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Abstract. Utilizing an extension of the quantum plane relation, we construct 

a new class of functions defined by a generating function built out of either 

two or three sets of non-commuting variables. The commutators of variables 

within a single set may be related by a braid algebra, while the commutators 

between variables in the three different sets may be related to operators that 

satisfy a Yang-Baxter relation. The new functions are constructed out of q-

functions, which depend on the commutation relations between the different 

sets, while the symmetry properties of the new functions are determined by the 

commutation rules within the separate sets. 
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1. 	 Introduction. 

The quantum groups appear to be related to the basic or q-functions 1 much 

a s the Lie groups are related to the familiar special functions. For example, 

t he little q-Jacobi polynomials may be identified as the matrix elements of 

. 2 2representatlon s of SUq { ). We are here interested in q- multinomials defined 

b y a generating function either closely related to or invariant under a quantum 

group. 

3
One 	may begin with the quantum plane relation

xy 	 qyx (1.1 ) 

which is invariant under the quantum general linear group GLq {2,C) . Here x 

. . -+and y are the noncommuting components of the posltlon vector x. If this 

-+ 
re l a tion is preserved by the action of the matrix T on the column vector x: 

-+ 	 -+ .. -+ -+ -+ 
x -+ Tx and also by ltS actlon on the row vector x : x -+ xT, then T belongs to 

the quantum general linear group GLq {2,C) . 

The connection of Eq. (1.1) with GLq (2, C) may also be expressed by 

requiring the invariance under T and its transpose, T, of the cone 

-+ -+xQx o 	 (1.2a) 

where 

Q 	 (1.2b)[-~ 	~1 

Then 



- -
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TQT TQT (1.3) 

and 	therefore 

-1 -1 
Xl Q Xl o 	 (1.4) 

where 

(1.5)T 	 [:~) 

ab qba be = cb 


cd qdc ad-da = (q-q-l)bc 


ac qca ad-qbc (1.6) 

bd qdb 

and 	Dq is the q-determinant. 

Since Dq commutes with all elements of the algebra it may be set equal to 

-1 -1.. . 	 Iunity. If Dq = 1, then T E SLq( 2 ,C) and xQx lS lnvarlant and not mere y 

conformally invariant, under SLq (2,C) . 

If T and TI both satisfy (1.3) so does TTl and therefore TTl E GLq (2C) as 

well. 

The relations (1.6) may be summarized by the matrix equation 

(1.7) 

where 
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(1.7a)1 ® 	T, T2 T ® 1 

and 

[	 1 
R ~ ~ ~ ~l o 0 	 1 0 

q -
q (1.7b) 

o 0 	 0 q 

If 	the matrix elements of T commute (q=1) then of course (T 1 ,T 2 ) = O. 

One may rewrite (1.1) by introducing the following representation of ~: 

(1.8) 

where a and a are absorption and emission operators: 

(a, a) 1 . 	 (1.9) 

Then (1.1) becomes 

(a,Aa)
xy yx e 	 (1.10) 

or 

xy q y x 

where 

A 
q e 	 (1.11 ) 
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Now the quantum plane relation (1.1) has been replaced by the commutation rule 

of the normal oscillator (1.9). 

Let us next consider a second representation of the two-dimensional 

"quantum vector": 

(1.12)[:] 

Then 

-A'QA' AQA (1.13) 

if Q has its previous meaning and 

A' SA , S E SLq (2C) (1.14 ) 

Define the invariant operator N by 

- -N
AQA q (1.15) 

Then 

-N 
aa - qaa q (1.16) 

4,5
These are the commutation relations for the deformed oscillator algebra. 

Thus the quantum plane relation may be rewritten in terms of the commutator of 

either the normal (1.9) or the deformed oscillator (1.16). 
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Adopting (1.16) one may introduce, as an ansatz, a complete set of states 

such that 

1 /2
aln> [n+1] In+1> (1.17a) 

1/2
aln> en] In-1> (1.17b) 

alO> o (1.17c) 

where 

en] - (1.18 ) 

Using this representation one finds 

aaln> [n ] In> (1.19a) 

aaln> [n+1] In> . (1.19b) 

Then by (1.16) the In> are eigenstates of N: 

Nln> nln> . (1.20 ) 

Also 

(N, a) -a (1.21a) 
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(N,a) = a (1.21b) 

One may also relate back to the algebra of SUq (2) by setting6 

-a 2 /[2] (l.22a) 

;2 / [2] (1.22b) 

1 
4 (2N+1) (1.22c) 

Then with the representation described by (1.19) one finds the algebra of 

(1.23a) 

4Jz -4Jzq -q 
(1.23b) 

(1.23c) 

Although we have just described the deformed oscillator algebra, we shall 

not in this paper base our development of the deformed Hermite functions on 

that algebra. Instead we shall make use of the suitably generalized quantum 

plane relation (1.1) from which the deformed oscillator algebra was obtained. 

The first generalization of (1.1) we consider here is to two spaces of 

indeterminates {xa } and {t~}: 

all a, ~ 
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I n terms of these two sets {xa } and {to.} one may construct a generating 

function for multinomials in the {xa }. 

We shall then make the following generalization to three spaces. Denoting 

the a-coordina t e of the ith space by za ., we consider
1. 

a ~ a.f3 a ~ z . z . R .. Z . Z . i,j 1,2,3 	, all a, ~ (1.24)
1. J 1. J 1. J 

where the R~ are restricted by a braid algebra and the R~J' (ilj) satisfy a
1.1. 

Yang-Baxter equation. With these three sets {Za . } one may now construct a new
1. 

generating function. 

In this framework we obtain a new class of functions which ma y be looked 

upon a genera l ization of the classical special functions in many variables . We 

shall 	here restrict our discussion to the Hermite case. The commuting case had 

7
been introduced long ago by Hermite while the Grassmannian case naturally 

8-11 
turns up in a supersymmetric context. Although our work will be based on 

the Hermitian generating funct i on, the method is general and has been extended 

. f . 12to other c 1ass1.cal unct1.ons. 

It turns out that the new structures are dependent on new functions 

related to t he mixed operato r s Ri j while the symmetry properties of the new 

structures are determined by the pure operators Rii ­
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2. q-Hermite Multinomials. 

We take the fundamental generating function to be a Gaussian exponential 

defining the Hermite multinomials as follows: 

00 

-A+B al Ome y- t ... t H (x) (2.1 ) 
a 1 •• ·Om

O 

where 

A (2.1a) 

B (2.1b) 

If (ta,t~) = (ta,X~) = 0 and (A~) and (B~) are symmetric then the 

4
H (x) are the Hermite multinomials introduced by Herrnite. Then also 
al" ·Om 
(Xa,X~) = O. 

If (ta,t~)+ = (ta,X~)+ = 0 and (A~) and (B~) are antisymmetric then the 

. .. 8,9
H (x) are the Grassmann-He~te multlno~als. 

a 1 · · ·Om 
Let us now consider the more general case 

(2.2) 

(x, x) A a 
q xPx (2.3) 

(t,X) A a 
q tPx all a,~ (2.4) 

where 
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q(tt) ± l (2.2a) 

q (xx) ± l '(2. 3a) 

q (tx) q . (2 . 4 a ) 

Then the {tel} and {x'i are separately either all commuting or all anti­

c ommuting (q 
(tt) __ (xx)

q) but the t and x spaces are related by (2.4) and 

(2.4a) where q is unrestricted. 
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3. Expansion of Generating Function. 

For the calculation of H (x) we need the q-binomial theorem: If 
al ···Om 

xy qyx 	 (3.1 ) 

then 

n 

n n-k


(x+y) 	 ) x (3.2) 

k=O 

where 

(3.3) 

and 

(I-a) (l-aq) ... (l-aq
n-l 

) 	 (3.4) 

(l-q) (1-q2) ... (l_qn) . 	 (3.5) 

Then 

(3.6)lim 
q-+l 

[:] 	 ~ [:j 
q 

The generating function (2.1) is 

-A+B 
e 	 (3 . 7)G ­



-12­

00 

(-A+B)P1 p! 
p=O 

where A and B are non-commuting. We have 

BA 

tx 2
BA (q ) AB 

or 

BA (3.8) 

Then 

00 

s(_A)S BP - , (3.9)G ;- p\ 1 
p 

p=O s=O 

where 

Q (3.10) 

or 

[n/2J00 

(_)s 
G (3.11 )1 1 (n-s) ! 

n=O s=O 

where 

n = s+p . (3.12) 
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One needs to reorder the factors in ASB
r 

to bring all the t to the left of the 

x. We have 

r a l ~1 as ~s 'Yl 01 'Yr Or2 (A R ••• A R) (B 0 ... B 0 ) (t t ... t t ) (t x ... t x )
alPl asps 'Yl 1 'Yr r 

(3.13) 

But 

(3.14 ) 

1 1 

where the original order of the tIs and XIS is preserved 

r 
q2 (r-l) (3.15) 

By (3.13) and (3.14) 

s r
A B 

(3.16) 

where r n-2s. Let 

(3.17) 

Then 



- -

- -
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(3.18 ) 

By (3.11) 

00 [n/2 J 

G ) ) E (r) ) ... )) )
q

n=O 5=0 a1 ~ 1 a5~5 'Y1 'Yr 

5 

n A R X ••• x (3.19) 
ajPj 'Y1 'Yr

j =l 

where r n-2s . Let 

A R • •• A R (2x ) ... (2x ) (3.20)
a 1P1 asps 'Y1 'Yr 

and 

(3.21) 

Then 

00 [n/2 ] 

G ) (_)s 
ns-s] Q E (n-2s)q(n-s) ! [ 

n=O s=O 

(3.22) 

Therefore 

G (3.23) 



- -
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where finally 

[n/2] 
(_)s 

> (n-s) ! 

s=O 


(3.24) 

or 

[n/2J 
(_)s

J (n-s) ! 

s=O 


X E q (n-2s) A~ ~ ••• A~ ~ (2x)~ ... (2x)~ (3.25) 
~1~2 ~2s-1~2s ~2s+1 ~n 

The separate factors are defined by (3.3), (3.15) and xI.. is given by (3.17). 

The following special cases of (3.25) may be noted 

(a) q(xt) = 1, q(xx) = q(tt) = 1 

[n/2J 
(_)s - ­

A~ ~ ... A~ A (2x)A ... (2x)AJ (n-s) ! ~1~2 ~2s-1 2s 2s+1 n
s=O 

(3.26) 

This is the Hermite multinomial. 

[n/2J 
(_) s (2x) n-2s .H (2x) 	 (3.27)n	 J (n-s) ! 


s=O 


This is the Hermite polynomial. 



- -
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(xx) (tt)(b) q(xt) -1, q q -1 , 

n [n/2] 
(_)2 (n-l ) 1 

(n-s) !> 
s=O 

x A'J... 'J... ••• A'J... 'J... (2x)'J... • • • (2x )'J... (3.28) 
1 2 2 s -1 2s 2s+1 n 

Thi s is the Grassmann Hermite multinomial. 

(xx)
In the de r ivation of (3 .25) no assumption has been made about q One 

observes however that the form o f the expansion (3.23) implies that the 

. . {'\ a}permutatlon p ropertles of the A are determined by the commutation 

p roperties of the {tal and that the same properties are passed on to the {x
a 

} 

according to (3. 25). Therefore 

(xx) q ( tt) (= ±1)q (3.29) 

a s anticipat e d in (2.2a) and (2.3a). 
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4. Invariance of the Generating Function. 

The invariance of the relation (1.1) under SLq (2,C) may be promoted to 

the same invariance of the generating function (2.1) by replacing B~tOx~ by 

~ ij a ~ ij a ~ 
B",rt. Z ,Z , B",rt.M Z ,Z , , (4.1 ) 

u.p l J u.p l J 

where M is a numerical matrix invariant under SLq (2,C) : 

-
M TMT (4.2) 

and where 

(4.3a) 

a 
t 

satisfying 

a ~ ~ a 
Z . Z . q .. Z .Z . (4.3b) 

l J Jl J l 

Note that q21 = qtx is unrelated to the q characterizing SLq . 

It may be checked that M must be of the following form 

(4.4)M 

where q is the parameter of SLq and Q is given by (1.2). Then 
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M12 (B ZU Z~ U ~ 
BapqZ 2 Z 1 ) ap 1 2 

if 

-B 
~a 

-ij a ~ 
With respect t o the Greek indi c e s B",(,tZ ,Z , is either an orthogonal or 

u.p 1. J 

s ymplectic form and with respe ct to the Latin indices it is invariant under 
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5. Genera1ization to Three Sets. 

We may consider two quadratic forms, A and B, as before, where A is 

unchanged: 

A (5.1) 

In B however replace t by y. 

B (5.2) 

In addition consider the new commutation relations 

yat~ q t~ya (5.3)
ty 

xat~ t~xa (5.4)qtx 

xay~ ~xy~Xa (5.5) 

Then there will be the following changes in the previous development 

BA (5.6) 

af3'Y o 2
B ~A~At t Y x (qq ) (5.7)

'Yu up tx ty 

QAB (5.8) 

where the new Q is 



- -
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Q (5.9) 

I n addit i on 

r 
r

B n B yCll xJ3l ... y Clrx t3 r (5.10) 
Cl jJ3j

j=l 

r r r 
Clk 11 x J3 !E (r ) (5.11)n B ITClj~ j qyx 

Y 

j =l k= l !=1 

Then one f inds instead of (3. 2 2 ) for G(tlx) a new equation for G(tlx,y): 

00 [n/2J 
(_)s


G(tlx, y) 
 1 1 (n-s) ! 
n=O s=O 

(5.12) 

where 

Q (5.13) 

a nd instead o f (3.25) 

[n/2 ] 
(_)s;- n-s] E (n-2s)

(n-s) ! [ s qyx
s=O Q 

x A'A. 'A. ••• A'A. 'A. (2x) 'A. ••• (2x) 'A. (5.14 ) 
1 2 2s-1 2s 2s+1 n 

Then t he properties o f the first 2s indices under permutations will be 

determined by the commutation of the tAl ... t A2s while the rules for permuting 

the r emaining indices are determined by the corresponding rules for permuting 
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A2s+1 An n-s]the y ... y The factors [ s E q (n-2s) depend on the three mixed 
Q 

parameters qyt' qxt' and qyx' but the index symmetry of the 

H"l "" " (2x) is determined by qtt and qyy. The permutation rules for
/\, .. ·/\,2s/\,2s+1· . ·/\'n 

-(1
the x are the same as for the last n-2s indices and are therefore also 

determined by qyy. Therefore qyy = qxx. 

Instead of defining H(x), dependent on a single set {x} of variables, one 

may define H(x,y), dependent on two sets of variables {x} and {y}, in terms of 

the same generating function G(tlx,y) in (5.12). 
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6. The Braid ~gebra and t he Yang-Baxter Equation . 

In (5.14) use has been made only of the mixed parameters qyt' qxt' and 

qyx' Let u s now consider the qxx' qyy' and qt t algebras. 

tat~ q~ t~ta (6.1 )
t t 

yay~ ~~ y~ya (6.2) 

pxax ~~ x~xa . (6.3) 

Let us restrict q~ as fo l l ows: 

a,a±l ±l 
q q (6.4) 

1 (6.5) 

with this choice of q~ define 

a+1 , (6.6) 

where p~ is the transposi t i on operator. Then 

a a+1 a a+1 a a+1 
R R R R R R (6.7) 

(6.8) 

13
Then these equations (6.7 ) , (6 .8), define a braid algebra. 
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We may assume that the operators in all three spaces, (tt), (yy), and (xx) 

obey braid algebras. 

We may also introduce 

Rxy (6.9) 

Ryt (6.10) 

(6.11) 

These operators act on the tensor product of the three spaces and satisfy the 

, 14,15
Yang-Baxter relatlon 

(6.12) 

Both the Yang-Baxter relation and the braid relation (6.7) depend on the same 

identity 

aba bab c , (6.13) 

where a, b, and c are the three transpositions of 5). 

The new parameters qtt' qyy' and qxx are independent of the mixed 

In generalizing from the commuting and anticommuting cases, one cannot 

consistently allow an arbitrary choice of R~. The choice just made of the 
lJ 

braid algebra to fix R~, together with the Yang-Baxter equation to determine 
II 

R,aJ3 aJ3 aJ3 
, (ifj), is consistent and relates the R .. to the R .. matrices simply by 

lJ II lJ 
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implementing t he same identity (6 . 13) in two ways: by (6.7) for R~ and by 

(6 . 12) for R , ,. (The second braid relation (6.8) is not relevant in the 
~J 

c omparison since there are only three classes of noncommuting variables.) 

The Yang - Baxte r equat i on including the spect r a l parameter is 

(6.14 ) 

There is al s o a trivial s ol ution of this equat i on o f the form (6.9)-(6.11) 

where 

fy t (v) (6.15) 

In this case the generating funct ion and the multinomials depend on the 

arbitrary functions fij(u). 

http:6.9)-(6.11
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7. Symmetry of the Mu1tinomia1s and Invariance of the Generating Function. 

The permutation symmetries of the first 2s indices of H(x) are contra­

gradiently determined by qtt and the commutation symmetries of the x are 

similarly determined by the qyy. For example, consider 

L t a t ~ ... (7.1 )Hap ... . 

This expression is unchanged if Hap ... changes contragradiently to tat~ ... in 

the usual way: 

H (7.2) 
ap ... 

where 

1 . (7.3) 

The repeated index is not summed in these equations. 

Let us next consider the invariance of the new generating function 

under the new rules (6.4) and (6.5) of the braid algebra. 

We have 

A 
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and 

(7.4) 

I f the q are now given by (6.4) and (6.5), the matrix (A~R) will have the 
tt up 

f ollowing structure 

Al I Al 2 Al 3 Al 4 

qAI2 A22 A 23 A24 

(7.5) 

Th i s matrix may be resolved into three components 

A E+O+S, (7.6) 

where 

S I~-al ~ 2 (7.7) 

o r 

~-a O. 

This is a symmetric matrix a nd the other two parts, E and 0, are 
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EaJ3 (7.8) 

(7.9) 

Here O(a) and E(a) project onto odd and even integers 

l-(-)a 
o (a) 	 (7.10a)

2 

(7.10b)E (a) 

Then 

(7.11 ) 

and E+O is the matrix 

o Al 


qA I 0 A2 
 (7.12 ) 

qA2 	 0 


q A 3 


while 

( 
( 0 10 0 

i 

I qAI a 

o 
 (7.13)E 

qA4 	 0 . 

. J . ) 
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Thus 0 and E, t he odd and even parts, have the same structure. 

Clearly 0 is invariant under the transformations 

M (7.14) 

or 

(7.15) 

where 

M 

(7.16) 

M 

while E is invariant under 

(7.17) 

Thus if the " b raid matrix" (A~ ) is restricted to be (O~) or (E~) then the 

c orresponding quadratic form and the associated generating function will be 

i nvariant under SLq (2,C) as expressed by (7.15) and (7.17) respectively. 
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