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Abstract The problem of quantization of systems possessing only second-class constraints is 
considered in the framework of the BRST formalism based on path integral. In this paper it 
will be shown that extending the phase-space of the original system by adding some 
extravariabes, the quantization of the original second-class sytem is equivalent to the BRST 
quantization of a one-parameter family of first-class systems in a new phase-space. The 
general construction is exemplified on the gauge non invariant chiral Sch)winger model in the 
case a> I. The family of first-class systems contains the gauge invariant chiral Schwinger 
model. The equality between the Lagrangian path integrals associated to the gauge 
noninvariant model and its family of first-class systems is not obtained for the gauge 
invariant formulation of the chiral Schwinger model. 
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The problem of quantization of both first-class and second-class constrained systems 
in the framework of the path integral BRST formalism became of great interest during the 
past few years . The second-class constraints (SCC) can be eliminated in principle by passing 
to the Dirac bracket [I] as the theory based on the Dirac bracket and possesing only 
first-class constraints (FCC) is equivalent to the original theory. A different approach with no 
drop-out of the SCC is given in [2], the results derived there being phisically equivalent with 
the ones obtained in [3-5] The path integral given in [2] is (for a certain class of 
gauge-fixing fermions) the same with the one obtained by canonical methods in [6,7] . 

The theories with second-class constraints only (SCCO) need a special treatment. In 
this case the theory based on the Poisson bracket is no longer gauge invariant because the 
SCC do not generate gauge transformations. In order to apply the BRST formalism to this 
situation it is necessary to associate to the SCCO system an equivalent first-class system to 
whom one can apply further apply the BRST formalism making use of a certain gauge-fixing 
fermion . 

The above mechanism was applied in [8] to a class of SCCO systems with the SCC ' 
Xu == 0 such that the functions Xu == (Ga, Ca) satisfy the relations 

[ Ga, GbJ == CabcGc and the matrix Aab == [ Ca, GbJ do not depend on the canonical 

variables. In the above mentioned reference, both the SCCO system and the equivalent 
first-class system have the same phase-space described by the original local coordinates 

(qi, pJ ' i.e. there were not introduced supplementary degrees of freedom. The path integral 

derived in [8] coincides with the one derived in [2,6,7] . 
The method described in [8] can be extended as follows . We associate to the original 

SCCO system a one-parameter family of first-class systems (OPFFCS), but in a phase-space 

with the local coordinates (q i, Pi, za, pa) and apply the BRST formalism to the OPFFCS 

making use of a particular gauge-fixing fermion. The extravariables za and Pa are bosonic 
and canonically conjugated. The number of these canonical pairs is taken to be equal to half 
of the number of functions Xu . 

This method agrees with the idea of Fadeev and Shatashvili [9] to modify the 
canonical quantization and introduce new degrees of freedom through a Wess-Zumino action 
in the context of the chiral Schwinger model (CSM) . The quantization of the CSM is treated 
in fI 0] , but the quantization of the gauge noninvariant chiral Schwinger model (GNCSM) is 
not very clear. 

In this work we shall expose in brief a new method of quantization for SCCO 
systems by adding extravariables in the context of the BRST formalism based on path 
integral. The method will be exemplified on the GNCSM [II] . Thus, we shall derive a 
OPFFCS associated to the GNCSM such that when the parameter takes the value -e we 
reobtain the gauge invariant formulation of the CSM [9,12] . It will also be shown in the 
sequel that the Hamiltonian path integrals at the level of independent variables associated to 
the original SCCO system and to the OPFFCS (to these ones after the BRST quantization) 
coincide for the GNSCM ,as well as in general. In the same time, it will be shown that there 
exists a special value of the parameter such that the Lagrangian path integrals (LPI) of the 
GNSCM and of the associated OPFFCS coincide. Related to the BRST quantization, it will 
be applied the antibracket-antifield formalism following the same lines as in [\3] 
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2. The chiral Schwinger model 

The Lagrangian actions corresponding to the gauge noninvariant, respectively the 
gauge invariant formulations of the CSM are given by 

S~N [A, q>] = Id2x(-~F IlvFIlV + tall q>all q> + eAv('lllv - eIlV)allq> + te2aAllAIl) , (I) 

LI LN LWZ
So [A, q>, e] = So [A, q>] + So [A, e] , (2) 

where 

S~WZ[A, e] = fd2x(t(a - oallealle - eAv«a - OTJ IlV + eIlV)alle) (3) 

OIWe use the conventions TJIlV = diag(I, -I) and e = 1 . In the action (2) appears an 
additional Wess-Zumino field, e • such that (2) is invariant under the following gauge 
transformations: BeAll = -aile, Beq> = e£, Bee = -ee . 

The theory is shown in [11] to be unitary and Lorentz invariant for a> I with a 

massive (m2 =e2a2J(a-0) . For a=I one obtains a free field theory. The case a=1 is 

not interesting from our point of view and will be not treated here. 

For a> 1 the Hamiltonian analysis of (1) gives the primary constraint G == 1t0 = 0 
and the canonical Hamiltonian 

HSC =f dxl (t1t I1t 1 +t1t~-AoaI1tI-e(1tq>+alq»(Ao-AI)+ 

2 2I e ( ) 2 e a )+'2aIq>a Iq>+T AO-AI -TAIlAIl (4) 

Here, 1t0, 1t I and 1tq> are the canonical momenta respectively conjugated to AO' A 1 and 

q> , and The consistency condition on the primary constraint implies the = :1a l 

secondary constraint C == a11t I + e(1tq> + aI q> + e(a - 1)Ao + eA I) = 0 . There are no 

funher constraints, the two ones obtained above being SCc. 

It is easy to see that [C, G] = e2(a - 0, [C, C] = 0, and [G, G] = 0 , where [ , ] 

denotes the Poisson bracket. We observe that C can be put in the fonn C = C(O) +c(1) , 

where c(O)==a l 1t 1 +e7tq> and C(1)==e(a l q>+e(a-I)Ao+eA I ) . It)follows simply that 

[C(O),C(O)]=[C(O),C(O]=[C(O),G]=O and [C(I),G]=e2(a-I) . It is then simple 

to check that [G,[G,H]]=-e2(a-I):t:.0 and [G,[G, .. . ,[G;H] ... ]]=O for more than 

two G's.Wealsohave [C(O),[C(O),H]J:t:.O and [c(O),[C(O), ... ,[C(O),HJ. .. J]::;O 

for more than two C (0) 's. We mention that the above vanishing Poisson brackets hold 
strongly. 
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3. The family of first-class systems 

Our staning point is a system with the canonical Hamiltonian H, described by N 

bosonic canonical pairs (qi,pJ and subject to the SCC Xa =0 We assume that the 

constraint functions Xa = (Ga, Ca) are such that the Ga's are first-class among 
themselves. Because for the GNCSM we have [G, G] = 0 we will consider only the case 

[ Ga, Gb ] = 0 strongly. In addition we shall make the assumption that Ga = 0 are primary 
constraints, while Ca = 0 are secondary ones. We shall also presume that 

Ca=C~O)+C~I) such that [c~O),c~O)J=[C~O),GbJ=O strongly and 

[C~I),Gb] = ~ab don't depend on the canonical variables. As Xa = 0 are SCC , it follows 

that det ([xa, XP J) == det (Cap) = ( det (!lab)) 2 :t:. 0 . The path integral correspondent to 

the above SCCO system takes the form [13] 

Z = fDqDpDIl(det~ab) exp (iSo) (5) , 

where 

SO[q,p,ll] =fdt(qi pi -H-llaXa) (6) 

The functions Ila represent the Lagrange multipliers corresponding to the SCC . 
In the case of the GNSCM the correspondences are 

qi ~ (All, q» == (AO' AI' q» (7) 

Pi ~(1tIl,1tq» ==(1t0 ,1t I ,1tq» (8) 

Xa = (Ga,Ca) ~ ( 1t0, a I1tI + e(1tq> + a I q> + e(a- I)AO +eA I)) (9) 

(10)H~HSC 

Next, we shall associate to the SCCO system a OPFFCS in a phase-space with the 

local coordinates (qi, Pi' za, pa) . This construction will be accomplished in two steps . The 

first step consists in associating to the original SCCO system a first-class one in the original 
phase-space, having Ga = 0 as primary and the only ones constraints and the first-class 

Hamiltonian H such that [H, Ga ] = rb aGb ,with rb a's some functions of q's and p's . 

The general form of His given in [8] . In the case of the GNCSM it is enough to find H 

such that [H, Ga ] = 0 strongly. Because H SC is quadratic in c(l) the first-class 
Hamiltonian for the GNSCM reads 

HSC =HSC+-1-fdXI(1(c(1»)2 +c(O)c(1») (\\) 
e2(a-l) 2 
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Thus, the first step is implemented. 
With the aid of the first-class system constructed above we shall build in the second 

step a OPFFCS with the constraints Ga = 0 , 'fa = 0 and the first-class Hamiltonian H* 

such that [Ga,H*]=Va bYb and [Ya,H*]=O , where Va b are some functions of g's 
and piS. In order to build the Hamiltonian H* we introduce a number of additional 
canonical pairs (Za, pa) equal with the number of functions G a . The new variables are 

bosonic and fulfill [za, Pb ] = 8 a b . Then, H * takes the form 

H* = H+ "J.{ t1 abpaPb - (APa + C~O») t1abC~l) + g(q, p, z) (12) 

with g(q,p,z) such that [APa+C~O),H+gJ=O . In (12) t1 ab is the inverse of the matrix 

t1ab and A is the parameter of the OPFFCS. It is easy to see from (12) that 

Ya == Apa +C~O) . It is clear that [Ga, YbJ = 0 strongly, so that the above constraints are 
first-class. The consistency conditions on Ya = 0 don't imply further constraints due to the 
construction of g(q, p, z) . Thus, the second step is also implemented. 

In the case of the GNCSM, in agreement with the previous general discussion, we 
introduce a single canonical pair (z, p) , so that 

* I 1 ( 1 1 2 A 
2 

- 2 A -(8 () )HSC= dx - 1t I 1t I +-21t q> + 2 p --(-I)P Iq>+ea-I AO+eAI 
2 2e (a-I) e a 

2 2
1 ( 1) e a 2 a

-A08 11t -en:q> Ao-A 1 -X8 1z +2(a-l)A l +2(a_l)8 1q>8 1q>+ 

2
( e 1 8 '\ e a 8 8 

l z) (13)+eaA l \J:8 l z + (a-I) lq» + 2A2 lZ 

and also 

Y=:Ap+8 11t I +e1tq>=0 (14) 

From (13) and (14) one checks explicitly that [1t°,H;C]=y and [y,H;C]=O . 

In this way we associate to the original SCCO system described by the action (6) a 

OPFFCS in a phase-space with the local coordinates (qi, pi,za, pa) , the last system being 

described by the extended action 

S~[q,p,z,P,V,U] =Idt(qi pi +i:apa-H* -vaGa-UaYa) (15) 

with va and u a the Lagrange multipliers associated to the FCC. The action (15) is invariant 
under the following gauge transformations 

. [. ] a [i (O)J a a a aOEql = ql, Ga E 1 + q, Ca E2 ' (16a) OEZ = A.e 2 ' (l6c) OEVa = f; l' (16e) 

OEPi = [Pi' Ga}~ + [Pi' C~O) JE~ , (I6b) OEPa = 0, (16d) OEU a = f;~ + VabE~ +E~ , (l6f) 

where Va = _t1 ac [c(O) C(l)]
b b ' c 
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4. The BRST quantization of the first-class family 

Now, we pass to the quantization of the OPFFCS described by the action (15) in the 
framework of the BRST antibracket-antifield fonnalism. We assume the constraints Ga =0 
and Ya =0 to be irreducible (as they actually are in the case of the investigated model) In 
agreement with the general formalism [13] we associate to every variable in the theory its 

antifield, denoted by qi,p*i,z:,p*a,v: and u: . As the variables appearing in (15) are all 

bosonic, it follows that the Grassmann parities and ghost numbers of every antifield are 
respectively equal to one and minus one. The constraints being irreducible and abelian, the 

minimal ghost spectrum contains only the ghosts ll~ and ll~ associated to the gauge 

parameters E~ and E~ . The Grassmann parities and ghost numbers of the two ghosts are 

equal to one, respectively one. With the non-minimal sector of the form 

(B aB* BaB* -a-* -a-*) th .. I I' fth .l' la' 2' 2a' II l' II la' 112' 112a ' e non-mmlflla so utton 0 e master equation 
reads 

(0) ] ( (0) ]E E * c3Ga a OC a a *i c3Ga a OC a a 
S =So +Idt qi ~1l1 +~1l2 -p - . 111 +--. 112 +( ( LlPI LlPI 8ql 8ql 

'1_* a *. a *(. a V-a b a) -* B a -* Ba) (17)
+l\.La1l2+valll +ua 112+ b1l2+ 11 l +llla I +1l2a 2 

In order to compare the path integral correspondent to the gauge-fixed action deriving 
from (17) with the path integral (5) we choose the gauge-fixing fermion implementing the 
canonical gauge conditions Ca = 0 and za = 0 of the form 

\f =-J dt(Tl~Ca + ATl~t1abzb ) (18) 
(

Eliminating the antifields from (17) with the relations <I> ~ a:! ' where 

<l>A = (qi, Pi' za, pa, B ~, B~, Tl~, Tl~) and <I> ~ their antifields, we obtain the gauge-fixed 

. E * (-8\f 
A
)action S\f = SE <l>A, <I> A = a<1l of the form ( 

E -SE J (-a b 2-a b 'IOaA b)S\f- 0 - dt lllt1ablll +A 112t1ab1l2+BIa Ca+1\...02Llab z (19) 

The action (19) is invariant under the following gauge-fixed BRST transformations 

Sqi=[qi,GaJll~+[qi,c~O)]ll~ ,(20a) Sll~=O , (20e) sBt=O ,(20i) 

a [ (0)] a a a·sPi = [ Pi' Ga ] II 1 + Pi' Ca 112 ' (20b) S1l2 = 0 ,(20t) sB 2 = 0 ,(20J) 

SZa=All~ , (20c) sva =..,t,(20g) sTl~=-B~,(20k) 

sPa=O ,(20d) sua=",~+V\I1~+1l~,(20h) S11~=-B~(201) 

The path integral correspondent to the OPFFCS is then given by 

Z~ = IDqDpDzDPDvDuDTl1 Dll 1 D11201120B 1 DB 2exp (iS~) (21) 
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If one applies the previous results to the GNCSM one gets the path integral 
corresponding to its OPFFCS as 

Z~ =fDAIlD7tIlDCPD7t<pDzDPDVDuDlhDTJIDlhDTJ2DBIDB2exp(iS~sc) , (22) 

where 

S~SC = f d2x(AIl7t1l +<P7tcp + zp - H;C -V7t° - uy

-e2(a - 1)(Ti ITJ I + A. 2Ti2TJ2 ) - B I C - l.e2(a - I)B2Z) (23) 

The BRST transfonnations leaving the action (23) invariant are: 

sAO=TJI , sA I =-Ol TJ 2,S1t° =S7t 1 =sP=S7tCP=S111 =STJ2=sB I =sB 2 =0, s<P=e112 ' 
sZ= ATJ2,sv=1l1,su=1l2 +TJI,sTiI =-BI,sTi2 =-B 2 
Performing in (22) the integration over AO, 7t0, Z, p, v, u, Ti I ' TJ I Ti2 TJ2' B I and B2 we get 

Z~ =fDA ID7t ID<pD7tcpexp(iSSC) , ' , (24)
SC 

where 

- 2 ( . I I a 2 I ( 1)2
SSC =fd x AI7t +<P7tCP-27t17t1-2( _1)7t<P- 2 017t

a 2e (a-I) 
I (::l I _~ 2 ) ea

-e(a-l)7tcp ul7t +cuICP+e aA l - a_IAloICP
2 2

I 1 ( ) a e a 2)-e(a_I)OI7t eAI +olCP -2(a-1) 0 I<POI<P-2(a-1)A I (25) 

Relation (24) expresses the path integral of the OPFFCS associated to the GNCSM in terms 
of the independent variables. Due to (6) applied to our model it results 

ZSC = fDAIlD7t IlD<PD1tcpo(7t 0)O(AO +-2-
1-(al 7t I + e7tcp + eOI <P + e2AI)J x 

e (a-I) 

xexp(ifd2x(AIl7tIl+<P7t<p-hSC) ) , (26) 

where hSC represents the Hamiltonian density of HSC (given by (4» . Integrating in (26) 

over AO, 7t0 we obtain 
H

ZSC =ZSC (27) 
The last equality shows clearly that the GNCSM and its OPFFCS are equivalent at the level 
of the Hamiltonian path integrals over independent variables . The result given by (25) is 
identical with the one derived in [10] . 

Equation (27) also takes place in general. Within the hypotheses mentioned earlier, if 

one takes H=H+~tl.abc~l)c~I) +tl.abc~O)c~l) , introduces the last relation in (2I) and 

. a - a a -a a - a a Ba d Ba H ('f IIntegrates over Z , pa, v ,u ,TJ 1,111' 112, 112' I an 2' one gets Z\}' = Z lone a so 

integrates in (6) over Ilet. ).The exponents of Z~ and Z differ by the term 

fd2X~tl.abCaCb ' but this fact doesn't affect the prevorus equality because of the factor 

1] O(Ca) , which is present in the measure of Z~ after integration over B~ This 

supplementary tenn helps us to make a simple switch from the Z~ to its correspondent 
LPI. We shall be concerned with this subject within the next section, which will be devoted 
to obtaining the LPI forms of (22) and of the one deriving from the Lagrangian action of 
the OPFFCS associated to the GNCSM. 
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5. The Lagrangian form of the path integral 

2 
If one performs in (23) the transformation C ~ C - e (;- I)B , which doesn't affect 

the BRST invariance of S~SC ' and introduces this new action in (22) , one gets after 

integration over 7t1l ,7t<p,p, z,v, u, TiI,TJI,Ti2,TJ2,B I and B2 the LPI for the GNCSM of 
the form 

Z~C =fDAIlD<p(eJa"=l) exp (iS~N) (28) 

On the other hand we can evidence the LPI of the OPFFCS built earlier. In order to 
infer its Lagrangian action we impose the gauge conditions u a = ° [13] . The action derived 
from (15) with the aid of the previous conditions is called the total action and reads 

SJ[q, p, z, p, v] = f dt(qipi + zapa - H* - vaGa) (29) 

The gauge invariances of the action (29) result from (16 a-f) via the relations Og u a =° . 
In the case of our model the correspondent total action is 

SJ [ A, cP, 7t, 7t<p,z,P, v] = f d2x(AIl7t1l + <p7tcp + zp - H;C - V7t°) , (30)
SC 

and is invariant under the following gauge transformations(modulo the identification g2 == g) : 

ogAIl = -Ollg, Ogcp = eg, OgZ = I.e, OgV = -e, Og7t 1l =Og7t<p = Ogp = ° . If one eliminates 
7t 1l , 7t<p,Pand v on their equations of motion because they are auxiliary [14] , we obtain the 
Lagrangian action of the OPFFCS correspondent to the GNCSM 

2
S~ [A, cp, z] = S~N [A, <p] + f d2X(e (a- I) ollzollz+ 

OPFFCS 21.
2

+e: Av«a - I)TJIlV + gIlV)OIlZ) (31) 

Strictly speaking, (31) should also contain the term If d2xg llV 0IlZOv<P , but this term 

doesn't contribute to the equations of motion. It is, in fact , an anomalous term and was 
neglected vanishing the integral of the divergence. The last relation exhibits that at the 
Lagrangian level there is a OPFFCS corresponding to the original GNCSM . For A. = - e the 
second term in the right side of (31) represents the Wess-Zumino action (3) modulo the 
identification 8 == Z . 

At this point we are able to clarify the problem of the equivalence at the level of path 
integrals between the GNCSM and the OPFFCS The action (31) is invariant under the 
gauge transformations: ogAIl =- Ollg, Og<p =ee, OgZ = Ac: . Applying the antibracket-antifield 
BRST formalism to the action (31) we find the non-minimal solution of the master equation 

S6PFFCS =S~ + f d2x(-A *ll ollTJ + e<p *II + A.z* II + n* B) (32)
OPFFCS ,'I 

where A *Il , <p *, Z* are the antifields of the fields All. <p,z and II represents the Lagrangian 
ghost field, while (B, B * , Ti, 11 *) give the non-minimal sector. 
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In order to compare the path integral deriving from (32) with (28) it is natural to take 
a gauge-fixing fermion implementing the canonical gauge condition z =0 . Thus, it has the 

form \{IL = fd2x(Tjz) Eliminating as usually the antifields from (32) one infers the 

gauge-fixed Lagrangian action associated to the OPFFCS of the form 

S~ =S~ +fd2x(ATjT]+Bz) (33) 
L OPFFCS OPFFCS 

The action (33) is invariant under the following gauge-fixed BRST transformations 
sAil =-01lT], sq> = eTj, sz = All, sTj = B, ST] =sB = 0 After performing the integration over 
11,11, Band z the path integral correspondent to the action (33) takes the form 

Z~ = fDAIlDq> A exp (iS~N) . (34) 
LOPFFCS 

Because (28) and (34) must coincide it follows that 

A=e~ . (35) 
It is then clearthat from the entire OPFFCS only the one with the above value of the 
parameter is equivalent at the level of the path integral with the GNCSM, but it does ·not 
reveal the Wess-Zumino action. We can always modify the gauge-fixing fermion such that 

\{IL =pf d2x(Tjz) without affecting (34) as p is present in every of the last two terms in (33). 

It follows that for A = -e it is impossible to recover the factor e ~ from the measure of 
(28), so that the path integral correspondent to the action (1) and (2) (after the BRST" 
quantization for this one) don't coincide in general. 

In [10] Srivastava compares the gauge-fixed action resulting after the quantization of 
the two formulations of the CSM at the level of independent variables. The corresponding 
path integrals coincide because the factor in the measure is well-known to be equal to one at 
this level. The equivalence between the path integrals mentioned before must be checked at 
the Lagrangian level. As we notified earlier, the equivalence takes place only for A given by 
(35). 

6.Conclusion 

If one extends the original phase-space by adding some extravariables, the BRST 
quantization of the original SCCO system means, in fact, the BRST quantization of a 
OPFFCS. The path integral of the OPFFCS (after the BRST quantization) coincides with the 
one of the original SCCO system at the level of indepedent variables. At this level the path 
integral of the OPFFCS does not depend on the parameter A . The LPI correspondent to the 
original SCCO system and to the OPFFCS coincide for a unique value of the parameter A. 
For the CSM this value is given by (35). For the previous value of A the contribution of the 
extravariables to the Lagrangian action doesn't coincide with the Wess-Zumino action. The 
Wess-Zumino action is recovered for A=-e The method exposed in this paper can be 
extended to the case of the canonical Hamiltonian of the original SCCO system more than 
quadratic in the functions Ca. This case will reported elsewhere. 
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