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Abstract 

We calculate quasiparticle interaction in two-dimensional Hubbard 1110del by first 

finding the interaction vertex at sn1all but non-zero temperature and then taking 

tenlperature to zero after the thermodynamic limit. The two lin1its prove to be non-

interchangeable, signalling the presence of Kohn-Luttinger-type anolnalous terms. 

These anolnalous terms make the interaction singular for quasiparticles of opposite 

spins and equal momenta at the Fermi surface. This singularity is a specific feature of 

the lattice two-dimensional system as opposed to the continuum 2D Fermi gas with 

short-range repulsion. 

PACS: 73.20.Dx - Electron states in low dilnensional structures. 
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Recently, there was much interest in the idea that the ground state of correlated 

two-dimensional electronic systems differs from the conventional Fernli liquid. An­

derson [1, 2] has suggested that in two-dimensional (2D) Hubbard model the Landau 

function f pp' describing interaction of quasiparticles in the Fermi-liquid state is sin­

gular for equal nlomenta p = p', so that this interaction nlodifies the Fermi-liquid 

state in a singular way. Generally, the Landau function can be related to the real 

part of the effective particle-particle interaction vertex [3]. (The inlaginary part of 

the vertex is irrelevant since it tends to zero more rapidly as external nlonlenta p and 

p' approach the Fenni surface.) In Ref. [1] and subsequent works [4, 5, 6] the two-

particle effective vertex in the 2D Hubbard nlodel was studied at zero tenlperature 

within the ladder approximation [7], as expected to be appropriate at low electron 

densi ty. In the ladder approxilnation only opposite spins interact and the real part 

of the vertex has the fonn [4, 5, 6] 

" (u~, N(P,k) )-1
Ref(p,E;p ,E) = U 1 + V~----- (1) 

k Ek + Ep-k - E - E' 

Here P = p+p' is total mOlnentuln, U is on-site repulsion, V is total two-dinlensional 

volunle, N(P,k) = 1 - np-k - nk, nk is the Fermi distribution, and Ek is the free-

particle dispersion law. The prime on the sum sign indicates that momenta for which 

the energy denonlinator is zero are excluded from the sum. Engelbrecht, Randeria and 

Zhang [8] have attempted to calculate the Landau function using the zero-temperature 

ladder expression (1) and have found no singularity for equal nlomenta. However, it 

was already pointed out [2] that a singularity, if any, of the Landau function may be 

outside the conventional many-body perturbation theory and analogous to anomalous 

ternls discovered by Kohn and Luttinger [9]. These terms can only be found by first 

doing a calculation at non-zero temperature and then taking temperature to zero after 

the thernl0dynanlic limit is performed. As advocated in Ref.[9], this is the correct 
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order of limits when they are not interchangeable. In any calculation starting from 

the zero-telnperature expression (1), the anomalous terms are absent fron1 the very 

beginning. 

It is the purpose of the present note to report an alternative calculation of the 

Landau function for 2D Hubbard model, using the correct order of the linliting proce­

dures. We will see that anomalous ternlS are indeed present in this problem and ren­

der the Landau function singular for p = p'. Unlike the case discussed by I(ohn and 

Luttinger, however, these anomalous terms have nothing to do with non-sphericity 

of Fenni surface which appears only in higher orders of the low density expansion. 

Thus, while the fonnal analogy with their considerations is conlplete, the underlying 

physics should be different. We do not discuss here what redefinitions of excitations 

at the Fenni surface are needed in the present case but our results certainly demon­

strate the breakdown of Fermi-liquid behaviour for the 2D Hubbard nl0del essentially 

in the way suggested in Refs. [1, 2]. 

Let us elnphasize that the singularity we obtain is a distinct feature of the 2D 

lattice systenl. It does not occur for the continuum 2D Fenni gas with short range re­

pulsion. The presence of singularity is closely related to the logarithlnic divergency of 

the SUln in eq.( 1) near the excluded point k = p, when p = p', f = f' is on the energy 

shell and the size L of the system goes to infinity. For the continuuln Fenni gas, the 

corresponding sum contains a vacuum two-particle scattering amplitude f(6.p, 6.k) 

[7], where ~p = (p - p/)/2, 6.k = k - P /2. In two dimensions, for l6.pl, l6.kl --+ 0, 

the alnplitude goes to zero as inverse logarithm of the second argulnent [10), 

f(6.p,6.k) 1/log\6.k\ , (2)I"V 

so that the integral 

Nk 
dkf(O,k-p)f(O,k-p) 2 ' (3)J fk + f2p-k - fp 
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is convergent at k = p, being f K dK(KlogK)-2 < 00 [6]. As a consequence, the 

singularity of the Landau function will not appear in the continuuln. 

T he conclusion of instability of the Fermi-liquid state of the 2D Hubbard model 

was drawn by us previously [6] from the presence of an off-shell isolated pole of 

the zero-temperature effective vertex r below the occupied states [4, 5, 6]. This 

pole is also specific for the lattice systen1 as opposed to the continuun1 Fern1i gas [6]. 

Though the interpretation of the pole as an instability still seems n10st plausible to us, 

another interpretation [4] considers it as a bosonic excitation of a stable Fermi-liquid 

state. Let us note that the argulnent for the breakdown of Fermi-liquid behaviour in 

lattice 2D systenls, based on the singularity of Landau function, is free froin any such 

interpretation problenl. 

The effective interaction at finite temperature T is obtained as usual by analytical 

continuation in E, E' of the thermodynamic vertex part defined on a discrete set of 

imaginary frequencies. This results in the following replacement in eq.( 1), 

N(P, k) = ~ (tanh €~Tk + tanh;~) , (4) 

where the dispersion law is counted from the chemical potential 11. We use eq.( 1) 

with this replacenlent in the general relation between the Landau function !pp' and 

the particle-particle interaction vertex [3], 

(5) 

where function F is the solution of equation, 

F(p,€;p',€') = r(p,€;P',w) - (2:)3 Jr(p,€;q,w)q,(q,w)F(q,w;p',€')d2 qdw. (6) 

Here ¢(q, w) is the regular part of the square of the single-particle Green function 

of mOlnentum q and frequency w, and we omit the spin indices. In the second term 
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on the r.h.s. of eq.(6), the singularity of F at p = p', t = = tp, which we obtaint ' 

below, is integrated over, so the singular part of the Landau function coincides with 

that of the first term. 

The logarithmic divergency at k near p at p = p' and t = t ' = tp tends to n1ake 

the sum in eq.(I) infinite as 10gL. Therefore, at strictly zero temperature eq.(I) turns 

to zero in the thermodynamic limit. The main idea behind our analysis is that at any 

finite temperature, for Ipi close to the Fermi surface with the 1/logL accuracy, the 

slllallness of tanh functions in eq.( 4) can compensate the logarithmic growth of the 

sum and give rise to a pole in eq.(I). This pole is in the on-shell effective interaction 

and leads, through eq.(6), to a singular Landau function. The singular terms are 

precisely of the Kohn-Luttinger type and would be switched off if one takes T to zero 

before the thermodynamic limit, so that N(P, k) becomes a step-function and can 

provide no small factors. 

With the sallle definitions of the relative mOlllenta ~p and ~k as above, the 

on-shell effective interaction vertex has the form 

I 1 (tP - k tk )) -1(U ,,",,'r pp' = r(p, tp; p ,tp') I"V U 1 + 2V -t l~kl2 _ l~pl2 tanh 2T + tanh 2T . 

(7) 

Here we have used the quadratic approximation tp = p2/2 - J-L for both external and 

intermediate states, so that the sum has to be cut at momenta of order of inverse 

lattice spacing and will be calculated with logarithmic accuracy. When the external 

momenta are not equal, l~pl =1= 0 in the thermodynamic limit, the sum in eq.(7) is 

of order 10g(l/kFa), where a is the lattice spacing, and the Landau function is not 

singular. 

Let us now consider the case of almost equal momenta, l~pll"V 1/L. The main 
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contribution to the sum in this case comes fronl the vicinity of ~k == 0, and 

L -1 

r pp' U ( 1+ const. U tanh~ log-) , (8)r-..J 

2T a 

where const. is positive. Therefore, for any small but non-zero temperature, t here 

are states within 1/logL below the Fermi surface (Ep < 0), for which the expression 

in brackets becomes zero , so that the r.h.s of eq.(8) becomes infinite. When L is 

taken to infinity before temperature is turned off conlpletely, these states produce the 

singularity of Landau function for equal momenta right at the Fermi surface. 

In conclusion, we have proven the conjecture of Refs.[I, 2] that the Landau inter­

action function in the 2D Hubbard model is singular for quasiparticles with opposite 

spins and equal nl01nenta at the Fermi surface. The singular ternlS are anonlalous 

in the Kohn-Luttinger sense, they can only be recovered by starting fronl the finite­

telnperature interaction vertex and taking tenlperature to zero after the thermody­

namic limit. The singularity results in the breakdown of Fermi-liquid behaviour and 

is characteristic of lattice two-dimensional systenls as opposed to continuum ones. 

Let us note in closing that this distinction between lattice and continuunl is compat­

ible with the idea of a fractional exclusion principle for opposite spins [2]. Indeed, 

the Hilbert space of single-particle states in a lattice system, but not in a continuunl 

one , is "finite and extensive", in Haldane's [11] terminology, that is the number of 

states is proportional to the volume. Excitations in such systems can possess frac­

tional statistics in arbitrary dimensions [11]. In three-dimensional Hubbard model, 

there are no anomalous terms in quasiparticle interaction to order kFa, as may be 

seen from the explicit mapping of this problem on the continuum Fermi gas (with the 

scattering length of 0.315 of the lattice spacing for large U) [6]. However, we expect 

such terms to appear in higher orders of the low-density expansion, where deviations 

from spherical Fermi surface will come into play. 
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