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Abstract. Utilizing an extension of the quantum plane relation, we construct
a new class of functions defined by a generating function built out of either
two or three sets of non-commuting variables. The commutators of variables
within a single set may be related by a braid algebra, while the commutators
between variables in the three different sets may be related to operators that
satisfy a Yang-Baxter relation. The new functions are constructed out of g-
functions, which depend on the commutation relations between the different
sets, while the symmetry properties of the new functions are determined by the

commutation rules within the separate sets.



1. Introduction.

The quantum groups appear to be related to the basic or q—functions1 much
as the Lie groups are related to the familiar special functions. For example,
the little g-Jacobi polynomials may be identified as the matrix elements of
representations of SUq(2).2 We are here interested in g- multinomials defined
by a generating function either closely related to or invariant under a quantum
group.

One may begin with the quantum plane relation3

Xy = qyx (1.1)

which is invariant under the quantum general linear group GLq(2,C). Here x
-

and y are the noncommuting components of the position vector Xx. If this

) , . . 5
relation is preserved by the action of the matrix T on the column vector x:
= -5 ) . 5 5 5
¥ - Tx and also by its action on the row vector x : x - xT, then T belongs to
the quantum general linear group GLq(Z,C).

The connection of Eqg. (1.1) with GLq(Z,C) may also be expressed by

requiring the invariance under T and its transpose, 5, of the cone

%0% = 0 (1.2a)
where
0 01 (1.2b)
_q o

Then



TQT = TQT = DqQ (1.3)

and therefore

- - 5 -
X' Q x' = Dq X0x = 0 (1.4)
where
ab
T =
[c d] (1.5)
ab = gba bc = cb

cd = gdc ad-da = (g-q~!)bc
ac = gca Dy = ad-gbc (1.6)

bd = gdb

and Dq is the g-determinant.

Since Dg commutes with all elements of the algebra it may be set equal to
unity. If Dq = 1, then T € SLq(2,C) and QQ; is invariant and not merely
conformally invariant, under SLq(Z,C).

If T and T' both satisfy (1.3) so does TT' and therefore TT' € GLq(ZC) as

well.

The relations (1.6) may be summarized by the matrix equation
RT1T2 = TleR (1.7)

where



T, =1®T, T, =T®1 (1.7a)
and
q000
0100 1
R = 8§ =q-=
0810 R (1.7b)
000g
If the matrix elements of T commute (g=1) then of course (T;,T,;) = 0.

. -
One may rewrite (1.1) by introducing the following representation of x:
- ed
X = [exS] (1.8)
where a and a are absorption and emission operators:
(a,a) =1 . (1.9)

Then (1.1) becomes

Xy = yX e(a'l;) (1.10)
or
Xy = q yx
where
A

q=e . (1.11)



Now the quantum plane relation (1.1) has been replaced by the commutation rule

of the normal oscillator (1.9).

Let us next consider a second representation of

"quantum vector™:

Then

A'QA' = AQA

if Q has its previous meaning and

A' = SA , S € SLq(ZC)

Define the invariant operator N by

RQA = q

Then

aa - gqaa = g

These are the commutation relations for the deformed oscillator algebra.

the two-dimensional

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

4,5

Thus the quantum plane relation may be rewritten in terms of the commutator of

either the normal (1.9) or the deformed oscillator

(1.16) .



Adopting (1.16) one may introduce, as an ansatz, a complete set of states

such that
aln> = [a#11% % |ne1s> (1.17a)
aln> = [n]l/zln—l> (1.17b)
alo> =0 (1.17c)
where
[n] = 92:%53 ’ (1.18)
q-q
Using this representation one finds
aaln> = [n]|n> (1.19a)
aaln> = [n+l](n> . (1.19b)
Then by (1.16) the |n> are eigenstates of N:
N[in> = n|n> . (1.20)

Also

(N,a) = -a (1.21a)



(N,a) = a . (1.21Db)

One may also relate back to the algebra of SUq(Z) by setting6

J, = -a?/[2] (1.22a)

J_ = a’/[2] (1.22b)
1

Jp =5 (2N+1) . (1.22c)

Then with the representation described by (1.19) one finds the algebra of

SUq(Z).

(JgprJd4) = 234 (1.23a)

43, -43,
B B -

(J4,J2) = [43,1/12) = g__;_g:;__ (1.23b)
q -q

lim (J4,0.) = 23, . (1.23c)

g1

Although we have just described the deformed oscillator algebra, we shall
not in this paper base our development of the deformed Hermite functions on
that algebra. Instead we shall make use of the suitably generalized quantum
plane relation (1.1) from which the deformed oscillator algebra was obtained.

The first generalization of (l1.1) we consider here is to two spaces of

indeterminates {x%} and {tB}:

«0B = q B xa all o, B



In terms of these two sets {x®} and {t®} one may construct a generating
function for multinomials in the {x®}.
We shall then make the following generalization to three spaces. Denoting

‘ ; Q .
the o-coordinate of the ith space by z I we consider

2% P - R(;% 2* 7P i,5=1,2,3, all ap (1.24)

of

where the R,
ii

are restricted by a braid algebra and the Rg% (i#3) satisfy a
g § o

Yang-Baxter equation. With these three sets {2 i} one may now construct a new

generating function.

In this framework we obtain a new class of functions which may be looked
upon a generalization of the classical special functions in many variables. We
shall here restrict our discussion to the Hermite case. The commuting case had

; N : :
been introduced long ago by Hermite while the Grassmannian case naturally
. . -11 .
turns up in a supersymmetric context. Although our work will be based on
the Hermitian generating function, the method is general and has been extended
" . 12
to other classical functions.

It turns out that the new structures are dependent on new functions

related to the mixed operators Rij while the symmetry properties of the new

structures are determined by the pure operators Ryj.



2. g-Hermite Multinomials.
We take the fundamental generating function to be a Gaussian exponential

defining the Hermite multinomials as follows:

00
-A+B [0
e =)y M.y (%) (2.1)
L Q... Oy
0
where
o B
A=A t t (2.1a)
o
o B
B = 2B ,t x . (2.1b)
o
a B oa B .
If (¢t ,t )= (t,x ) = 0 and (Aaﬁ) and (BGB) are symmetric then the
4
Ha “m(X) are the Hermite multinomials introduced by Hermite. Then also
l---
(xa,xB)_ = 0.

I

If (ta,tB)+ (ta,xB)+ = 0 and (Aaﬁ) and (Baﬁ) are antisymmetric then the

Hal.'.am(x) are the Grassmann-Hermite multinomials.g'9
Let us now consider the more general case
tatB _ q(t,t)'tBta (2.2)
xakB = q(x,x) xBxa (2.3)
xatB = q(t'x) tha all «,P (2.4)

where
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L (2.2a)
) _ (2.3a)
q(tx) -q . (2.4a)

Then the {ta} and {xa} are separately either all commuting or all anti-

(tt) (xx)
q = q

commuting ( ) but the t and x spaces are related by (2.4) and

(2.4a) where g is unrestricted.



=q1=

3. Expansion of Generating Function.

For the calculation of Ha am(x) we need the g-binomial theorem:
1..-
Xy = qyXx
then
n n
(x+y)n _ E: k] yk xn—k
k=0 q
where

n (gla)p
kg T (@ld)k (@@ p-x

and

1
(alg), = (1-a) (1-aq) ... (l-ag )

(@la)y = (1-q) (1-g°) ... (1-qP)

Then

[n}
lim =
g-1l k

a

The generating function (2.1) is

-A+B
= e

(3.

(3.

(3.

(3.

(3.

(3.

(3.

If

1)

2)

3)

4)

5)

6)

7)



-

(-a+B) P

1]
T
T

where A and B are non-commuting. We have

Y, 5 ap
BA =B (A, t'xtt
Y8 off
BA = (g-5)° aB
or
BA = g’ AB (3.8)
Then
S
G=) =5 ) [ } (-n)° B°7° (3.9)
p=0 s=0 Q
where
el
Q=g (3.10)
or
oo [n/2] -5 [n-s 5
_ =) B s _n-2s
G = E: z: (n-s)! [ s J A B ! £3.11)
n=0 s=0 Q
where
(3.12)



-13=-

One needs to reorder the factors in A°B to bring all the t to the left of the

X. We have

a°sBT = 2T (a t“tB)s (B tyxs)r

of Y8

= 2% ) (B B ) (tmltBl .. .tastﬁs) (tle81 ..

A ...A .
o By agPBg Y198; YO,

But
r r 8
tleal...terar = sq(r) TT t¥s TT x S
1 1

where the original order of the t's and x's is preserved

r
eqin) = T

By (3.13) and (3.14)

S :
S_r r
A°B" = £4(n)2 [ 1T a,. .][ 11 BYksk}

B
a=1 I Ly

9, b

x (taltBI...tastBS)(tYI...tYr)(x .x T)

where r = n-2s. Let

XY = BYSX

Then

.t

ersr)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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s
“r ,SpT o_ ! Bs [71 ez % . (3.18)
2 A B = Eq(r) [[ _]T Aaij] t t ] t X‘Y1 Yy
j=1
By (3.11)
o [n/2] (% [n-s
G=Z Z r(n_s)![s] eq(r)z..zz...z
n=0 s=0 Q a; B, asBs Y1 Yr
s
x % tPs AU LE N I B N (3.19)
, 3B 57y, Yr
J=1
where r = n-2s. Let
s - -~ -
A (2x) = A ...A (2% ) ...(2x_ ) (3.20)
o Bl L -asBs‘Yl # e -Yr * 23] Bl asBs Y1 ‘Yr
and
Ay Apghogir---Ap) = (ouBy...agBgYy ... Ypo2s) {3.21)
Then
oo [n/2]
(=) S n=5 N 7\-1 l2 Kz +1 A
G=Z Z — [S} Eq(n-2s) ) t AT
n=0 s=0 Q >\.] .)\.n
x n° (2%) (3.22)
)\.1 - e .lzsxzs.*_l. - .Xn :
Therefore
-\ A An =
G=) ) .y 3, (2%) (3.23)

n=0 XIT.
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where finally

[n/2] s
H 2z) = )y P e (n-2s) A® (2x)
kl )\,n A (n"‘S) ! S q A’l « % .Xzslzs.,_l. & .kn
s=0 Q
(3.24)
or
[n/2] ( )S n-s
Hkl...kn(zx) - z: (n-s)! [ s ] 2
s=0 q
X €4(n-2s) A ...A (2x) .. (2%) (3.25)
d AR, 125—1l25 125+1 xn

The separate factors are defined by (3.3), (3.15) and ;k is given by (3.17).

The following special cases of (3.25) may be noted

[n/2] ( )S n-—s
H 2x) = ' ...A 2x ... (2x
kl---kn( ) E:O (n=s) ! [ S ] Pt 125_1X25( X)7“25+1 ( x))‘n
s=
(3.26)
This is the Hermite multinomial.
' (xt) = = =
()" a b Bote = Phaks = Mhads
A’l = X2 = c.. Xzs and x25+1 = sew = Xn
[n/2] ( )S n-s 2
- n-2s
Ho(2x) = ) i) [ s] (2x) : (3.27)
s=0

This is the Hermite polynomial.
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(xt) (xx) (tt)
q = = q =q = =1,

- [n/2]
_,7 (n-1) 7— 1 n-s
L (n-s)! s
s=0

X A 2x) ...(2§<)l . (3.28)
n

...A (
A, Ars-_1A2s Aos+1

This is the Grassmann Hermite multinomial.

In the derivation of (3.25) no assumption has been made about q(xx)- One

observes however that the form of the expansion (3.23) implies that the
. ; o q q
permutation properties of the {A} are determined by the commutation

; a . o
properties of the {t } and that the same properties are passed on to the {x }

according to (3.25). Therefore

q(xx) q(tt) (= +1) (3.29)

as anticipated in (2.2a) and (2.3a).



_.17_.

4. Invariance of the Generating Function.
The invariance of the relation (1.1) under SLq(Z,C) may be promoted to

the same invariance of the generating function (2.1) by replacing BaBtaxB by

"ij o B ij o B
B d 2% 2P =8 MIZ% 2P, (4.1)
af T 1Y j of i% 3

where M is a numerical matrix invariant under SLq(Z,C):

-~

M=TMT , T € SLg(2,C) (4.2)

and where

a a
Zl = X
(4.3a)
[0 a
Zz =t
satisfying
2% B - P (4.3b)
i3 DR
Note that qg;; = Qyx 1s unrelated to the g characterizing SLq.
It may be checked that M must be of the following form
0o M7
M = ] =M?0, (4.4)
—gM'? 0

where g is the parameter of SLq and Q is given by (1.2). Then



_18_

éaﬁ % LB, = M”(Buﬁzalzﬁ2 - Baﬁqzazzﬁl)

(0 [0
M2 (BanZIZBZZ 1= BanZ 2231)

a .
= M'?B ﬁ(th-q) z 2zlB if BaB = BBa
a
= M'?B B(—th-q) zZ 2ZB1 B g = —BBa
] o cij o . .
With respect to the Greek indices Blsz iZB, is either an orthogonal or

symplectic form and with respect to the Latin indices it is invariant under

SLq(2, C).
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5. Generalization to Three Sets.
We may consider two quadratic forms, A and B, as before, where A

unchanged:

a=na %P . (5.

In addition consider the new commutation relations

yatB - qtthya (5.
xatB = ththa (5
xayB = qyxyBxa )

Then there will be the following changes in the previous development

Y, 0 op
BA BY5Aaﬁy X tt (5.

of v 8 2
BySAaBt t'y'x (gq,_.q ) (5.

1

tx ty

It

QAB (5.

where the new Q is



=20~

= 5-9
Q (thqty) . ( )

In addition

p =

BY = B yalel...yaprr (5.10)

;B
3=1
E r r
= I] = e o [ y*T] P (5.11)

: o3B3 “ayx
3=1 k=1 2=1

Then one finds instead of (3.22) for G(t|x) a new equation for G(t|x,y):

o [n/2]
_ (_)S n-s }\_1 A’ZS Z'ZS'f'l A.n

G(tlx,y) = z: 7_ ltimg) | [ S ] eqyx(n 2s) t ...t y sas¥

n=0 s=0 Q

x a° (2x) (5.12)
Av.ohoshoser- - -Ap ’ '
where
_ 2 2

Q (qty) (th) (5.13)

and instead of (3.25)

n-s
€ (n-2s)
s 3 qyx

~ (_)S
H)\.l ...}\.ZSK25+1...)\.H(2X) Z (n—s) !

s=0

[n/2) [

x A ...A (2x) e (2X) . (5.14)
1112 x2s—lk25 125+1 ln

Then the properties of the first 2s indices under permutations will be
. A .
determined by the commutation of the t 1. ..t"25 while the rules for permuting

the remaining indices are determined by the corresponding rules for permuting
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the yx25+1,.,yxn. The factors [n;s] eq(n-2s) depend on the three mixed
Q

parameters Ayts 9xtr and Qyx but the index symmetry of the

H (2x) is determined by g+ and Ayy - The permutation rules for

;\,1 .. .)\25)\,254,1. . .)\,n
~Q

the x are the same as for the last n-2s indices and are therefore also

determined by Ayy - Therefore Qyy = 9xx-

Instead of defining H(x), dependent on a single set {x} of variables, one

may define H(x,y), dependent on two sets of variables {x} and {y}, in terms of

the same generating function G(t|x,y) in (5.12).
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6. The Braid Algebra and the Yang-Baxter Equation.

In (5.14) use has been made only of the mixed parameters Ayts 9xtr and

dyx- Let us now consider the gy, Qyyr and g+ algebras.

£%B - q:E P
yayB - q;g yBya
af _ of B a

XX—q)(xXX
of

Let us restrict g as follows:

g =1, |B-al 22

of

With this choice of g define

IB=a+1I

of

where P is the transposition operator. Then

at+l_o
= R

+1_a_o+l
rROR R R%R

’ 'a-BI 22

’ 13
Then these equations (6.7), (6.8), define a braid algebra.

(6.

(6.

(6.

(6.

(6.

1)

2)

3)

4)

5)

.6)

.7)

. 8)



=5

We may assume that the operators in all three spaces, (tt), (yy), and (xx)
obey braid algebras.

We may also introduce

Ryy = AxyPxy (6.9)
Ryt = QytPyt (6.10)
Ryt = AxyPxt - (6.11)

These operators act on the tensor product of the three spaces and satisfy the

14
Yang-Baxter relation ai3

RyyRxtRyt = RytRytRyy - (6.12)

Both the Yang-Baxter relation and the braid relation (6.7) depend on the same

identity

aba = bab = ¢ , (6.13)

where a, b, and c are the three transpositions of S;.
The new parameters qiy, Ayy and qgyy are independent of the mixed

parameters gyt qyx' and qyt'

In generalizing from the commuting and anticommuting cases, one cannot

GB .

consistently allow an arbitrary choice of Rij The choice just made of the

of

¥y together with the Yang-Baxter equation to determine
bl

aB to the Rag

ii i3

braid algebra to fix R

ng (1#3), is consistent and relates the R matrices simply by
1]
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off

implementing the same identity (6.13) in two ways: by (6.7) for R and by
(6.12) for Rij' (The second braid relation (6.8) is not relevant in the

comparison since there are only three classes of noncommuting variables.)

The Yang-Baxter equation including the spectral parameter is

Ryy (W) Ryp (WHV) Ryp (V) = Ryp (V) Rye (utv) Ryy(u) . (6.14)

There is also a trivial solution of this equation of the form (6.9)-(6.11)

where

qu = fxy(u)
Gyt = fyp (V) (6.15)

Axt = fxe (utv)

In this case the generating function and the multinomials depend on the

arbitrary functions fij(u).


http:6.9)-(6.11
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7. Symmetry of the Multinomials and Invariance of the Generating Function.
The permutation symmetries of the first 2s indices of H(x) are contra-
gradiently determined by q¢y and the commutation symmetries of the x are

similarly determined by the Qyy- For example, consider

o p
Lt ..« H . (7.1)
of ...

. C . . a B .
This expression is unchanged if HuB changes contragradiently to t t" ... in
the usual way:

o [0
t tB = antBt
Ba
H = q H (7.2)
of.. Ba. ..
where

OBPpe -1 (7.3)

The repeated index is not summed in these equations.
Let us next consider the invariance of the new generating function

under the new rules (6.4) and (6.5) of the braid algebra.

We have
a B
A=A t t
af
= A uBtBta

opTet
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o a B

= Beott

and

o

off ABa tt

A (7.4)

If the qtt are now given by (6.4) and (6.5), the matrix (Aaﬁ) will have the

following structure

Ay; QA3 Az Ay, . (7.5)

This matrix may be resolved into three components

A=E+0+ 5, (7.6)
where
S = (AGB) IB-al 2 2 (7.7)
or
B-a = 0

This is a symmetric matrix and the other two parts, E and O, are
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o]
fl

[8((1,[3—1) o(a) + gb(a,B+1) E(a)] AoL

o)

oB [S(a,B—l) E(a) + g §(a,B+1) O(a)] A,

Here O(0) and E(0) project onto odd and even integers

()@
o(a)=—1?f’

1+ (-) &
E(a)=—2(—)

Then
(E+0)oLB = [S(a,B-l) + q 8(a,[3+1)] A,

and E+0 is the matrix

gA; O Ay
while
( \ (
O A 0 ©
1
qa; 0 0 O A
0o = O A; E = gA, O
qA3 (@)

0 A

qA 4 (0]

(7.8)

(7.9)

(7.10a)

(7.10Db)

(7.11)

(7.12)

(7.13)
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Thus O and E, the odd and even parts, have the same structure.

Clearly O is invariant under the transformations

a; b
C dl
a; bs
M = C5 ds (7.14)
or
M=Ml @Mge... (7.15)
where
M; € SLq(Z,C) (7.16)

while E is invariant under

M=M, &M & ... . (7.17)

Thus if the "braid matrix"™ (A ,) is restricted to be (0O ,) or (E ,) then the
of of of
corresponding quadratic form and the associated generating function will be

invariant under SLq(2,C) as expressed by (7.15) and (7.17) respectively.
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