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ABSTRACT. This talk deals with two seemingly dispa.r~~LbGII~.w.-~.-W~l't'JU'r.rbi.d.r--
and algebroids, and Lie bigebras (bialgebru), alaoknown as Lie-Bopf-algebras (LBA), which have re
cently found to have applications in quantum field theory, gauge theory, and string theory. Although 
many of the mathematical concepti have been &tound for some time, the interest in groupoida lies 
in potential application to string theories, whereas Lie bigebras appear in recent work by Drinfel'd 
and others on "quantum groupe" and their relation to the elaaaieal Yang-Baxter equation. 

Introduction 

At one of the early of these conferences (Bonn 1975) [51.], I talked about attempts at formu
lating gauge field theories in terms of a "representation theory of the holonomy groupoid". 
My interest in groupoids was rekindled by a recognition that open bosonic strings, and 
the Witten composition law of strings [6] can be viewed, in part, as groupoid operations. 
I wish to emphasize the natural way in which some aspects of groupoid theory enter into 
the formulation of gauge theories and some models of string theory. I will start out with 
a review of basic definitions. While these notes were being written, I r~ved the recent 
monograph by Mackenzie [18], which deals with the relation between Lie groupoids and al
gebroids and principal bundle theory, and contains a treatment of connections in groupo ids 
based on the Atiyah sequence [19]. I was very pleased to see this, since I have been using 
this approach to the definition of connections in principal bundles in my forthcoming book 
[20]. Since connections in Lie groupoids tum out to be equivalent to these, this furnishes 
a further argument in favor of a groupoid approa.cb. to gauge theories. The existence of 
[18] book allowed me to reduce the amount of background material included in this lecture. 
The reader is advised to consult this book for topics which space does not permit me to 
treat here. 

Severallecturera at this Conference (FrOhlich, de Vega) dealt with r-matrices and Yang
Baxter equations, but did not go into the relations these concepts have with "quantum 
groups" or Lie-Hopf Algebras. I have therefore decided to include a very brief overview of 
this new and exciting topic. 

Part I of the lecture deals with some aspects of groupoid theory, as applied to gauge and 
string physics. It contains a brief review of the necessary mathematics. 

• To be published in Different.ial Geomet.rical MdA". in TAeoret.ical PA,.ic., K. Bleuler, Ed., 
D. Reidel Publishing Co., Dordreeht, 1988. 
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Part n deals wit~ the ot4er top,j<;.; Lie bigebras and "quantum groups" and their uses 
in quantum field theory. This topitlis again related tt a subject about which I t-uted at 
an earlier of these conferences (Bonn 1973[B, see [M,71, 73]), where I made an attempt to 
advocate the use of W·-bigebras (Hopf-von Neumann) algebras, as a way of describing the 
(possibly broken) symmetries in algebraic quantum field theory. Since then Doplicher and 
Roberts [DR] have succeeded in partially completing the Doplicher-Ha.a.g-Roberts (DHR) 
program [DHR 69,71- -74], so that now it ca.n be considered as a self-contained part of 
general quantum field theory (still missing is the incorporation of gauge theories). Although 
in the intervening time my interests have shifted in a more differential-geometric direction, 
I have often expressed my conviction that Hopf-algebraic aspects are bound to play an 
important role in quantum gauge theory (private conversations with, among others, Daniel 
Kastler, Rudolf Haag, Detlev Buchholz, and others). Unfortunately, the mathematical 
machinery seemed to have been lacking. At the International Congress of Mathematicians 
of 1986 P. Cartier presented in Berkeley the paper "Quantum Groups" of V. G. Drinfel'd . 
(which appeared in Russian ID 86] and reached me in May, 1986), in which Lie-Hopf algebras 
(LHA) or Lie bigebras (Drlnfel'd uses the longer name Lie- bialgebras) are introduced and 
their relations to solutions of the classical Yang-Baxter equations (CYBE) are diacuaeed, 
and the notion of quantum group and their relation to the quantum Yang-Baxter equations 
(QYBE) are explored. Part 2 consists of a review some of Drinfel'd's defi.nitioJll ad aD. 

outline of the way I hope LHA-s will enter quantum field theory and conformal field theory 
in the near future. 

The references to the two parts are given in different styles: those to Part 1 (groupoida) 
are in the form [Number], whereas those for Part 2 are in the form [Author, Year). 

1. Groupoids, Gallp The0r7, ad StriDp 

1.1. INTRODUCTION 

Although the "noncommutative differential geometry" of Alain Connes [1) has had a con
siderable impact on mathematics (see, e. g., [2]) few physicists paid attention to this very 
important development. The mOlt notable exception was Daniel Kastler, who has h~ 
ically attempted to spread the new gospel in the mathematical physics commUDity, d. [3] 
as well as, more recendy, Jean BeW.ard [4], who (with .collaborators) has pointed out that 
Connes' K-theory hu remarkable applicatioJll in the theory of the quaatum Hall effect as 
well as in other areu of condenaed-matter physics. Under Daniel Kasder's inluence, I have 
made lOIDe feeble attempts to call attention to this important development [6]. However, 
this situation haa liarted to change: in a recent paper [6] (and a sequel), E. Witten has 
attempted to d.iIcuI the implicatioJll of Connes' noncommutative ieometry for superstring 
theory [7], in particular, the interpretation of the BBS(T) charge operator Q•• [8] as a 
graded derivation. He propoeed a "composition law" for open strinp which strongly sug
gests an interpretation in terms of a groupoid - a concept which also plays a fundamental 
role in Connes' theory, and in the theory of foliated manifolda [10-12]. Amone others, I 
have tried for several years to espouse the point of view that the BBS·charge ad the Kuga
Ojima criterion for selecting the physical subspace in quantized gauge theories should be 
taken seriously, and that the group of gauge transformations and its Maurer·Cartan form 
(the "ghost") should be given consideration already at the classical level. 
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Recently Leonard Gross [13] has proposed an approach to gauge theories based on "lasso 
forms". Although his emphasis is on finding a measure on such forms, his results are closely 
related to a groupoid reformulation of gauge theory, as well as to early work by H. Loos 
[13a] as well as to my early attempts to quantize the holonomy of gauge fields [5a], and 
these relations need to be investigated further. 

In 1986 I translated a paper of M. B. Mensky [14] which discusses a related approach 
to the theory of interacting strings, in terms of the group of paths on the path group of 
a manifold. Although Mensky's approach and aim is different, his paper (and presumably 
some of his other publications) makes some valuable technical points on the relations be
tween the representations of the path groupoid, the fundamental group and the group of 
free paths on a homogeneous space. I will not discuss this paper here. 

I will try to explain how one could possibly use the groupoid concept for the description 
of the composition of open strings and how it could be extended to closed strings. Since I 
am not an expert on superstring theory, these remarks should be interpreted as heuristic, 
and they are published in the hope that the people actively engaged in research will find 
them useful and will be able to exploit them more fully. 

Since the notions of groupoid and algebroid are not very familiar to physicists. I start 
in Sec. 1.2 with a brief listing of the definitions and a few examples (for details see [9, 
18]). Section 1.3 is devoted to a discussion of strings in terms of groupoids, thus giving 
some intuitive feeling for groupoids. Sec. 1.4 returns to the definition of Lie groupoids and 
algebroids and gives a brief account of the theory of connections and holonomy. Section 1.5 
deals with a reformulation of gauge theory in terms of Lie groupoids and algebroids and 
their connection with principal bundle theory. 

1.2. WHAT ARE GROUPOIDS? 

A groupoid r can be thought of as a collection of transformations ("arrows") a, {J, i, of a 
set B of objects which can be identified with the set of units rO of r. The elements of B 
will denoted by X,'I/,z E B, and their images in r by z,y,i E r, respectively. The "object 
inclusion map" which identifies elements of the base space B with units in rO is denoted 
by E : x t-+ Z. If i is an arrow from x to '1/ then x := .(,) is called its source and 11 := t(i) 
is ca.lled its target (or source· and target projection, respectively~ The reversed arrow is 
ca.lled the inverse of i and is denoted by ,.-1. The composition of arrows a{J is defined only 
if the target of 13 is the source of 0 : t({J) = '(0) (mappings compose from right to left!). 
Composition is associative iff both terms 0({J,.) and (o{J), are defined. Obviously: 

.(,.-1) =t(,.), t(,.-l) =s(,.), and ,.-1,. =.(,.), ,,-1 =t(1); 

this is the reason why the arrows z corresponding to the objects x are called units or 
identities. It is easy to see that they actually behave like units, i.e., if .(,.) = x and ,." = 'I, 
then,. =i, etc. The set of composable pairs of arrows is denoted by r2. 

For two subsets A and C of r one uses the notation r~ = t-1(C) n ,-1(A) and r IA= r~, 
the restriction of the groupoid to A. If A consists of a single element A ={x} then r: =G(z) 
is the isotropy group (or vertex group) of r at x E B. There are two trivial extreme cases: 
0) when a groupoid consists of units only (no arrows) it is just a space without any structure; 
it can be identified with its base B; b) when the groupoid has only one object (unit), i.e., 
the arrows are always composable, and the groupoid reduces to a group. 
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It is sometimes convenient to identify the objects with the units as identities, i.e., omit 
the tilde and write, when defined: Z7 =7 and/or 7Z =z. The definition of a subgroupoid 
is the obvious one; the set of units rO = B is sometimes called the base subgroupoid. 

A groupoid is called transitive if the map (I, t) from r to B x B = (-l(rOx rO) (called 
the anchor by Mackenzie [18]) is surjective (onto) and it is called principal if it is bijective 
( one-to-one). A groupoid is called connected if for any two units z t 11 there exists an element 
Q such that z = SeQ) and 11 = t(Q). It is convenient to think of a groupoid as "paths" (more 
precisely, as homotopy classes or reparametrization classes of paths, as will be explained 
below): the inverse path is defined, two paths can be composed if the end of one is the 
beginning of the next, associativity holds only if both compositions are defined, and left 
and right identities are defined as the addition of a zero path at the left or right end. 

A topological groupoid is a groupoid where compoeition and ta.king of inverses (when 
, they exist) are continuous. The properties of topological (smooth) groupoids are easily 

established locally in terms of germs. It turns out that topological groupoids are equivalent 
to Cartan principal bundles (principal bundles which are not necessarily locally trivial [18]). 
Similarly one can define smooth groupoids and (see below, Sec. 1.4) Lie groupoid, and their 
associated Lie algebroid" structures which are cloaeIy related to principal bundles. 

A representatiol1 of a topological groupoid n over a bue space B is defined as a morphism 
of the groupoid into an action of a groupoid on a fibered space (M", B) over the same b_ 
space B (in particular, a vector bundle over B) defined as follows. Couider the "flbered 
product" n *M = {(7, m) en x MI'(7) =p(m)}. An action of non (M", B) is & continuou 
map p : n *M - M, (7, m) .... 7'" e M with the properties: 

(i) 

(ii) 

(iii) ,,(,i)m =m, VmeM. 

The cases of interest are when (M", B) is a topological group bundle and m .... 7'" is a 
topological group isomorphism, or, when (M", B) is a vector bWldle and m .... 'T'rI is a 
linear map between fibers. In this case we can talk about a linear reptellentaliol1 of tbe 
groupoid o. In particular, if the fibers are flnit.dim.ensional vector spaces, DOt neceua.rily 
of the same dimensions, the Unear mapa among them (which represent the action groupoid) 
are n x m matric_, and the composition is defined only if the number of rows of the ma.trix 
on the left equals the Dumber of colum.ns of that on the right. An in1inite-d1mensional 
representation may have HUbert bundl_ as objects and UDitary transformations as elements 
of the groupoid. 

A.. far &I phyaica is concerned, the C--alpbra of a groupoid may be the mOlt useful 
concept, although it requires lOme tecluaical concepti related to measure theory (this part 
is rather sketchy, and the reader should consult the literature for details). First of aD. one 
must define local compactness on a topological groupoid. Then one defines, as UlUal, the 
space of continuous functions with compact support on r, which will be denoted by CO(r). 
In Connes' theory the notion of measurable groupoid plays an important role. Connes 
defines a concept of transvene measure and Haar system for locally compact groupoids, 
concepts which extend the integration theory on groups. In terms of this non commutative 
integration CO(r) can be turned. into a C··algebra by defining a convolution 1* g, and 
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an involution Ie. The representation theory of the groupoid is then defined in terms of 
a Hilbert bundle and its space of square· integrable sections. One of the most significant 
new concepts introduced by Connes is the construction of the holonomy groupoid of a 
foliated manifold. (The holonomy groupoid of a gaug~theory bundle should be familiar to 
physicists - its elements are the "Wilson parallel transporters" JeA of lattice gauge theory 
along a path.) 

Before continuing with the mathematical definitions of Lie groupoids, Lie algebroids, and 
connections, which are applicable to gauge theory I will briefly illustrate how groupoid
related ideas appear in the theory of open bosonic strings. 

1.3. OPEN (BOSONIC) STRING INTERACTIONS AS GROUPOID OPERATIONS. 

The elementary interactions of open and closed strings are described in the various reviews 
of John Schwarz [6]. Consider the most elementary interaction (of the Yang-Mills type) in 
which two strings break or join (Fig. 1). It is clear that since the words string and path are 
almost synonymous, these interactions can be interpreted directly in terms of groupoids. 
In other words, we have a "representation" of the path groupoid of (D - 1)- dimensional 
space (the D-th dimension plays the role of time, and thus the string sweeps out a "world 
sheet" ·in D-space) by the open strings. 

7t" 

" " 


~ """ 
o ==C> t7t"
..". /Y 

------- 0 
oo 

Fig. 1 Fig. 2 

On the other hand, in order to be able to accommodate the BRS-charge operator in 
string theory, Witten [6] has proposed a different composition law for open strings: each 
string is divided into a left half (parameter between 0 and '1:/2) and a right half (parameter 
running from 'fr/2 to 11'). Two oriented open strings Q and " can be composed if and only 
if the left half of the string Q coincides with the right half of the second string {3: these 
two halves are traversed in opposite directions, and are thus an "appendix" attached to 
the middle of the resulting string. The appendix is then "shed", resulting in a new string 
"y =Q • f3 reparametrized with a parameter (1' running again from 0 to 'fr. 

Fig. 3 
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Just like a chromosome, the new string resulting from the .·composition carries the 
"'information of its two parents": the left half comes from string a, the right half, from 
string {J (Fig. 2). Another typ~ of interaction of oriented open strings is the exchange 
interaction: two strings crOlS in their midpoints and exchange, right and left halves (Fig. 
3). This is a new operation and can be interpreted as a groupoid operation only if we 
decompose the "'crossing" into several steps as illustrated in Fig. 4: first the strings split 
at their midpoints and grow "virtual appendices" (parameters running respectively from 
oto 1f/2 and from ./2 to .); these appendices split, their halves are ":flipped over", they 
recombine into new appendices (p£ • lilt and 11£ • Pit) which are then shed, resulting in the 
final configuration (0£ • IlR and ilL • OR). Reparametrizations are done "on the fly". This 
works in (D - 1) dimensions, but is hard to interpret in D dimensions, where the world 
sheets representing the strings and their appendices get hopelessly entangled. 

Fig. 4 

It is clear that the composition o*/J, can be extended to three striAp a,/J, 7. However, 
these can be combined in two different ways: ex * (Il • 7) and (0. Il) • 7 (Fig. 5). AI it 
stands this composition is not associative, since the two resulting parametrizatiolll will be 
different. To get from one to the other we have to use the ,4omotopy represented in Fig. 6. 

a *'(11* y) 

..". f \1" 
...L .L

(0,"") 
 (". t .".)
, i 
, I, , 


,: I 
I , 
 rrI(0,0) . .I 

f f ("",0) 

(a*.B) * y 

Fig. 5 Fig. 6 

This is why in place of paths (strings) one must consider reparametrization classes of paths 
(strings), in order to make the Witten ••product into a groupoid composition. It is also 
clear that this operation is noncommutative. 

However, Witten's prescription ca.nnot handle the interactions of closed strings (which 
is nonassociative) or the interaction of closed and open strings. In order to discuss these 
interactions one is forced to consider the 2-dimensional world sheets swept out by these 
strings in D-dimensional ambient space, as is done in the literature devoted to the field 
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theory of strings (cf [7]). See, however, Graeme Segal's talk [15] in this volume, where the 
interactions of closed strings are described in semigroup language. 

It should also be noted that the QSRS operator, which appears in the "kinetic" term 
of the Witten action f(A • QA + jA * A * A) can be given a simple interpretation in the 
cohomology theory of Lie algebroids. I hope to return to this question in a more deta.iled 
publication soon. 

1.4. LIE GROUPOIDS AND ALGEBROIDS. CONNECTIONS AND HOLONOMY 

This section contains a very brief summary of facts about Lie groupoids, Lie algebroids and 
their rela.tion to principa.1 bundles, as well as the definition of connections. 

The definition of a Lie groupoid r over a base manifold B is straightforward: one first 
makes r into a manifold, and requires that the projections. and t should be smooth 
(surjective submersions), and the multiplication (where defined) should be smooth. One 
then introduces a notion of local triviality and defines a Lie groupoid as a locally trivial 
differentiable groupoid. Equivalently, one can define a Lie groupoid as a differentiable 
groupoid for which the source map. : r - B is a fibration (surjective submersion). The 
same is also true for the target map t : r .... B. The fibers r. =.-1(%) and r' =t-1(y) 
are manifolds and any element .., e r such that .(..,) =%, t(..,) =11 defines a diffeomorphism 
between the fibers. A vector field ~ on r is defined to be right-invariant if it is vertical with 
respect to • : ••~ =0 and ..,.~ =~. On the other hand, already at the topologicalleve1, one 
can prove an equivalence between locally trivial groupoids and principal bundles. Much 
of the theory of reduction of the structure group of principal bundles also translates into 
groupoid language. There is obviously a close relation between Lie groupoids and smooth 
principa.1 bundles. In particular,. the theory of connections extends easily to Lie groupoids, 
if one starts out from the Atiyah sequence, which I recall brieily. 

Atiyah defines a connection in a principal bundle P(M, G, r) [19] (d. also the forthcoming 
book [20]), as a splitting of the exact sequence of vector bundles A(P) (Atiyab sequence) 
defined as follows. Let AdP = P xA4 g be the bundle aasociated to P with fiber the Lie 
a.1gebra g of the structure group G and the adjoint action of G on g; let TP/G denote the 
quotient of the tangent bundle of P with respect to the right action of G, considered as 
a vector bundle over TM with projection the tangent map r. of r, and let, denote the 
inclusion map of Ad(P) in T P /G (the identification of elements ofg with fundamental vector 
fields. Then the Atiyah sequence A(P): 

(1.1) O.......,Ad(P)..!..,.TP/G.:!:...TM---+O 


is exact, and a cOllDection is defined as a splitting of (1.1), i.e, a vector bundle morphism 
x : TM - TPIG such that r. 0 X =IdTM. This induces a morphism WI : TPIG ....... Ad(P) 
such that 'ow = IdTPIQ (to distinguish WI from the connection one-form sometimes denoted 
by the same letter, Mackenzie calls X the connection and WI a back-connection. This splitting 
leads to the well-known direct-sum decomposition of the tangent spaces to Pinto horizonta.1 
a.nd vertical parts, to the identification of w with the g-valued connection form defined as 
a section of Ad(P), or to the definition of a connection in terms of a family of g-va1ued 
one-forms over the open sets Ui of a trivializing atlas of M, with the known properties. 
Smoothness and equivariance under the right action of G completes the picture. The 
curvature is then defined in terms of a bracket for x, or as a measure of failure of the 
connection form. to be Ma.urer-Cartan, and the usua.1 structure equations follow. 
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1.4.1. Lie Algelwoicls and Lie-Algebra Bundles. In the same way that the Lie algebra 
of a Lie group determines its local. properties and, in most interesting cases, is sufficient 
for physical. applications, the Lie algebroid of a Lie groupoid contains much of the local 
information about the Lie groupoid (and because of the existence of an exponential map, 
exhibits some similarities to the properties of the Lia algebra. of a Lie group). Here is the 
definition: 

A Lie algebroid on a manifold B is a vector bundle (At p, B) together with a vector 
bundle map q : A - T B (called the &l1ebor of A by Mackenzie), and a bracket operation 
on sections, [ , ] : r(A) x r(A) - r(A) (r(A) is the vector space of smooth sections of A, 
not to be confused with the groupoid r) which is bilinear and skew-symmetric, satisfies the 
Jacobi identity and the two properties: 

(1.24) q([X, Y]) = [q(X), q(Y)J, X, Y e r(A); 

(1.26) [X, uY] =u[X, Y) +q(X)(u)Y, X, Y e r(A), u e COO(B). 

(Mackenzie ca.lls a Lie algebroid A tr&l1sitive if q is a submersion, regular if q is of constant 
rank, and totally intr&l1sitive if q = o. 

A Lie algebra bundle (LAB) is a vector bundle (E, p, B) with a field of Lie brackets such 
that E admits an atlas { •• : U. x a.... Llu.}, •• being Lie-alpbra. isomorphisms. A:ay LAB 
is a totally intransitive Lie algebroid, but the converse is not necessarily true. The mOlt 
interesting example is the Lie algebroid ofcovariant dilfererltial operators on a vector budle 
(see [18], Sec. 3.2). 

It turns out tha.t tr&lllitive Lie alpbroids a.re the middle term of an Atiyah sequence of 
the type (1.1), and one is thUi naturally led to the deiDition of a splittinl, which defines 
an infinitesimal connection. Since the representation of the fundamental. groupoid of the 
base manifold in a Lie groupoid defines a notioD. of parallel· trauport, and hence a patb 
connection, it is necessary to distinguiah these two notions. 

1.4.2. lnfinitesimo.l Connections and Holonom,. It is surprising that the relation between 
connections in a groupoid and connections in principal. bundles, which was known for a 
number of years, has not caught the attention of many di1ferential. geometers and even less 
that of us physicists interested in gauge theories. 

An infinitesimal connection in a Lie groupoid is defined as a splitting of the·sequence 
A : L - A - TB asaociated to its Lie algebroid A (_ [18], Ch. m), where L is the 
adjoint Lie-algebra bundle which makes the sequence exact. Thus a connection X : T B ... A 
is a linear map such that fOX = Id-rs. The theory of iD1iDitesimal connectioD.8 in Lie 
groupoids is practically identical to connection theory as outlined above. The curvature 
is defined either in terms of the Schouten-Nijenh.uis bracket [20, L 83) for vector-bundle 
valued forma, or, simpler still, in terms of the bracket. defined above, as a skew-symmetric 
vector bundle morp~ Rx :T B $ T B .... L defined by . 

(1.3) ,(Rx(X, Y» = x[X, Y] - [xX, xY], X, Y e r(TB). 

The most promising aspect of the groupoid approach lies in the relation between infinites
imal. connections and the action of its holonomy groupoid. The latter is defined in terms 
of a path connection, i.e., a mapping from the continuous paths in B (or reparametriza
tion classes of paths) into piecewise smooth paths in r. Space does not permit me to go 
into all details, which can be found in [18]. The important result is that the holonomy 
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groupoid of a path-connection in a groupoid is a reduction of the groupoid (this is related 
to the Ambrose-Singer theorem for connections in principa.1 bundles). In the Lie-groupoid
algebroid context the proof of the Ambrose-Si~ger theorem on the relation of curvature and 
holonomy is seen in a new light and becomes very simple. Since the monograph [18] treats 
this in detail, I will not dwell on this here. I have changed my terminology slightly from 
that used in the ora.1 presentation of the talk, to bring it into conformity with the one used 
by Mackenzie. A brief outline of how gauge theory can be translated into this language 
(and what, if anything, can be learned from this) follows. 

1. 5. A GROUPOID FORMULATION OF GAUGE THEORY. 

-
A reformulation of gauge theories in terms of the holonomy groupoid is only a slight gener
aliza.tion of the formulation in terms of the holonomy group (Wilson loops - in lattice gauge 
theory). Thus, we replace the principa.1 bundle P(G, M, 11') with structure group G and base 
space M by a Lie groupoid r and its Lie algebroid A(r), and in place of the connection 
form w and its curvature !l =dw + ![w,w] we use the connection X in the a.lgebroid and its 
curvature defined as in Eq. (1.3) (or in terms of the Schouten-Nijenhuis bracket). 

The more global point of view, in terms of representations of the b.olonomy groupoid 
seems more promising, and the rest of this section is devoted to a quick survey of this. 
First, it is necessary to distinguish between the notions of a curve cS between two points 
:c, y E B considered as a one-dimensional subma.n.ifold of B with a fixed parametrization: 
4 : [0,1] 30' J.-. 4(0') E B,cS(O) =z,cS(l) =II and a patb. (or paib.-clABs) CI is an equivalence 
class of curves differing from each other by a reparametrization 0' ...... CT(r) or the attaching 
of an appendix, i.e., another curve attached to any point and traversed back and forth. An 
appendix may also be attached to the endpoint of a curve. However, attaching a loop at the 
end of a. curve is to be considered a distinct operation since the "spoon"[13a] or "1&880"[13] 
formed in this way can pick up an element of curvature, and the composition of a path with 
a loop may produce a different kind of parallel traD.6pon from z to II than the path CI. It is 
clear that the juxtaposition of paths (followed by a reparametrization of the resulting path) 
leads to a groupoid, where the inverse is the same path traversed in the opposite direction, 
and the source and target maps are the points z, 'II or appendices attached to them. I will 
denote this patb. groupoid by II. The isotropy subgroup G(z) =II: is identical to the loop 
group at the point z (reparametrization classes of loops baaed at this point), and is not to 
be confused with the fundamental group, which consists of homotopy classes of loops. 

In order to describe a gauge theory, we consider a Lie groupoid r together with its Lie 
a.1gebroid over B and associated families of vector bundles, and a representation of the path 
groupoid II in r, as well as the induced action (parallel tra.o.sport) in the associated vector 
bundles. This is implemented by means of the exponential map, and leads to a product ... 
integral (path...ordered exponential of tb.e integral) of covariant differential operators in 
these bundles. In other words, in the groupoid approach, we replace the connection one
form Au(:c)dz~ by the action groupoid of parallel transport induced in associated vector 
bundles. The role of path-connection and holonomy becomes more prominent, and the 
theory is open to various generalizations, although at this level it is completely equivalent 
to conventiona.1 gauge theory in terms of connections and curvatures in principal bundles. 

The group of gauge transformations, identified with the group of sections of the associated 
bundle AdP = P x AdO G is seen in a new light in the groupoid interpretation, namely as a.n 
intertwining of the groupoid action with the adjoint action. One is naturally led to the BRS 
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cohomology as part of the cohomology theory of the corresponding Lie algebroid. Details 
of this will be found in my forthcoming book [20]. 

The new insight one gains on gauge theory by switching from principal bundles to Lie 
groupoids and algebroids is the renewed emphaais on paths and parallel tr&llsport of objects' 
along paths in the base space. This becomes even more important in Kaluza-Klein type 
theories, where the dimensional reduction and compactification of parts of the fiber leads to 
a new fibered structure of the base space which becomes a locally a product of a space-time 
neighborhood and a compact homogeneous space. Thus a path on the base space might be 
thought of as a path in this fibered space, where the "appendix" which lies entirely in the 
homogeneous space is "macroscopically null-homotopic", and thus does not contribute to 
the holonomy, except at the scale of the compactified homogeneous manifold. 

Another interesting aspect needing further study is the problem of higher-dimensional 
extended objects. We have already seen that open strings have a natural interpretation in 
terms of groupoids. The problem of defining a Stokes theorem [13, 14] for noncommutative 
differential forms leads to interesting extensions of groupoid theory to "ordered membranes" 
or higher-dimensional analogues. 

2. Lie Bigebras and Quantum Groups 

2.1. WHAT ARE BIGEBRAS ? 

This section contains a brief review of the basic facts about algebras, copbtal, and bigebras 
(a.k.a. bialgebru or Hopf algebras). By algebra will be mean an usociative algebra A over 
the field K (K = B. or C) with UDit 1, and multiplication denoted m: (Z,'1) .... Z't z"e A. 
The natural embedding of K in A (given by the UDit) will be denoted by u : K c... A. The 
tensor product ®K will be denoted simply by ®. 

Then multiplication· can be viewed as a morphism m : A ---. A ® A which makes the 
following diagram commutative (this simply expresses the associativity of the algebra A): 

A®A 

(2.1) _ 1
---. A 

The embedding of K in A can be described by the following commutative diagram: 

K®A A®A A®K 

(2.2) II 1- II 
Icl Id

A ---. A .....- A 

A cogebra (or coalgebra) is defined by simply turning all the arrows around in Eqs. (2.1) and 
(2.2). In other words, a vector space Cover K is a coassociaiive cogebra with comultipUca
tion A: C - C® C (A stands for diagonal map) and courut t (also called augmentation), 
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- -

so tha.t the following "dual" diagrams are commuta.tive : 

A~ldC®C®C - C®C 

(2.3) IId~~ IA 

C®C -A C 

and 

,~Id Id~,K®C - C®C - C®K 

(2.4) I~ II 
Id IdC C C 

" 
A vector spa.ce which is both an algebra and a. cogebra is called a bigebra or bialgebra 
(I prefer the shorter term "bigebra", used by Bourbaki, Dieudonne, and Cartier in the early 
papers on the subject). Some authors call such an object a. Hopi algebra, but following 
Sweedler and others this term will be reserved for bigebru with an additional structure 
element, related to the group inverse, called an antipode. 

The notion of antipode is motivated by considering the algebra. A = Fura(G) of functions 
on a group G (continuous functions for a locally compact group, smooth functions for a Lie 
group, etc.) with pointwise addition and multiplication. 

We consider, for example, the algebra F = LOO(G) with multiplication pointwise multi
plication of functions on G, and the unit defined as the function I =1. The algebra F is 
also a cogebra under the comultiplication 

(2.5) A: F --+ F®F: a(/)(I,t) =1("), 1(") e LOO(G x G) = F® F; Ie F, 

with the counit naturally defined u evaluation at the group identity (: I ... 1(') e R. This 
makes F into a. bi,ebra or bialgebra, i.e., a. vector space which is both an algebra and a 
cogebra. In our example the algebra is commutative, but the cogebra. is not cocommutative, 
since st ¢ b. 

The existence of the inverse ,-I in the group leads to the definition of the antipode 
(or involution j, whose properties can be derived from the example under consideration. 
Define the involution in F by j(/)(g) = l(g-l). It is involutive: j2 = j 0 j = Id, and 
since (gh)-l = h-1g-1, its interaction with A is given by t1' 0 A 0 j = (j ® j) 0 A, where 
t1' : F ® F - F ® F : It ® 12 ... 12 ® 11 permutes the two algebras. 

The interaction of 'A, j, u, and m can be summarized in the following commutative 
diagram: 

A -~ A®A j~ A®A m A 
Id~j 

(2.6) ,1 Tu 
K K 
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where the mappings above and below the horizontal arrow correspond to the two orderings 
of factors in the tensor product, and the two copies of the field K =R or C at the bottom 
should be identified. 

The set (F, m, u, a, (t;) is an example of a commutative Hopi algebra or commutative 
bigebra. The general definition follows by abstracting from this example, i.e., an il1volutive 
bigebra or Hopi algebra (not necessarily commutative or cocommutative) will be a vector 
space F endowed with a multiplication, unit, comultiplication, counit, and involution sat
isfying the diagrams (2.1)-(2.6). In the noncommutative case the definition of involution 
or antipode is not unique - one can introduce a second antipode, ;', corresponding to 
the other order of multiplication but the same comultiplication. The two antipodes are 
"inverses" in the sense that j'; =jj' =Id, 'Sut we no longer have j2 =Id so that the term 
involution is no longer appropriate. 

2.2. LIE BIGEBRAS AND THEIR APPLICATIONS 

A Lie bigebra (or Lie Hopi algebra = LHA) is defined as a vector space g which has 
the structure of a Lie algebra and of a (Lie) cogebra, such that the ma.p 6 -which in this 
context may be called a cocommutator or cobracket - - is a l-cocyc1e (ainca g acts on Qeg 
via the adjoint representation). Drinfel'd proved that the category of finite-dimensional Lie 
bigebras is equivalent to the category of connected simply connected. Poialon-Lie groUpi. 

A Poisson-Lie group (PLG) is a Lie group G with a Poiuon manifold structure (d., 
e.g., [L 83], [W 83]), on Fun(G), so that the comultiplication 6 : Fun(G) .... Fun(G x G) = 
Fun(G) ® Fun(G) is a Lie alPbra homomorphiam. A qaaatilatioa of a. Poialon alpbra is 
defined as a deformation depending on a parameter ft (d. [L83], where adcHtional Nferences 
can be found). 

Drinfel'd proves a number of other beautiful results on Poiuon and co-Poiuon alpbru. 
He also establishes a remarkable relation with the ,...matricea which are solutions of the 
classical Yang-Baxter equation, which was discussed extensively in the lectures by Frohlich, 
de Vega, and others at this Conference. The motivation for this work came from the 
quantum inverse scattering approach to integrable dynamical systems. 

Another, and even more exciting, suggestion made by Drinfel'd is the quaatilatioa of 
universal enveJopiJJg alpbru - QUE-alsebraa - and the so-called QFSH (quantum formal 
series Hopf) algebras. 

As far as I know at present no serious attempts have been made to relate Drinfe1'd's work 
to the Doplicher-B.obertl [DB. 72, 84,87] work, where Hopf algebras &lao playa prominent 
role. I hope to be able to retUJ1l to this problem in the near future, and aleo explore how 
this machinery could be uaed in a quantum theory of gauge fields. 

3. Outlook 

It is safe to predict that the uses of Lie groupoids, their algebroids and connections, and 
their representa.tions in C*- and W*-algebras will make some inroads into mathematical 
physics. The Hopf-algebra techniques which have appeared in two disjoint physics con .. 
texts - the DopUcher-Haag-Roberts approach to su perselection sectors and symmetries in 
algebraic field theory, and the Drinfel'd-Belavm-Cherednik-Sklywn papers, dealing with 
a.pplications to Yang-Baxter equations, r-matrice8, and inverse scattering -will also spread. 
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One can hope that these two 4irections will converge. One possible area of possible overla.p 
is the circle of ideas discussed by Frohlich in his talk, coming from two-dimensional field 
theories and leading to knot theory and braid groups. 

Although it is not clear a.t present whether there is any direct link between the two 
seemingly dispa.ra.te topics ctiscussed in this talk, allow me to get somewhat speculative 
and express the hope that both Lie groupoidsand Lie bigebras will find uses in a future 
theory which subsumes all the interesting aspects of gauge theories and string field theory. 
I will try to outline a vague "scenario" of how this could work. I also want to point out 
that these approaches should be tried out in another area where progress has been slow: 
quantum theory in gravitational fields and quantum theory of the gravitational field itself. 

A future quantum theory of extended objects (be it strings, membranes, or theories which 
involve an underlying manifold which itself has a bundle structure with spue-time as base 
and some "compactified Kaluza-Klein space" as fiber) has to incorporate two major ingre
ctients: the ctifferential geometry/topology of the underlying structures and the operator
algebraic aspects of fields, observables, states, and generalized superselection structure. 
Clearly the mathematical objects ctiscussed in this talk will, in their present form or a fu
ture refined form, be necessary to describe these objects. Let me try to sketch a model of 
such a structure, in a very vague and qualitative way. Suppose that the quantum theory of 
such "extensons" (a temporary name for such a generic extended. but elementary objects, 
such as strings, membranes Kaluza-Klein spaces) is described by some big algebra F 
the field algebra and that there is a distinguished sub algebra .A ~ the observables and an 
associated set of states $, a subset of which can be given a manifold structure and identi
fied with the space-time manifold. One of the most elementary notions which arises in this 
context is that of holonomy, i.e., the representation of reparametrization classes of paths 
in either the field algebra F, or the space of states S. In other words we are dealing with 
a representation of the holonomy groupoid of the "classically underlying structure" by the 
groupoid of intertwiners [DR 84, 86] of the appropriate algebras. On the other hand, these 
objects have a Hopf-algebra structure, since they also embody the duality of the internal 
symmetry (group) of the theory. A further study of these aspects might thus establish a 
link between the two seemingly disjoint structures discussed in the body of this talk. 

Another aspect which has not been mentioned here at all (except that it is somehow 
implicit in superstring theories) is gravity, either as a quantum theory of gravity itself, or, 
more modestly, as a consistent theory of qua.ntum fielda in a gravitational background. This 
difficult subject has formed the object of much research, ranging from treatments which 
make little sense, dealing with such incomprehensi1>le notions as "the wave function of 
the U niverae" to some attempts at incorporating curved space lnto the algebraic approach . 
to quantum field theory (see, e.g., [HNS 84], [FH 86], and remarks on using the tangent 
bundle I made at a previous Como gathering two years ago (last reference in [51). Here 
too, we might want to see if progress could not be made by describing the effects of the 
curved background by its holonomy groupoid represented as intertwiners of the field algebras 
defined over clliferent tangent spaces. This is a topic which deserves special attention, a.nd 
I intend to return to it in the near future. 

I hope these rema.rks, some of them perhaps too vague and cryptic, will have persuaded 
some of you that the subject deserves to be pursued further, and that both groupoids and 
algebroids and bigebras might play a role in future developments of unified theories of 
particle interactions. 
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