 3 we have integrated from -kmax to k max (see eq. (3.8)), which is the equivalent 
of integrating the even and odd states independently from 0 to kmax (the integrand is 
symmetric ). 
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classical energy, we induce a correction Ii "2-m f In ( m~~~A ) , which exactly cancels 

this divergence. (The same is true for the term proportional to L, which gets 

canceled by the induced "cosmological constant".) 

Collecting all the contributions to the kink energy, i. e., the classical energy, 

the contributions from the renormalization, and the shifts due to the quantum 

fluctuations of the ¢ and the X fields about the inhomogeneous background, we 

finally obtain (to order 1i) 

Eaction E + Eaction + Eaction (4.14)kink o 84> oX' 

where 

2J2m3 

Eo -3-T' 

- lim C~- ~~) 
(4.15)~ L WJiscrete - ~ ndiscreteVg/).. m 

A 

-~Jdk k8x(k) J21im~ I 4A2 
47r Jk2 + m2gj).. + 47r ).. n m2gj)..· 

o 

In E8~ion we have set nmin = ndiscrete! Fig. 4 shows the energy shift due to X 

fluctuations, E8~tion, as a function of the dimensionless ratio of the couplings, 

gj)... 

t 	The integral in the x-correction is logarithmically divergent; the divergence is cancelled by 
by the In A term in eq. (4.15). Numerically, we can evaluate the sum of these two terms by 
adding and subtracting the term - J k~C = -In(~), c an arbitrary positive constant. 
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4.2 EFFECTIVE POTENTIAL METHOD FOR TWO FIELDS 

Let us now compare the above energy shift, induced by the X field, with 

the energy within the effective potential approach. We again separate out the 

one-loop corrections in the effective potential from the classical potential, 

(4.16) 

The energy shift due to V/</> has already been calculated in section 3.2. Here we 

focus on the X contribution (see eq. (A9)), 

(4.17) 

In complete analogy to eq. (3.14), the energy shift is now given by 

00 

E potential - 1l"8x (A. ())Jd8x - x VI \f'kink X 

-00 

-00 

y2 fLnm ( 1I"2 _ 6 ) g
-0.0599 nm ~ ,

81I" A 2 

where we have used cPkink from eq. (3.2). By adding these x-corrections to the 

cP-terms, eq. (3.15), we obtain the total kink energy within the effective potential 

approach, 

EPotential E + EPotential + EPotential
kink d 8</> 8x 

3 (4.19)2y'2 m [ nA ng ]-3-T 1 - 0.3165 - 0.0636m 2 m 2 

In fig. 4 we compare Eg:ion with E~~tential for varying g / A. For small g / A, 

EPotential differs considerably from Eaction and the effective potential is only a8x 8x 
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poor approximation to the effective action. However, for gl A ~ 00, Eg:ion 

asymptotically approaches Ef~tential. Qualitatively we can understand this be

havior in the following way: The x-field has a mass mx ~ my'gl A and hence 

varies typically on a scale m~l. On the other hand, the kink extends over a 

region m-I. If m~1 ~ m-I (gl A » 1) then the x-field oscillates vehemently 

along the kink profile and is not affected by the background variation. Here the 

effective potential is valid. In the opposite limit (gIA « 1) , the x-field changes 

at least as slowly as the kink and therefore probes the underlying configuration. 

In this case derivative terms are non-negligible. 

Another way to understand the fact that Erxtential is a good approximation 

when gIA is large is to compute the relative contributions of the next terms in 

the derivative expansion. Let us consider the Feynman diagram in fig. 5. Its 

contribution to the effective action is weighted by the Feynman integral, which 

can be expanded in powers of the external momentum P = PI + P2: 

(4.20) 

The first term on the right hand side is of order 1/m~, while the second 
Ip2 jmt. Since the kink field varies on spatial scales of about m- , the factors 

of pare O(m), so that the second integral is of order m2/mt. Therefore, the 

first derivative correction is a factor of m 2Im~ = AIg smaller (or larger) than 

the non-derivative terms in the effective potential. The derivative expansion is 

therefore an expansion in the.ratio-of Compton. wavelengths of ·the background 

field and the fluctuating field. This explains why in the one field case analyzed 

in section 3, the corrections from derivative terms are significant: the expansion 

parameter is of order one. 

The derivative terms are down by at least 0 (AI g) and can therefore be ne

glected for gI A ~ 00. As already pointed out, in the other limit they are im

portant and the full effective action has to be evaluated. As we will demonstrate 

now, it is precisely in this regime where one can rely on additional approximations 

and thereby often simplify the computations. 
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4.3 BORN APPROXIMATION 

We confined ourselves to a kink in (1+1) dimensions due to its simplicity. 

Most realistic models do not allow for a closed solution (within perturbation the

ory) and one has to rely on approximations. The problem usually pins down to 

solving the Schrodinger equation. In the worst case, the eigenvalues of the discrete 

levels have to be found numerically (after all, there are only a finite number of 

bound states). It may, however, not be that simple to sum up the eigenfrequencies 

of the continuum and one would like to have a way of approximating their con

tribution. Recall that to sum up the continuum eigenfrequencies, one need only 

know the phase shift (the frequencies themselves are trivial). Fortunately, there 

are circumstances where one can approximate the phase shift without exactly 

solving the Schrodinger equation. This is especially true when the fluctuations 

are only weakly coupled to the underlying kink, or in other words, the "poten

tial" in the Schrodinger equation is "shallow". In our model, this corresponds to 

9 / A « 1. In this limit we can use the Born approximation. 

Let us rewrite eq. (4.3). Since for continuum states, En == q2 +2g/A, we find 

[ d
dz22 + l + u(z) 1'I/J~(z) == 0, where u(z) == 2 2 9 (4.21 ) 

cosh z A ' 

u( z) is the relevant "potential." 

Next we expand the wavefunction around the unperturbed wave 'l/Jo(z) == 
exp(iqz), incident from the left (we take N == l/a in eq. (4.6)). The total wave

function then reads 

'l/JX (z) == 'l/Jo (z) + 'l/Jd z) . ( 4.22) 

For perturbative "potentials" (g / A « 1), 'l/Jl can be evaluated within the Born 

approximation, 
00 

?/11 (z) -J dy G(z, y) u(y) ,po(Y) , ( 4.23) 

-00 

where G(z, y) denotes the one-dimensional Green's function, 

__1, eiqlz-yl.G( z, y ) == ( 4.24) 
2q 
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Specifically, for z ---+ 00 we obtain 

2i g iqz~ eiqz J
00 

u(y)dy --e ( 4.25) 
2q q A 

-00 

By adding this to the unperturbed wave and comparing to eq. (4.6), we can fix 

a, 

2i g )-1
a == ( 1 + q~ , ( 4.26) 

and hence the Born approximated phase shift, 

2i In C:I) = iln (:.) 

(4.27)

( l+i~ V2 
-'l In q ) == 2 tan-1 ( 2~9/>.)

1 - i 2g/).. 
q 

With the help of 8:orn we can calculate the contribution from the continuous 

eigenfrequencies, and specifically the integral 

o (4.28) 

(This equation only holds in its present form for g / A < 1/2.) For the (single) 

discrete eigenfrequency we will use the exact result according to eq. (4.4). (In 

most cases one will have to evaluate the discrete eigenvalue(s), if there are any, 

numerically!) After collecting also the contributions from the renormalization, 

t In more than one spatial dimension there are likely to be no discrete states for shallow 
potentials. 
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the total energy shift due to the X field adds up to 

(4.29) 

The last term again prevents us from doublecounting the bound state. 

In fig. 4 we plot the energy shift from the Born approximation and compare 

it with the previous results. The Born approximation does rather well for very 

small g /).., but starts to deviate significantly for g /).. ~ 0.01. Note, however, that 

the effective potential approach is always worse than the Born approximation in 

the small g/).. regime. 

4.4 CONCLUSIONS 

One of the prerequisites of understanding a first order phase transition is the 

calculation of the bubble nucleation rate, or the decay rate of the false vacuum. 

This involves, by definition, inhomogeneous configurations. In evaluating the 

decay rate, one has to consider quantum fluctuations. The question then arises, 

whether it is adequate to drop the derivative terms in the effective action and 

only retain the effective potential, or whether these derivative corrections are 

important. In other words, do we have to integrate out quantum fluctuations 

about the inhomogeneous configuration, or is it sufficient to consider the fluctu

ations about a constant background? In the attempt to answer this question, we 

confined ourselves--to--a simple mo~ a-kink in -(1+1) dimensi6'ftS-anci zero tem

perature. We first computed the energy shift from quantum fluctuations about 

the inhomogeneous background and then compared it to the energy from the 

effective potential. The discrepancy in the two results clearly demonstrates the 

insufficiency of the effective potential. Note that although quantum effects are 

small by definition, it is precisely these corrections, which may fix the order of a 

given phase transition. Any error may therefore obscure the real situation. We 

next coupled the kink field to a second scalar field and also included its quantum 

fluctuations in the energy calculation. The addition of the second field allowed us 
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to vary the mass of the fluctuations and their coupling to the kink and thereby to 

span a larger parameter space. In the limit where the mass of the additional fluc

tuations is large, the fluctuations do not probe the kink profile efficiently. This is 

the regime, where the effective potential represents a valid approximation to the 

full action. In the limit of small mass, however, the derivative terms are impor

tant and one cannot rely on the effective potential. It is interesting to note that 

it is precisely in this regime, where one can resort to additional approximations, 

as for example the Born approximation. In more realistic situations it may be 

impossible to derive an exact result and one is forced to rely on such approxima

tions. We therefore recalculated the energy shift within the Born approximation 

and compared it to the exact result. Although, in our case, the approximated 

energy falls somewhat short of the exact result, its estimate is significantly more 

accurate than the effective potential result. 

In conclusion we should point out, that the current calculations have been 

carried out in a very simple system and their results may not necessarily be ex

trapolated to the analysis of a first order phase transition in, e.g., the electroweak 

theory. Higher dimensions, finite temperature effects and the introduction of 

fermions and gauge fields can possibly change the conclusions. In light of our 

results, it must, however, be kept in mind, that there is no a priori justification 

to neglect derivative terms, but that the validity of the effective potential for 

inhomogeneous configurations must be checked from case to case. 
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APPENDIX A 

In this Appendix we outline our renormalization scheme for the two field case. 
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We start with the tree level potential of eq. (4.1), 

A 2 ma 1 2 2\ ( 2) 2Va = - ¢ - - + -g ¢ X . (AI)
4 A 2 

Following standard procedure, the effective potential to one-loop becomes 

(A2) 

with minimum at ¢M, 

2 2 
2 m6 h [ 2A g 4A ] 2

¢M = ,-- 31n-2 +,In 2/ + O(h). (A3) 
A 47f ma A mag A 

The regularization parameter A is the ultraviolet momentum cutoff. (We can 

trivially retrieve the effective potential for the single scalar field model of section 3 

by setting g = 0 and neglecting one of the terms hA2 / ( 47f) in eq. (A2).) 

We define the physical (renormalized) parameters by "minimal subtraction" , 

which 'pins down' to the identification of the bar coupling constant A and the 

physical one, 

(A4) 


Note that this identity holds to all orders in perturbation theory. (As the x-field 

has vanishing expectation value and we are only working to one-loop, we do not 

have do worry about the renormalization of g.) We define the renormalized mass 

by 

~ d2Veff (¢ = ¢ )
2 d¢2 M 

(A5) 
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where m without the subscript denotes the physical mass. From here, 

2 2 h ( 2A
2 

g 4A) (A6)mo == -m + A 47r 3ln m 2 + ~ Inm2gjA . 

The virtue of this renormalization scheme lays in the absence of any finite quan

tum corrections to the mass. Consequently, the tree-level energy of the kink, 

if written in terms of the physical parameters, contains only infinite corrections 

and no additional finite terms. 

The requirement that Veff( ¢M) == 0 generates a vacuum energy ("cosmological 

constant") , 

r r<l> + rx 


- -4: [m
2(1+ In ~:) + A2] 
 (A7) 

- 4: [~2 t ( 1+ In m;~~A) + A2] + () (h
2) . 

(For the single scalar field case we omit the whole second term.) 

Inserting (A6) and (A 7) into eq. (A2) yields the effective potential in terms 

of the renormalized parameters, 

(AS) 

where Vo is the tree-level potential (AI) in terms of the physical mass, and 

3A¢2- m2)
In ( 2 ' 2m 

(A9) 

APPENDIX B 

In this Appendix we evaluate the phase shifts, associated with x-waves scat

tering off the kink. 
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The "potential" in the Schrodinger equation (4.2) is symmetric under the 

reflection x ---+ -x. This allows us to write the wavefunction 1jJ as a linear 

combination of parity eigenstates, i. e., in terms of symmetric and antisymmetric 

functions, 

For simplicity, let us define I-dimensional "polar" coordinates r = Ixl and JL = 
sgn(x) and recast the symmetric and antisymmetric waves as [21] 

where the coefficients are given in terms of a and b of eq. (4.7), 

N±-a. (B3)
2 

The inflection invariance of the potential implies [21] that 

(B4) 

and hence D+ (D_) can at most differ from C+ (C_) by a phase, 

(B5) 

This, together with eqs. (B3), yields 

(B6)2i In C:I) . 
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FIGURE CAPTIONS 


1) 	 The effect of the kink on the frequencies and on the cut-off. Open squares 

represent wavevectors k in the absence of the kink. In this artificial example, 

the momentum cut-off k = A corresponds to including only those states 

with n ~ 100. In the presence of the kink (crosses), the same value of n 

has a different wavenumber. In particular, for n = 100, k is less than A. 

Blindly imposing the ultraviolet cut-off k ~ A in the presence of the kink 

leads to the counting of an extra state, the one with n = 10l. 

2) 	 Even (solid line) and odd (dashed line) parity phase shifts of the X contin

uum, as a function of wavenumber q for fixed g/ A. At large q, the phase 

shift goes to zero; only at low q does the presence of the kink lead to a sig

nificant phase shift. Larger values of g / A correspond to deeper potentials 

and hence larger phase shifts. 

3) 	 Even (solid line) and odd (dashed line) phase shifts for the continuous X 

states at zero momentum, as a function of g/ A. 

4) A comparison of the energy shift from the X-fluctuations, as a function 

of g/ A, calculated within the effective action (solid line) and the effective 

potential (short dashed line) approaches. For large g/ Athe derivative terms 

are unimportant and the effective potential becomes a valid approximation 

to the full action. For small g / A, however, the effective potential is clearly 

inadequate for calculating the energy of an inhomogeneous configuration. 

We also present the energy shift, computed with in the Born approximation 

(long dashed line). 

5) 	 Feynman diagram leading to terms cjJ4, cjJ2(8J.lcjJ)2, ... in the effective action. 

Dotted line represents the internal X propagator. 
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