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Abstract 
We construct generating functions which interpolate between 

the generating functions for Hermitian and Grassmann multinomials. 
The new functions which arise in this way may be related to state 
functions of the q-deformed harmonic oscillator. 

1. Introduction 

We extend the quantum plane relation1 to two spaces of indeterminates 
{xa} and {tal: 

(1.1 ) 

In terms of these two sets {xa} and {tal one may construct a generating 
function for multinomials in the {xa }. 

One may also generalize to three spaces. Denoting the a-coordinate of 
the ith space by zia we consider 

a J3 _ aJ3 ~ a z. z, - R" z, z, j = 1,2,3 all a,~ (1.2)
1 J 1J J 1 

where the Rii are restricted by a braid algebra and the Rij (i#j) satisfy a 
Yang-Baxter equation. With these three sets one may again construct new 
generating functions. 

In this framework one obtains new functions which are generalizations 
of the classical special functions in many variables. We shall here 
restrict our discussion to (1.1) and the Hermite case. The commuting case 
(q=1) had been introduced long ago by Hermite2 while the Grassmannian case 
(q=-l) naturally turns up in a supersymmetric context. 3,4 Although our work 
will be based on the Hermitian generating function, the method is general 
and has been extended to other classical functions. 5 

2. Expansion of Generating Function6 

Let 

G (2.1) 
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where 

tt ~ a tttat~ q t t q ±1 

xx ~ a xxxax~ q x x q ±1 

xt ~ a xtxat~ q t x q q (2.2) 

Then 
00 

(-A+B)P
G ;- p! 

(2.3) 

p=O
By the q-binomial theorem 

00 p 
1 <p> (2.4)G = ;- ;

p! S q2
p=O s=O 

where 
<p> ! 

q 
(2.5)

<s> ! <p-s> ! 
q q 

and 

= qP-1<p> (2.6) 
q q-1 

We also introduce the corresponding symmetric forms: 

(2.7)[~]q ~ 
where 

(2.8) 

After some rearrangements one finds 
00 

;
where 

[n/2] 
(_)s [n-sJ Eq(n-s) 

(n-s)! s q Eq(S)
s=O 

x A~ ).. ... A).. ).. (2x)).. ... (2x)).. (2.9b) 
~l 2 2s-1 2s 2s+1 n 

and 

o 
x = B x (2.9c)y yo 

s(s-1)/2
E (s) = q 

q 

G = (2.9a) 

. . f 2 9 . h d (xx)In the derlvatlons 0 (.) no assumptlon as been rna e about q 

However, (2. 9a) implies that the A-symmetry is determined by the {tal and 

consequently the symmetry of the {tU} is passed on to the {xa}. Therefore 
qXX = qtt = ±1 as anticipated in (2.2). 

We are particularly interested in the special case: 
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xx tt 
q q 1 Iqxt l =1= 1 

0') ') and 1..1 . . . An (2.10) 
1\.11\.2 

Then 
[n/2] 

(_) s 	 n-2sH q(x) = ;-	 (2x) (2.11 ) 
n (n-s) ! 


s=O 

If q=l, (2.11) becomes the usual Hermite polynomial. We now turn to the 
relation of these q-polynomials to the state functions of the q-deformed 
oscillator. 

3. 	 The Quantum Group and the q-Quantum System 

We shall here define a q-deformed quantum mechanical system by an 
unchanged Hamiltonian and the q-modified Heisenberg commutator: 

Dx-qxD = 1, P = -ihD (3.1 ) 

Eq. (3.1) may be rewritten 

-zQz 1 (3.2) 

where 

Q (3.3) 

Let T E GL (2,C). Then under z ~ Tz (3.2) becomes 
q 

zQz = !1 (3.4a) 

or 

Dx - qxD (3.4b) 

where !1 is the quantum determinant. 
Since !1 is central, one may put !1 = 1 and if T E SLq (2,C), the q-

commutators are invariant. 
One may satisfy (3.4) by the following choices of D: 

(a) q 1 !1 1 D 
d 

dx 
(3.5) 

(b) q =1= 1 !1 1 D x- 1 <e>q (3.6) 

x- 1(c) 	 q =1= 1 !1 =1= 1 D [e]q (3.7) 

where 

e = x d (3.8)
dx 

Here the symbols < > and [ ] are defined in (2.6) and (2.8). In cases (b) 
and (c) D is a difference operator. In case (c) one finds 

!1 = 	q-e ( 3 . 9) 
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> 
The wave function of the q-deformed free particle is in case (b) 

(ipx)n 
e (ipx) 	 (3.10) 

q <n>q! 

and 	in cas e (c) <n>q ~ [n]q. 
If the q-deformed oscillator is defined by 

H = 	
1
2 (aa + aa) (3.11a) 

aa - qaa q-e 	 (3.11b) 

then in this representation the energy spectrum is 

E i ([n]q + [n+1]q) 	 (3.12) 
n 

while the usual monomial state functions are normalized by ([n]q!)-1/2 
instead of (n!)-1/2. 

4. 	 The q-Osc illator in Configuration Space 

If the q-oscillator is defined by an unchanged Hamiltonian and a q
commutator, one has 

Dx - qxD = 1 	 (4.2) 

where (4. 2) corresponds to (3.1) rather than (3.4). Define 

+1;
D± = D ± q 2 x 	 (4.3) 

then 

1 
D D 	 (4.4)

2 - + 

If we regard D and D as lowering and raising operators, then the ground
+ 

state may be defined by 

o 	 (4.5)D+'Vo 

and 	the lowest energy is then 

E 	 (4.6) 
o 

Now (4.5) is a functional (difference) equation for the ground state. 
The exact solution of (4.5), which may be obtained by iteration, is the 
convergent infinite product: 

n 
~ 	 [ -1 

2s 1; _1/2 2 ]'Vo(x) = 1 + q (q 2 - q ) x 'Vo(O) , Iql < 1 (4.7) 

s=O 
and an approximate solution, approximating the usual Gaussian as q ~ 1, 
is 

(4.8) 
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f (q) (.en q)-l (4.9) 

One would like to find a complete set of exact solutions of the 
deformed oscillator that approach the known eigensolutions of the 
undeformed system. Part of the difficulty, however, is that there are 
several reasonable formulations of the deformed problem besides the one 
defined by Eqs. (4.1) and (4.2). Here are some possibilities for the 
deformed state functions. 

1. The state functions are the Hermitian q-functions (2.11) defined by 
the generating function (2.1). 

2. If one chooses (3.6) then it also is natural to choose eq(x), given 
by (3.10), instead of the exponential as the generating function. The new 
G, replacing (2.1), is then either 

;- (-A+B)n
G = (4.10) 

_ <n>q! 

e (-A+B) (4.11)q 

or a similar construction depending on [nqJ! Here q is left free. If, for 
example, one chooses the new generating function to be e 2 (-A+B) then theq 
new Hermitian q-function Hnq(X) , is 

[n/2J 
~ 1 n-2sH q(x)' ;- (2x) (4.12 ) 

n Eq(S) [sJ q ! [n-2sJ q ! 
s=o 

3. The deformed state functions are solutions of the following 
integral equation 

cP (q) (p) = A f dx e (ipx) cp(q) (x) (4.13 ) 
n n q n 

As q~l, approaches the usual exponential and CPnq(x) approaches thee q 
familiar Hermite function (which is its own Fourier transform) . 

All of these q-functions approach the usual Hermite functions in the 
limit q~l. 

In the q-space of the oscillator there is a complete solution of the 
dynamical problem not only at q=l but also at the Grassmann limit, q=-1. 4 

In ~ddition, since there is also a complete solution for arbitrary q in the 
(a,a) representation, it would be of interes~ if there were a satisfactory 
q-transformation theory leading from the (a,a) to the (x,p) representation 
There is of course no physical support for a q-quantum mechanics--or any 
similar modification of quantum theory--at the present time. 7 
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