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We study the effect of an isolated impurity on the low-energy properties of a 

half-odd-integer-spin Heisenberg antiferromagnetic chain using both numerical and 

conformal field theory techniques. The impurity corresponds to the substitution of a 

magnetic ion by a different ion with the same or different spin, or else to the coupling 

of a magnetic impurity to a single spin on the chain. Depending on which kind 

of impurity is present, the low-energy behavior corresponds either to a "healing" of 

the defect or else to a severing of the chain at the impurity location. In both cases 

there is a coupling-dependent length scale over which magnetic screening takes place. 

Analogies with the Kondo effect are elucidated. 
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1. INTRODUCTION 


In this paper, we consider a large variety of types of magnetic and non-magnetic 

defects in a Heisenberg antiferromagnetic chain. The simplest case corresponds to 

changing t he strength of a single link [see Figure (1)]. A more interesting case corre­

sponds to changing the strengths of two adjacent links, which remain equal to each 

other [see Figure (2)]. This could result from substituting another s = 1/2 ion for a 

chain ion. The latter case can be generalized to the substitution of an impurity with 

s > 1/2 [Figure (3)]. Finally, we consider the coupling of a magnetic impurity of 

arbitrary s to a single chain-spin [Figure (4)]. There are several motivations for this 

work: 

Recently, a new approach to the Kondo effect has been developed[l, 2], based on 

the separation of charge and spin degrees of freedom in the one-dimensional (1 D) 

electron gas. (The Kondo effect is fundamentally one-dimensional since it involves 

only the s-wave channel.) The one-impurity Kondo effect only involves the spin 

degrees of freedom of the electron gas; at low energies the charge degrees of freedom 

are unaffected by the interaction. The spin degrees of freedom of the one-dimensional 

electron gas at low energies are identical to those of the half-integer spin Heisenberg 

antiferromagnet. Hence it is natural to look for a "stripped down" version of the 

Kondo effect involving a magnetic impurity interacting with the Heisenberg chain. 

The effect of an isolated impurity has been studied recently[3] in integer-spin anti­

ferromagnetic chains, which exhibit the Haldane gap, in the bulk excitation spectrum. 

It was shown that an open s =: 1 chain has effective s = 1/2 degrees of freedom at 

each end, whose mutual coupling vanishes exponentially with chain length. These ex­

citations are localized within a distance of the order of the correlation length ~ (about 

7) from the ends of the chain. A magnetic impurity weakly coupled to a long chain of 

length L > > ~ can be described simply in terms of its coupling to the effective s =: 1/2 
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degree of freedom at the chain-end. The half-integer case is much different since there 

is no gap for bulk excitations and the correlation length is infinite. The effect of a 

magnetic, or non-magnetic impurity now propagates into the chain a distance which 

is deternlined by the strength of the coupling and diverges as the coupling goes to 

zero as in the Kondo effect. 

Some of these problems have been considered previously and independently 

In a recent discussion of tunneling in one-dimensional quantum wires[4, 5]. One­

dimensional spinless fermions are equivalent to the xxz s = 1/2 quantum spin chain. 

The Heisenberg model corresponds to a particular (repulsive) value of the interac­

tion strength. A single altered link corresponds to the generic tunneling problem. 

Two adjacent modified links correspond to resonant tunneling. Our results provide 

numerical evidence for conjectures made in those papers. 

Just as in the Kondo effect, the renormalization group provides the appropriate 

language for describing these systems. The scale and conformal invariance of the pure 

chain at low energy is broken by the coupling to the impurity. This effective coupling 

may grow or shrink as we lower the energy scale; eventually, at zero energy, the system 

renormalizes to a stable fixed point. Recent progress by Cardy[6] in the renormal­

ization group theory of two-dimensional critical systems with boundaries has been 

used to study quantum impurities [l, 2]. Quantum impurities in spin chains provide a 

relatively simple illustration of these techniques. In the simplest version of the Kondo 

effect, the stable fixed point is of the local Fermi liquid variety; i.e. it is equivalent to 

a simple boundary condition on otherwise free fermions, corresponding to a 7r /2 phase 

shift, with the screened impurity removed from the low-energy effective Hamiltonian. 

In the spin-chain problems considered here the stable fixed points also correspond 

to simple boundary conditions on otherwise unperturbed chains. The two types of 

boundary conditions that occur correspond to having no impurity, i.e. no boundary, 
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or else to cutting the chain at the impurity site as would occur with the insertion of a 

non-magnetic im purity into the chain. Low-temperature local properties, such as the 

impurity susceptibility, are governed by the leading irrelevant operator at the stable 

fi xed point, as in the Kondo effect. The dimensions of these operators are, in general, 

different than in the simplest version of the Kondo effect, so the analogy does not 

hold in complete detail. 

We analyse these problems using two powerful techniques: the renormalization 

group, and numerical finite-size scaling. The first approach allows a complete de­

scription of the vicinity of either fixed point (no boundary or severed chain). A 

complete description of all operators and their scaling dimensions is known at these 

fixed points. This allows us to determine which types of impurity interactions are 

relevant or irrelevant. It also permits us to make educated guesses about the flow 

between these two fixed points, although the cross-over regime is beyond the control 

of these methods. The second technique is based on calculating the energies of a 

few low-lying states of the system for a range of lengths, I ~ 23. The low-energy 

spectrum of the continuum model consists of infinite towers of states with spacings 

of order 1/1. This infinite set of energies is known (up to an overall scale factor, the 

spin-wave velocity) at the two fixed points. Thus we can test whether the spectrum 

approaches that of the conjectured stable fixed point, up to corrections which vanish 

faster than 1/1. These corrections are predicted to vanish as l/[l+d where d is the 

di mension of the leading irrelevant coupling constant[7], a conjecture which can also 

be checked numerically. 

The rest of the paper is organized as follows. In the next section we reVIew 

the bosonization approach to the continuum limit of quantum spin-l/2 chains. This 

discussion includes the presence of a marginal operator and a procedure to circumvent 

t he resulting problem of logarithmically slow scaling in finite-size numerical work. 
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We also derive the asymptotic finite-size spectrum for even or odd length chains 

with periodic or free boundary conditions as well as the dimensions of the various 

relevant and irrelevant operators, which are important in our study of impurities. 

In Section III we make predictions concerning the effect on the finite-size spectrum 

of the various types of impurities mentioned above and make detailed comparisons 

with the numerical results. In Section IV we discuss the thermodynamics of these 

systems. They provide instructive examples of systems with non-integer "ground-

state degeneracy" [2]. The impurity specific heat and susceptibility are determined 

by the leading irrelevant operators as in the Kondo effect[14]. In the final section 

we summarize our results and contrast these systems to the Kondo problem. Some 

comments are made concerning the effect of a finite density of impurities. 

II. BOSONIZATION AND QUANTUM FIELD THEORY PREDICTIONS 

In this section we review how quantum field theory methods are used to describe 

the low temperature physics of the the Heisenberg spin-1/2 chain with periodic or 

free boundary conditions. The Hamiltonian is 

1-1 J 
H = 2:[2" (S7 Si+1 + Si- S~l) + Jz S: S:+l] (2.1 ) 

t=] 

for the case of free boundary conditions. (We take J > 0.) For periodic boundary 

conditions the [th and 1st site are also coupled with the same coupling constants, J 

and Jz. 

A. Bosonization 

We can now apply the Jordan-Wigner transformation by expressing the spin op­

erators in terms of fermion annihilation and creation operators at each site, resulting 

in a spin"less fermion Hamiltonian[8]: 

SZ = ..I.! ..I .. _ ~ 
t 'fit 'fit 2 (2.2) 
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i-I 

Si- = (-l)i~i exp (i7r L: ~J~j) (2.3) 
j=1 

We then restrict the Hamiltonian to low energy excitations and go to the continuum 

limit to obtain an effective low-energy theory, described by a (1 +1)-dimensional field 

t heory Hamiltonian of left and right moving fermions[8]. The sz SZ-interaction can 

be expressed in terms of the fermion currents J1 = :~1~1:' I = L, R and contributes 

partly to the free part of the resulting Hamiltonian, because we can rewrite the 

derivative terms to first order as 

(2.5) 

(2.6) 

up to an (infinite) constant. The resulting Hamiltonian is 

H = v Jdx [1/>1i dd 1/>R - 1/>1; :x 1/>£ + 27CbJLlR] (2.7) 
x 

= 7rV Jdx [JRJR + JLJL + 2bJLJR] , (2.8) 

where b is a constant of order Jz and v is the renormalized "speed of light". Here all 

operators which are irrelevant at low energies in the limit where Jz is small have been 

dropped. This model can be transformed using the abelian bosonization rules[8]: 

1 a¢; 
JL= y'4;(TItj> - ax) 

1 a¢; 
JR = - y'4;(TItj> + ax) 

~R ex exp(iy'4;¢R) 

~L ex exp( -iy'4;¢;L) (2.9) 

The resulting Hamiltonian is a non-interacting boson theory 
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(2.10)1-{ = ~ [( 1 - b) rr~ + (1 + b) (~~) 2] '. 
Here ITr/> is the momentum variable conjugate to <p; <PL and <PR are the left and right-

moving parts of <p: 

(2.1 1) 

The boson operators now have to be transformed by a canonical transformation 

to obtain a conventionally normalized theory: 

<P 
<P--+ 0GR 

ITr/> --+ y'4;R ITr/> (2.12) 

v--+~v (2.13) 

R2 = _1 J1 + b "" (2.14)
471" 1 - b 

(2.15) 

With the help of the Bethe Ansatz, the "boson radius" R as a function of Jz can be 

exactly determined to be[S] 

R = [_1 __1_ cos- 1 J z ]2 
1 

(2.16)
271" 271"2 J' 

which agrees to first order in Jz with the field theory calculations (b = 2Jz/71"J). 

B. Operators 

By combining the spin to fermion and fermion to boson transformations we obtain 

the continuum limit representation for the spin operators: 

z 1 a<p. <p
5j ::::::: 271" R ax + (-1)1 constant cos R 

s; "" ei2"R¢ [constan t cos ! + ( -1 )iconstant1, (2.17) 
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where R is given in Equation (2.16). The boson cP must be thought of as a periodic 

variable measuring arc-length on a circle of radius R; i.e.: 

q; =- q; + 27r R (2.18) 

~ =~ + 1/R, (2.19) 

where ~ is the dual field defined in terms of the left and right-moving components of 

</> by 

(2.20) 

T he periodicity condition on ~ follows from that on cP, as will be shown in Sub-section 

lIb). Note that these translations leave the spin-operators invariant. Correlation 

functions and the low energy spectrum predicted by this theory indeed agree with 

the calculation from independent methods[8]. 

There are two important independent discrete symmetries of the spin chain which 

we need to identify in the continuum limit. The first one is translation by one site, 

Tr. This appears as a discrete symmetry independent of translation in the continuum 

limit. We see from Equation (2.17) that it corresponds to 

Tr : cP -t cP + 7r R, Tr : ~ -t ~ + 1/2R. (2.21 ) 

The second one is site parity, Ps , l.e. reflection about a site. Note that this does 

n ot interchange even and odd sub-lattices. Thus it must map the spin operators into 

t hemselves. Since parity interchanges left and right, cP and cP transform oppositely. 

We see that the correct transformation is 

Ps : cP -t -cP, Ps : cP -t cPo (2.22) 

There is a third discrete symmetry, link parity, PL , i.e. reflection about a link. 

However, this is not independent, but is a product of the other two. It corresponds 

to 
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PL : ~ -t ~ + 1/2R. (2.23) 

In ou~ discussion of impurities we will be interested in the continuum limit rep­

resentation for S; St+1 + st S;+1 and SJ SJ+1. The first operator is given by 

(2.24) 

IgnOrIng derivative terms of higher dimension. Using the bosonization formula of 

Equation (2.9) and rescaling the boson field following Equation (2.12), we obtain 

s;St+l + stS;+1 ", (-1 )jconstant sin ~. (2.25) 

The most relevant part of S:S:+1 is also the staggered part, i.e. the cross-term between 

uniform and staggered parts of sz. A typical term is 

(2.26) 

where we have introduced the lattice spacing a for the first time. This can be written 

as a completely normal ordered four-Fermion operator (which reduces to an irrelevant 

derivative operator as a -t 0) together with an additional term from Wick-ordering 

of the form: 

(2.27) 

Combining all such terms together we obtain the same operator as in Equations (2.24) 

and (2.25), for all values of R. (While this follows from symmetry at the Heisenberg 

point, it is not a priori obvious in the general case.) These results can also be obtained 

by using the bosonic representation of the spin operators of Equation (2.17) and the 

operator product expansion. The operator sin <p / R has dimension d = 1/47r R2; at t he 

Heisenberg point, d -t 1/2. [This is the so-called spin-Peierls operator which can be 

induced in the Hamiltonian by a staggered interaction.] 
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In the next section we wi ll be concerned with spin chains obeying either periodic or 

free boundary conditions. We need to uncover the corresponding boundary conditions 

on the bosons in the continuum limit. In the periodic case, for even length I, it is 

clear from Equation (2.17) that the boundary conditions on the boson are also simply 

p eriodic, i.e. 

cP(l, t) = cP(O, t) + 27r RSZ, Sz = 0, ±1, ±2, ... 


J(l, t) = J(O, t) + m/R, m = 0,±1,±2, ... (2.28) 


On the other hand, if the length I is odd, we see from Equation (2.17) that the correct 

boundary conditions on the boson are antiperiodic; i.e. sz and m are half-integers. 

We see from Equation (2.17) that sz is the z-component of the total spin: 

(2.29) 

It is integer or half-integer for an even or odd length chain respectively, as expected. 

The case of free ends is slightly more subtle. One way of dealing with it is to 

introduce fermion fields on two additional "phantom sites" °and I + 1, let the sum 

in Equation (2. 1) run from °to I, and then impose vanishing boundary conditions on 

7jJo and 7jJ1+l. This imposes conditions on the continuum limit left and right moving 

Fermion fields: 

7jJL(0) + 7jJR(0) =° 
7jJL(l + 1) + (-I)I+17jJR(l + 1) = ° (2.30) 

Using the bosonization formulae of Equation (2.9) and taking into account the fact 

t hat cPL and cPR do not commute, we conclude that the correct boundary conditions 

on the bosons are 

cP(O) = 7r R, cP(l) = 27rR(SZ + 1/2), (2.31) 
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where sz is integer or half-odd-integer for I even or odd respectively. 

In the next section we will need the continuum representation of the spin op­

erators near a free end. It is important to realize that the operators have different 

scaling dimension near such a free end than they do in the bulk. This is an example 

of "boundary critical phenomena". In this case we may easily deduce the dimen­

sions from the bosonic representation of Equation (2.17) after imposing the boundary 

conditions <p(O,t) = 7rR. Note that this implies <PL(O,t) = 7rR - <PR(O,t) and hence 

~(O, t) = 2<pL(O, t) - 7r R. Since <PL is a function only of x - t and <PR only of x + t we 

conclude that 

<PR(X,t) = -<PL(-x,t) + 7rR; (2.32) 

l.e. we may reflect the right-moving field to the negative x-axis where we can regard 

it as minus the analytic continuation of the left-moving field, shifted by 7r R. All 

operators can therefore be expressed in terms of left-movers only. 

The boundary operators can be written as 

Sz a<PL 
bound ~ aX 

S - ""-' 4-rriRtPL 
bound ""-' e . (2.33) 

These have scaling dimensions d = 1 and d = 27r R2, respectively. To understand 

the meaning of these boundary scaling dimensions, it is instructive to consider the 

staggered part of the spin-spin correlation function at the Heisenberg point. This is 

most easily calculated for S- by using 

(2.34) 

The two--point function for S- reduces to a four-point function for the left-moving 

factor, giving 
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(2.35) 

where we have set the spin-wave velocity to one and tl2 == tl - t 2 • Note that far 

from the boundary, when XIX2 » I(XI - X2)2 - ti21, we recover the bulk correlation 

function cx 1/J(Xl - X2)2 - tr2' corresponding to a scaling dimension of 1/2 for the 

staggered spin operator. However, the correlation function near the boundary (i.e. 

dimension of 1 for the staggered boundary spin operator. 

We will also need the continuum limit form of the spin dot-product 5i . 5i +1 at 

the boundary. It follows from Equation (2 .33) that this is simply (8<pL/ ax)2. This is 

t he left-moving part of the Hamiltonian density TL . 

c. Non-abelian Bosonization and the Marginal Operator 

The leading irrelevant operator, coming from Umklapp processes in the fermion 

representation, is cos(2<p / R) of dimension 1/7r R2. This becomes marginal at the 

isotropic (Heisenberg) point R = 1/y!2;, leading to a transition to the Neel ordered 

phase. A manifestly SU(2) symmetric continuum limit representation for the Heisen­

berg model is provided by non-abelian bosonization. We now introduce an SU(2)­

matrix bosonic fie ld, 9$. Its action includes the Wess-Zumino term with coefficient 

k = 1. 9 is related to the abelian boson field </; by 

9 CX (2.36) 

T he spin operators are now represented as 

5j ~ (J~ + J~) + constant i( -1)jtr[g8], (2.37) 

where J~,R are t he left and right SU (2) currents (or spin densities) 

12 



(2.38) 

Translation by one site and site parity act on 9 simply as 

Tr : 9 --t -9, (2.39) 

The boundary spin operators of Equation (2.33) have a simple expression in terms of 

left-movers in the non-abelian language: 

(2.40) 

The continuum limit boundary operator corresponding to Si . Si+l is J~ . J~ ex TL . 

The marginal interaction mentioned above is )"J~ . J~. [Actually (Jt JEi + h.c.) 

corresponds to cos VS;</J. The JIJk part of the interaction corresponds to (a</JI at)2­

(8</JI ax)2.] This is marginally irrelevant for the Heisenberg model, corresponding to 

).. < o. Since the effective coupling constant )..eJ J (I) scales to zero logarithmically 

slowly with the length scale I, logarithmic corrections arise[9]. In particular, it makes 

an accurate determination of the critical behavior from fini te-size scaling essentially 

hopeless unless exponentially large chains can be studied. Therefore, it is useful to 

add a next nearest neighbor interaction to the Heisenberg model: 

H --t ~(JSi . Si+l + J2Si . Si+2) (2.41) 
t 

The marginal coupling constant).. decreases with increasing J21J. It passes through 0 

at a critical point which has been estimated numerically to be approximately 0.24[10]. 

For larger J21J the system is in a spontaneously dimerized phase. (In particular, at 

J2 / J = 1/2 the exact groundstates are the nearest neighbor dimer states.) Right at 

the critical point the marginal operator is absent , and hence finite-size scaling becomes 

very accurate even with chains of modest lengths of order 20 , since corrections drop 

off at least as fast as Ill. Therefore, most of the numerical work reported here has 
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been done at t his critical point. Note that the model with the critical value of J 2 / J 

represents t he crit ical point to which the nearest neighbor model and all models 

wi th J2 less t han the critical value flow logarithmically slowly under renormalization. 

Therefore, we expect the behavior to be the same for the nearest neighbor model up 

to logarithmic corrections. 

D. Finite-size Spectrum 

The field theory model can now be used to calculate the finite size spectrum of the 

spin chain at low energies. We first consider the case of periodic boundary conditions 

on a spin-chain of even length l. This implies periodic boundary conditions on <P as 

in E quation (2.28) and determines the mode expansion: 

At " x 
<p(x, t) = <Po + ITl + Q[ 

~ 1 [_ 21ri n (t_x) L 21ri (t+ ) R ]+ L...J -- e L a + e- yn 
x an + h.c. (2.42) 

n=l J47rn n 

This implies that ~ has the mode expansion 

- - At AX 
<p(x, t) = <Po + Q[ + IT I 

~ 1 [ _ 21ri n(t-x) L yn(t+ ) R21ri ]+ L...J -- e L a - e- x an + h.c.. (2.43) 
n=l J47rn n 

T he a~,R's are bosonic annihilation operators. fr and Qare canonically conjugate to 

t he periodic variables <Po and ~o, respectively. Hence their eigenvalues are quantized 

fI = m/R, (2.44 ) 

with sz, m integer. Note that ~ is also periodic with radius it = 1/27rR. The resulting 

excitation spectrum is[ll]: 
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(2.45) 

(We have re-inserted the spin-wave velocity, v. sz is the z-component of the total 

spin.) The corresponding wave-function is 

00 

exp [i (sz27r R~o + mcPo/R)] II (a~t)m* (a~t)m~ 10 > . (2.46) 
n=l 

We see from Equation (2.23) that link-parity takes m --t -m, m~ f-t m~ and multi ­

plies the wave-function by (-1 )Sz+m. Here and in what follows, we always measure 

parity relative to that of the groundstate. The groundstate parity itself for an even 

length chain is (_1)1/2. This follows from the Perron-Froebenius theorem[12] for the 

nearest neighbor model and we find numerically that it also holds for J2 / J = 0.24. 

At the point JZ = 0, R = l/~, this spectrum is simply that of free fermions with 

anti-periodic (periodic) boundary conditions for even (odd) particle number. 

If the number of sites I is odd, cP and ~ obey antiperiodic boundary conditions. The 

mode expansions, spectrum, and wave-functions are as in Equations (2.42), (2.45), 

and (2.46) except that now m and sz are half-odd-integers. Parity now simply takes 

m --t -m, m~ f-t m~. At the Heisenberg point the spin of left and right-movers is 

separately conserved and the z-components are given by 

(2.47) 


The energy can then be written as 

(2.48) 

This spectrum has SU(2)L x SU(2)R symmetry for this value of R. Note for instance, 

that for even I the lowest four excited states have quantum numbers (SL, SR) 

15 



(1 /2 ,1/2), corresponding to a degenerate triplet and singlet under diagonal SU(2). 

[The spectrum consists of the highest weight representations of the SU(2)L x SU(2)R 

Kac-Moodyalgebras: (SL,SR) = (0,0)+ (1/2,1/2) for I even and (0,1/2)+(1/2,0) for 

I odd. Parity simply interchanges all left and right quantum numbers and multiplies 

wave-functions by (-1) in the (1/2,1/2) sector.] 

We now turn to the case of free boundary conditions on the spins, corresponding 

to fixed boundary conditions on ¢Y as in Equation (2.31). The mode expansion is now: 

1 z x ) ~ 1 . (7rn x) [ i rrnt / 1 h]¢Y(x,t ) =27rR ( 2+SZ +~Fnsln-l- e- an + .c. (2.49) 

with sz integer (half-odd-integer) for 1 even (odd). The spectrum now takes the 

form[13] 

(2.50) 

Note that parity [i.e. x ----+ I - x] takes am ----+ (-l)m am . It also multiplies wave­

functions by (- 1)SZ for 1even. Thus 

(2.51) 

for 1 even. For 1 odd, (sz)2 - 1/4 is even, so we may write a similar formula: 

(2.52) 

At the Heisenberg point this can simply be expressed in terms of the excitation energy 

(2.53) 

where the groundstate energy of 7rv/41, for 1 odd, is subtracted from Eex; i.e. the 

energy levels are equally spaced and the parity simply alternates. Again we measure 

parity relative to the groundstate. It follows from the Perron-Froebenius Theorem 

that the groundstate site-parity is (-1 )//2 or + 1 for an even or odd-length open 
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chain respectively. [There is now a single SU(2) symmetry at the Heisenberg point 

corresponding to a single Kac-Moody algebra with the highest weight representation 

s = 0 for [ even and s = 1/2 for [ odd.] 

The states of the first six energy levels are given in Table 1 for the four cases of 

even or odd [ and periodic or open chain, indicating total spin and relative parity of 

the states. 

III. QUANTUM IMPURITIES AND FINITE-SIZE SCALING 

We will now use the theory of the previous section to predict the effect of various 

perturbations and impurities on the low energy spectrum. The scaling dimension of 

the perturbing operators in the Hamiltonian is directly related to the finite size scaling 

of the energy corrections to the low-energy spectrum[7]. If the dimension d of an oper­

ator is larger than one (d > 2 if the operator is integrated over the whole chain rather 

than only appearing at one point), the perturbation is irrelevant because the corre­

sponding coupling constant will renormalize proportional to [l-d. This means that 

the energy corrections scale as [-d and therefore go to zero faster than the asymptotic 

excitation energies, which scale as [-1. Coupling constants of operators which have a 

scaling dimension which is less than one will again renormalize proportional to [l-d as 

long as the coupling constant is small. Therefore, the corrections to the spectrum will 

increase relative to the asymptotic energy spacing, and the corresponding operator is 

relevant. Operators with dimension d= 1 are marginal. Their coupling constant g will 

renormalize as g(l) = go/(l - bgo In l) ~ go +bgJln [ for small go. It now depends on 

the sign of the coupling constant if the perturbation is relevant or irrelevant. In any 

case, marginal operators give energy corrections that scale logarithm.ically slowly as 

g(l) / l. 

It is now straightforward to test these predictions numerically. The isotropic 
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Heisenberg model with a next nearest neighbor coupling of 0.24 times the nearest 

neighbor .coupling was used in most of the calculations. The "modified Lanczos" 

algorithm we used is briefly described in the Appendix. It determines the lowest 

energy in any sector of given quantum numbers. Since we consider local perturbations 

that destroy the translational symmetry of the periodic spin chain, momentum is 

not conserved. Thus, at best, we can find the lowest multiplet of given spin and 

parity. Furthermore, our algorithm does not keep track of the total spin but only the 

z-component (see Appendix). It is always possible to uniquely group the observed 

states into multiplets of definite spin. However, the lowest multiplet of given spin and 

parity may become unobservable when it lies higher in energy than another multiplet 

of higher spin and the same parity. (A way around this difficulty exists if one of the 

two multiplets has even integer spin and the other has odd integer spin. They are 

then distinguished by the spin-reversal symmetries of their sz = 0 members.) 

A first test of the theory is to reproduce the finite size spectrum of the periodic 

and open spin chains. Figures (5-8) show how well the numerically accessible states 

fit the predicted spectrum in Table 1. In Table 1 we have underlined the multiplets 

which are accessible to our modified Lanczos technique. (We can find some additional 

states for the periodic chain by using translational invariance; however, once we in-

elude the impurity this possibility is lost.) A plot of the lowest energy gap versus 

length demonstrates the predicted 1/ l dependence of energy gaps up to higher order 

corrections from irrelevant operators [Figures (9) and (10)]. Since we have tuned the 

marginal operator to zero, the lowest dimension bulk operator is TLTR of dimension 

4. Here TL,R is the left (right )-moving part of the free Hamiltonian: 

(3.1 ) 

This leads to O( 1 / P) corrections to energy gaps for the periodic chain. For the open 
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chain we also have a dimension 2 boundary operator, J~ . J~ ex TL , leading to O( 1 / F) 

corrections to energy gaps. This behavior is confirmed in Figures (9) and (10). 

Perhaps the simplest perturbation to consider is to introduce one weak coupling 

across the ends of the open chain (Figure (1)]. The corresponding operator can be ex­

pressed as the product of two independent boundary spin-operators. The continuum 

limi t interaction becomes 

(3.2) 


Here ± represent the left and right side of the weak link. (This notation should not 

be confused with the use of the superscripts ± to denote spin raising and lowering 

operators.) Assuming that we may regard the two sides of the link as completely 

independent in the limit A -+ 0 for a long chain, the dimension of this product of 

boundary operators is simply the sum of the dimensions, i.e. d = 2. We conclude that 

this perturbation is irrelevant, and therefore the open chain is a stable fixed point 

under this perturbation. We test this conclusion in Figure (11). Here we consider a 

chain of odd length. For the open chain fixed point the spectrum is given in Table 

1. The groundstate has spin s = 1/2, and the first excited state (at energy V7r / 1) 

also has s = 1/2 with reversed parity. This lowest excitation energy, given in Figure 

(11), shows very nicely that the corresponding energy corrections flow to zero with 

the predicted scaling of Z-d, ultimately giving back the open chain spectrum. 

Alternatively, we can slightly alter the strength of one coupling somewhere in the 

periodic chain. We know from the previous section that the corresponding operator is 

tr 9, which has scaling dimension d=1/2 and is therefore relevant. Depending on the 

sign of the initial perturbation, the coupling will therefore increase or decrease more 

and more, until a stable fixed point is reached. In the case of decreasing coupling, 

this will be the open chain, while increasing coupling will produce a decoupled singlet 
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together with an open chain with two sites removed. Figure (12) demonstrates again 

the predicted scaling l-d of the energy corrections at small coupling constant. We 

chose chains of odd length, because, rather remarkably, Equations (2.48) and (2.49) 

predict that the excitation energies are identical for periodic and open even-length 

chains for all states accessible to our modified Lanczos technique; i.e. the lowest states 

of specified sand P. (See Table 1.) Fortunately the situation is much better for odd 

l. The periodic chain has two degenerate doublet groundstates of opposite parity, 

~± whereas the open chain has a single doublet groundstate and a first excited state 

which is the reversed parity doublet with a gap V7r / l. Thus we only need consider 

the two lowest lying states. As a summary, Figure (13) shows the dependence on 

the altered coupling of the first excitation energy for two different lengths, clearly 

indicating the two fixed points at coupling 0 and 1. 

Since our bulk Hamiltonian contains first and second nearest neighbor couplings 

we have chosen to maintain the ratio of second to first nearest neighbor couplings of 

0.24 while modifying the link. The three modified couplings are shown in Figure (1). 

By doing this, we ensure that the open and periodic chains occur at zero and unit 

coupling, respectively. We also show the results of the Hamiltonian without the bulk 

next nearest neighbor coupling present [i.e. J 2 = 0 in Equation (2.41)] in comparison 

to our model J 2 = 0.24J in Figure (14). The qualitative behavior is the same for both 

models, but we see that the approach to the asymptotic behavior is much slower for 

t he pure nearest neighbor model because of logarithmic corrections (see Section II). 

A more interesting case involves altering two adjacent couplings by the same 

amount [Figure (2)]. Starting from zero coupling, this can be incorporated by coupling 

an impurity spin to the two boundary operators at the ends of the open chain. The 

dimension at the Heisenberg point will simply be that of the boundary operators 

(d = 1), so we can expect marginal behavior. The perturbation becomes 
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(3.3) 

Actually this case is equivalent to the Kondo problem which can also be written 

in the above form, in terms of current operators in an effective (1 + 1 )-dimensional 

field theory. The resulting ,B-function for the coupling constant ,X is 

d,X 
, (3.4 ) 

d(ln 1) V7r 

which tells us that the coupling will be marginally irrelevant for ferromagnetic sign 

(,X < 0) and marginally relevant for antiferromagnetic sign. The numerical results 

strongly support this picture. We plot the first excitation energy versus length in 

Figures (15) and (16) for an odd total number of sites for ferromagnetic and an­

tiferromagnetic coupling, respectively. In the ferromagnetic case, we approach the 

asymptotic spectrum consisting of an open even length chain together with a decou­

pled s = 1/2 impurity. We can deduce this spectrum from Table 1 by simply taking 

a direct product of each multiplet in the "Even Open" section of the table with an 

s = 1/2 variable. The first two energy levels have states: ~+, [~-, ~ -]. Here and in 

what follows, we put degenerate multiplets in square brackets. The corrections to 

this spectrum should only vanish as 1/ llnl. [There is also a 1/P correction, coming 

from the irrelevant operators Jj., J?., and J: .J__ . While this would be negligible for 

sufficiently long chains, it is fairly large for accessible lengths and therefore included 

in figures showing marginal flow.] The ferromagnetic coupling lowers the ~- state 

relative to the ~ - state, which therefore becomes unobservable to our approach, as 

explained above. The ~ +, ~- gap is plotted in Figure (15). It flows logarithmically 

slowly towards the open chain value, as expected. For antiferromagnetic coupling, 

the ~ - state is lower than ~ - . The ~+, ~ - gap is plotted in Figure (16). For the 

fairly weak coupling used, it decreases from the open chain value in an approximately 

logarithmic fashion. 
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Starting from a periodic chain the corresponding operator for varyIng two 

adjacent . sites by the same amount is the sum of two alternating operators 

[tr g( x) - tr g( x + a)]. This gives the derivative operator dd trg of dimension d == 
x 

1+1/2. This is lower in dimension than the uniform parts of the interaction (d == 2), 

but is sti1l irrelevant. The predicted scaling of the ~+, ~ - gap with 1-3
/ 

2 is demon­

strated in Figure (17). At long lengths we recover the periodic chain spectrum with 

degenerate ~ ± doublets. We see that when varying two adjacent couplings, the peri­

odic chain is now a stable fixed point and the open chain with a decoupled spin is only 

stable for ferromagnetic perturbations. In the case of antiferromagnetic coupling to 

the impurity, the open chain will be unstable and ultimately flow to the stable periodic 

chain with the impurity site included. This results in a "healing" effect of the spin 

chain when we introduce any antiferromagnetic coupling on two equal adjacent links. 

These predictions are supported by the plot of excitation energy versus coupling for 

two different lengths in Figure (18), clearly showing the two fixed points. 

At first sight one might be surprised that the alterations of one or two links in the 

chain have such fundamentally different effects. It is however exactly what we expect 

from the fundamentally different symmetries of the problems. A single modified link 

violates site-Parity and therefore permits the relevant operator tr g. However, having 

two equal adjacent weak links respects site-Parity, and therefore tr 9 is not a1lowed. 

It does break link-Parity, thus allowing d: trg. We can readily understand the effect 

of various other , longer range perturbations. Any perturbation which preserves site­

Pari ty should be irrelevant, whereas any breaking of site-Parity is relevant (barring an 

accidental cancellation of the relevant operator). For instance, in our numerical work 

we modified the second nearest neighbor couplings to preserve the ratio J2 / J == 0.24 

at t he impurity site as shown in Figures (1) and (2). Since this preserves link-Parity 

and site-Parity respectively in the two cases, it does not change our conclusions. 
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Both types of impurities that we have discussed above correspond to special cases 

of models studied in the context of defects in one-dimensional quantum wires[4, 5]. 

In these papers spinless fermions were considered. This is equivalent to the xxz spin 

chain by the Jordan-Wigner transformation. The Heisenberg model corresponds to 

a particular value of the repulsive interaction. The flow of a single modified link to 

the open chain fixed point corresponds to the perfectly reflecting fixed point[4]. The 

"healing" discussed here corresponds to resonant tunneling[5]. In that work, it was 

necessary to adjust one parameter to achieve the resonance condition (even with exact 

site-Parity maintained). This parameter, a local chemical potential at the impurity 

site, corresponds to an external magnetic field term h sg at the impurity site. In the 

spin problem this is naturally set to zero by spin-rotation symmetry or time-reversal. 

Thus resonance (healing) occurs without fine-tuning in the spin chain. 

We are now in the position to extend the analysis to more general kinds of im­

purities by coupling spins of arbitrary magnitude in various ways to the spin chains. 

Maybe the most straightforward extension is to place an "internal" impurity of differ­

ent spin inside the chain and then introduce two couplings of equal magnitude to the 

adjacent sites [Figure(3)]. This is very much like the case we considered before, where 

the strength of two adjacent links was changed by the same amount. We expect the 

same marginal behavior at small coupling, but if the impurity does not have spin-l/2, 

the chain cannot "heal" itself. We first consider the case of an s = 1 impurity, for 

example a Ni 2+ ion inserted into a Cu 2+ chain. Ferromagnetic coupling is marginally 

irrelevant and the system will therefore slowly flow to the open chain with a decou­

pled s = 1 impurity as the length increases. For an even length chain with a spin 1 

impurity, this fixed point gives us four lowest lying states 1+, [2-, 1-, 0-]. We found 

the energies of the 1+ and the 2- state numerically, which demonstrate the predicted 

flow [Figure (19)] towards the stable open chain fixed point. Again it is important 
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to consider the 1/f2 as well as the 1/lln I corrections. [The combined effect of the 

two terms actually produces an extremum in Figure (19) at I ~ 16. Only for longer 

lengths does the logarithmic term dominate and the energy correction flow back to 

zero.] 

Antiferromagnetic coupling is marginally relevant and increases slowly with 

length. We expect that the antiferromagnetic coupling will renormalize to infinity 

leading to a complete screening of the spin-1 impurity by the two neighboring spins 

and an open chain with two fewer spins. Starting from weak coupling we can trace 

the 1 +, 0- states. The energy gap flows marginally away from the open chain fixed 

point value [Figure (20)]. Eventually the two states cross, and at strong coupling the 

0- state will be the ground state and the energy gap to the 1+ state again approaches 

the open chain fixed point value [Figure (21)]. Note that the parity of the system 

is reversed because two sites are effectively removed from the chain. We expect the 

approach to the open chain fixed point to be governed by the same leading irrelevant 

operator as before J:_ .J:+ of dimension 2. 

Now consider the case of s = 3/2. Since ferromagnetic coupling is marginally 

irrelevant, we expect to obtain the open chain fixed point with a decoupled spin-3/2 

impurity as the stable fixed point. The antiferromagnetic case is more subtle. If 

we assume that the couplings to the impurity renormalize to infinity, we obtain an 

effective impurity of size 1/2. This effective impurity then couples to the next pair 

of spins in the chain. Whether this effective defect heals or decouples depends on 

the sign of the effective coupling. Note that if we assume that the direct impurity 

couplings are infinite, then the effective spin is anti-parallel to the screening spins [see 

Figure (22)]. Consequently the antiferromagnetic couplings to the screening spins 

correspond to a ferromagnetic coupling to the effective impurity. Thus we are led 

naturally to the hypothesis that the effective coupling will always be ferromagnetic 
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and hence we flow to the open chain fixed point with a decoupled s = 1/2. This 

argument. extends immediately to higher s. The stable fixed point is always the open 

chain with a decoupled impurity of size s in the ferromagnetic case and s - 1 in the 

antiferromagnetic one. 

We will now imagine an "external" impurity of spin s, placed outside a periodic 

chain and coupled to just one site in the chain [Figure (4)]. In this case, we are 

dealing with a bulk spin operator coupled to a (dimensionless) impurity spin. The 

continuum limit interaction Hamiltonian is now: 

Hint = i-\tr [g B] . Simp (3.5) 

This interaction has dimension 1/2. It is relevant for either sign of the coupling, 

unlike the case of the internal impurity. For ferromagnetic coupling we expect that 

the impurity will couple strongly to the spin-1 /2 in the chain and play the role of an 

antiferromagnetically coupled "internal" impurity of spin s + 1/2, which then will get 

screened to size s - 1/2 and eventually decouple as described above. The screening 

process is depicted in Figure (23). For antiferromagnetic coupling the impurity will 

get screened directly by the spin in the chain, thereby also making the coupling to 

the rest of the chain ferromagnetic by the same argument employed above for an 

internal impurity [see Figure (22)J. Hence the screened impurity decouples from the 

chain as shown in Figure (24). Ultimately we will flow to an open chain with a 

decoupled impurity of spin s - 1/2 for either sign of the coupling, with the fixed 

points only differing in the effective number of spin sites, which is lowered by three 

for ferromagnetic coupling and by one for antiferromagnetic coupling from the original 

chain length . Note that this kind of impurity changes odd to even length chains and 

VIce versa. 

For an external spin 1/2 impurity coupled to an odd length chain, we expect the 
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effective internal impurity to be of spin 0, so that the two lowest lying states are 

simply those of the even length open chain (0+, 1-). Numerically we find exactly 

these two lowest lying states, moving away from the periodic chain behavior E = 0 

with the predicted relevant scaling and slowly approaching the open chain fixed point 

spectrum [Figures (25) and (26)]. 

For an external impurity of spin 1 coupled to an odd length chain, the fixed point 

is an s = 1/2 impurity with an even-length open chain, so that the lowest lying states 

are ~+, [ ~ -, ~ -]. Again we find the two lowest lying states ~ + and ~ - numerically 

for either sign of the coupling, with their energy difference moving away from the zero­

coupling periodic chain value E = 0 with the predicted scaling [Figure (27)]. There 

is a parity reversal of the states when going from ferromagnetic (3 sites removed) to 

antiferromagnetic coupling (1 site removed), which is not indicated explicitly in the 

graphs. 

IV. THERMODYNAMICS 

In this section we discuss the thermodynamics of a single impurity in a quantum 

spin chain. We first consider the scaling limit in which T 0 and I ---t In practice---t 00. 

t his means T « v and T « TK , where TK is the "Kondo temperature", i.e. the 

energy scale at which renormalization group flow to the stable fixed point occurs. It 

also means I > > 1 and I > > v /TK . In this limit, the partition function only depends 

on the dimensionless ratio v/lT. In the presence of a magnetic field h, it also depends 

on the other dimensionless ratio hiT. Corrections to these results are expressed in a 

perturbative series in the irrelevant operators and are suppressed by powers of T /TK . 

We begin by considering the scaling limit. The partition function for an open xxz 

chain with anisotropy corresponding to a radius R is: 
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(Xl 

Z~~~n(lT/v; R) = Lexp[-(1l"v/lT)(21l"R2)(SZ)2] II [1 - exp(-1l"vm/lT)]-l 
SZ m=l 

(4.1 ) 

The sum over sz runs over integers or half-integers for even or odd length, corre­

sponding to ze and zo respectively. Note that Z is a product of the contributions of 

the soliton degree of freedom sz with a rigid rotator spectrum, and of the harmonic 

oscillator degrees of freedom am ' In the low-temperature limit, IT /v ~ 0, the parti­

tion function is dominated by the lowest energy state; i.e. a singlet for even length or 

a doublet for odd length. In the opposite limit, IT/v ~ 00, we find the asymptotic 

behavior 

Z ~ 1 e1rIT/6v+O(v/IT) (4.2)
v'4iR 

for even or odd length. In this limit the free energy consists of a bulk term, scaling 

with 1 plus an l-independent impurity contribution. The bulk free energy gives a 

linear specific heat: 

Cbulk(T) = 1l"lT/3v ( 4.3) 

The impurity free energy simply gives a temperature-independent entropy S = lng, 

where the "groundstate degeneracy" g is given by: 

g(R) = v'4i
1 

( 4.4) 
47rR 

Note that there is no impurity contribution to the specific heat in this limit. This 

only arises when we include irrelevant operator contributions. Taking into account 

the doubling of degrees of freedom for the periodic chain, we find that in this case 

the partition function is given by: 

Ze ,o (IT R) _ ze,o (IT R e,o IT 1 
periodic v' - open 2v' v'2) Zopen ( 2v ' 2v'27r R ) (4.5) 
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In the limit IT/v --t 00, we find: 

z e,o . . (IT/v R) --t e7rIT/6v+O(v /IT) (4.6)peTtod~c , 

Note that the bulk part of the free energy (that scales with I) is the same as for the 

open chain. However, there is no "impurity free energy" in this case; the groundstate 

degeneracy is g( R) = 1 for all R. 

The groundstate degeneracy g(R) is in general non-integer for the open chain. 

It is only integer at the free fermion point g( 1/yi4;) = 1. These systems provide 

interesting examples of the "g-theorem" which was conjectured but only partially 

proven perturbatively in Reference [2]. This theorem states that 9 always decreases 

under renormalization from a less stable to a more stable boundary fixed point. It 

is in many ways analogous to Zamaladchikov's "c-theorem" which states that the 

conformal anomaly parameter c, proportional to the specific heat slope, also decreases 

under renormalization between bulk fixed points. The flows between the various fixed 

p oints that we have discu'ssed all obey this theorem. Let us begin by considering the 

Heisenberg model for which 9 = 1/y'2 < 1 for the open chain. We saw in the 

previous section that modifying one weak link is a relevant perturbation which drives 

t he system from the periodic to open chain. In this process 9 decreases from 1 to 1/y'2, 

respecting the g-theorem. For two weak links the flow is from the open to periodic 

chains. However, in this case, the unstable open chain fixed point also contains a 

decoupled impurity spin. This contributes an extra factor of 2 to g, 9 = 2/ y'2 > 1. 

T hus again 9 decreases under renormalization. 

It is interesting to consider the general xxz chain from this perspective. For the 

case of one weak link, the lowest dimensional operators at the periodic and open chain 

fixed points have dimensions 1/47rR2 and 47r R2, respectively. Thus the stability of 

t he fixed points reverses when R passes through 1/yi4;, the xx point, corresponding 
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to a free fermion. [This was observed in Reference [4]. It corresponds to a transition 

between perfect reflection and perfect transmission when the fermion interactions 

change sign from repulsive to attractive.] We note that the groundstate degeneracy 

for the open chain passes through 1 at precisely the same value of R, so that the 

flow is always in the direction of decreasing g. [Despite the fact that the change in 9 

is small near the free Fermion point, this does not provide an example to which the 

perturbative proof of the g-theorem[2] applies. That proof assumed a barely relevant 

coupling constant ,\ with ~-function d~l = y'\ - b,\2, where b is of order 1 and 

y < < l. In this case b vanished in the limit y --+ 0, as we approach the free Fermion 

fixed point. Since this happens, the boundary operator is a modified hopping term in 

the free Fermion Hamiltonian and there is no non-linear ~-function in a free theory.] 

Next we consider the magnetization in the scaling limit, i.e. ignoring irrelevant 

operators. We specialize to the Heisenberg case for an open chain. Now only the rigid 

rotor degrees of freedom contribute, giving 

(4.7) 

(Again the sum is over integer or half-integer sz for even or odd chains, respectively.) 

In the low-temperature limit, the susceptibility vanishes exponentially for an even 

ITlength chain: X --+ (2/T)e- 7rv
/ , but exhibits Curie law behavior for an odd length 

chain due to the s = 1/2 groundstate: X --+ 1/4T. In the infinite length limit, 

the magnetization exhibits only a bulk term: M --+ Ih/21rv; there is no impurity 

magnetization, ignoring irrelevant operators. 

Now we consider the effect of irrelevant operators. We work in the infinite length 

limit and consider the specific heat and susceptibility. These calculations exactly 

parallel the fairly well-known ones that have been done for the Kondo effect[14]. 

We simply perform lowest order perturbative calculations in the leading irrelevant 
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operator. Because these operators are irrelevant, all higher order corrections are 

suppressed by additional powers of T compared to the leading order calculation. The 

power of T, with which the specific heat and susceptibility scale, is determined by 

the dimension of the leading irrelevant operator. The behavior is somewhat different 

depending on whether the periodic or open chain is the stable fixed point. 

Let us first consider the open chain fixed point. There are now three leading 

irrelevant operators, all of dimension 2: Ji, J?.. and J: . J""",-. We expect the corre­

sponding coupling constants to be of order 1ITK, where TK is the energy scale at 

which the cross-over to the stable fixed point occurs. If we slightly perturb the peri­

odic chain with one modified link by 8J, for example, we expect TK ex (8J)2I v since 

the relevant operator has dimension 1/2. The impurity specific heat is proportional 

to TITK , since it arises from first order perturbation theory in the leading irrelevant 

operator. Note that this is dimensionless, as is the bulk term 7rlT 13v. The factor of 

ll v is replaced by IITK in the impurity term. By the same reasoning, we predict an 

impurity susceptibility proportional to 1ITK, T -independent at T ~ o. Again this 

has the same dim ension as the bulk term, 1127rv, with 1Iv replaced by 1 ITK. 

Next we consider the periodic chain fixed point, which is stable in the case of 

two modified links. In this case the leading irrelevant operator d: trg has dimension 

3/ 2. Thus the corresponding coupling constant is 1 IT}/2. If we begin with an almost 

decoupled spin with coupling 8J to its two neighbors, then the Kondo temperature 

is exponentially small: TK ex e- constant.v/8J. The leading irrelevant operator can 

also be written as (J~,-I + h,-I) . trgCi. It is convenient to regard the right-moving 

spin degrees of freedom as a second channel of left-movers, for purposes of doing 

perturbation theory in the boundary operator. We then have two left-moving k=l 

WZW fields. This is equivalent to a single k=2 WZW field together with an Ising 

sector, a correspondence which was used in a discussion of the two-impurity Kondo 
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effect[15]. The operator trgii ----t grii~g2{3 ----t ¢, where ¢ is the spin 1 primary field in 

the k=2 theory of dimension 1/2. The leading irrelevant operator becomes J~l . ¢. 

This is precisely the same leading irrelevant operator as occurs in the two-channel 

Kondo effect. Thus we can take over the results of Reference [1] directly. J~l . ¢ is 

a primary field with respect to the single Virasoro algebra in the purely left-moving 

theory. Therefore, its finite-temperature expectation value vanishes. Consequently, 

the leading contribution to the specific heat arises from second-order perturbation 

theory. The second-order perturbation theory result gives an impurity specific heat 

(4.8) 

Similarly the impurity susceptibility has a logarithm: 

(4.9) 

For the periodic chain fixed point, the Wilson ratio Rw is universal because there is 

only one leading irrelevant operator. We find: 

- Ximp/ Cimp /3R w - = 8 (4.10) 
- Xbulk/ Cbulk 

v. CONCLUSIONS 

We have studied the effect of various types of impurities in s == 1/2 Heisenberg 

antiferromagnets. In nearly all cases we found, that the stable fixed point is the open 

chain, sometimes with a left-over decoupled partially-screened impurity. The only 

exception is the case of two weak links where the periodic chain is the stable fixed 

point, corresponding to a healing of the defect. 

There are analogies to both the single-channel and the two-channel Kondo ef­

fects. The most striking difference is that the two fixed points that occur in the 

single-channel Kondo problem (0 or 7r /2 phase shift) are equivalent, whereas the 
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op en and periodic spin-chain fixed points are quite different from each other. The > 

open chain fixed point is very similar to the single-channel Kondo fixed point. The 

Kondo interaction (corresponding to coupling open chains to an isolated impurity) 

is marginal. In the absence of a decoupled spin, the leading irrelevant operator is 

of dimension 2. On the other hand, the periodic chain fixed point is more like the 

non-Fermi-liquid fi xed point that occurs in the two-channel s = 1/2 Kondo effect, 

despite the fact that it corresponds to a trivial boundary condition (i.e. no boundary 

condition) on the spin chain. The reason for this is that both left and right-moving 

channels come into play. The healing process that we have described is analogous to 

overscreening in the Kondo effect. The two neighboring spins overscreen the s = 1/2 

im purity, leading to a new effective impurity of the same size, which is then screened 

by the next pair of spins, etc. Beginning from the limit of two very weak links, the 

fi xed point occurs at a value of the couplings which is neither zero nor 00, as in the 

two-channel Kondo case. The leading irrelevant operator is actually equivalent to the 

one occurring in the two-channel Kondo problem. 

Although the discussion so far has focussed on the case of an s = 1/2 chain, much 

of it should apply to general half-integer spin. The continuum limit of the Heisenberg 

m odel is believed to be the same for all half-integer spins[16]. Thus all the above 

conclusions from the continuum limit about the relevance or irrelevance of various 

perturbations and about the finite size scaling carryover directly. The generalization 

of the healing phenomena to higher spin merits some discussion. It is clear that equally 

modifying two neighboring bonds will always be irrelevant and lead to healing. What 

is less clear is what will occur if a smaller spin is inserted into the chain, for example 

an s = 1/2 impurity in an s = 3/2 chain. This is again an "overscreened" situation. 

If the antiferromagnetic couplings flow to infinity, the effect,ive spin becomes 5/2. The 

effec tive coupling to the next pair of spins remains antiferromagnetic. If this coupling 
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flows to infinity, then the effective spin becomes 1/2 agaIn, etc. Thus it is natural 

to hypothesize that the system will always flow to some critical point which does not 

correspond to the open chain, whenever an impurity of size Simpurity is inserted into 

a half-odd-integer-spin chain such that 2Schain > Simpurity. The stable critical point 

might correspond to the periodic chain (as it does for Schain = Simpurity = 1/2) or may 

possibly be a non-trivial fixed point. 

Experimental observation of the effects discussed here will probably not be easy. 

Two crucial effects which we have not discussed are inter-impurity interactions and 

inter-chain couplings. The former are rather analogous to RKKY interactions in the 

Kondo effect. They appear to be relevant for arbitrarily low impurity concentration in 

the one-dimensional case, based on replica methods[17]. In order to study quenched 

random disorder, an approximate renormalization group transformation has been 

developed[18, 19] in which most strongly antiferromagnetically coupled pairs of spins 

are eliminated, leaving behind only weak couplings between the spins on either side 

of the pairs. This tends to produce a progressively more dilute system of spins with 

weaker couplings. It leads to a susceptibility which diverges at T 0, but less----t 

rapidly than 1/T. It is unclear to us whether this approximation takes into account 

the effects which we have discussed here for a single impurity. This seems to be 

necessary in the dilute impurity limit, where most spins form long uniform chains 

and more strongly coupled pairs essentially do not exist. This question may deserve 

further investigation. 

Another possibility for observing the effects discussed here is in muon spin reso­

nance experiments. In this case, the muon itself may act as the impurity, and it is 

perfectly feasible to study a single impurity. 

We would like to thank Matthew Fisher and Andreas Ludwig for interesting dis­
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APPENDIX A: THE ALGORITHM 

The algorithm we used starts from a normalized initial trial vector WI and suc­

cessively minimizes the energy expectation value in each iteration step by forming 

the linear combination W2 = bW I + Hw I . The explicit formulae are 

(AI) 


(A2)
(b2 + 2b < H > + < H2 » ~ 

where 

(A3) 


~3 = < H > < H2 > - < H3 > (A4) 


(A5) 


We used the notation < Hn > = < WI IHnl WI >. The new energy is given by 

(A6) 

T he algorithm terminates when we are close to the ground state so that the energy 

cannot be lowered much further. Clearly all symmetries of WI are preserved in each 

step, so the algorithm can be used to find ground states in different sectors of H. 

We decided to work in the orthonormal Sz-basis because the next nearest neighbor 

coupling requires excessive computations in the valence bond basis[20], which keeps 

t rack of the total spin. The basis states can be represented by integer bitstrings, and 

t he Hamiltonian was implemented as a procedure that manipulates and then stores 
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the bitstrings and their coefficients as they are created. For numerical convenience we 

used the Exchange Hamiltonian, which differs by a factor of two and a constant from 

the Heisenberg Hamiltonian. The various tricks to optimize the algorithm include a 

hashing technique[21], extrapolation to the exact ground state, and reusing previously 

created information on how to update basis states. The resulting ground state can be 

used as an initial starting state for a similar Hamiltonian with only slightly modified 

parameters. The extrapolation is based on the fact that the actual ground state 

energy is approached exponentially and simply uses the last three iteration values to 

find an improved result. (This gives reliably at least two more digits accuracy!) 

Taking into account the limited available symmetries of our problem, we can 

handle only about 22 sites on a SUN workstation (about 8 sites less than what can be 

done for a periodic chain in the valence bond basis). Some calculations were done on 

a NEC SX3/44 supercomputer because supercomputers generally allow for about four 

more sites. Working in the valence bond basis with s = 0 and using translational and 

parity invariance we can find the exact ground state to 8 digits accuracy of a periodic 

chain of 24 sites in only 15 seconds CPU time on a NEC SX3/44 supercomputer. 

This needs to be compared to 20 min CPU time on a SPARCstation2 when working 

in the Sz-basis for the same problem. 
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Table 1. Spectrum 

I ~~ I Even periodic I Even Open 

0 0+ 0+ 

1 0+ I ­,­ I=. 

2 ~, 1­ O+,~ 

3 0+ 0­ 1+ 1­,-, , 0-, 2 x (1-) 

4 2 x (0+) , 0-,1+,2 x (1-), 2+ 2 x (0+), 2 x (1 +), 2+ 

5 2 x (0+), (0-), 2 x (1+),3 x (1-), 2+, 2­ 2 x (0-), 4 x (1-), 2­

II ~~ I Odd periodic Odd Open 

0 1+ 1­
"2 ' "2 

1+ 
L 

1 1­
_2 
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3 1 ­ 3 ­
2 x ("2 )'L 

4 4 x ( ! +), 4 x (!-), 3 x (~+), 3 x (~-) 3 x (!+), 2 x (~+) 

5 e-) (3­4x "2 ,3x "2 ) 
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FIGURES 


FIG. 1. A quantum spin chain wit h one altered nearest neighbor link. We also modify 

the next nearest neighbor couplings shown to preserve the ratio J2 / J = 0.24. See discussion 

in Section III. 

FIG.2. A quantum spin chain with two altered nearest neighbor links. We also modify 

the next nearest neighbor couplings shown to preserve the ratio J2 / J = 0.24. See discussion 

in Section III. 

FIG. 3. A quantum spin chain with an internal impurity of size s. In this case the 

impurity has no next nearest neighbor couplings. 

FIG. 4. A quantum spin chain with an external impurity of size s. 

FIG. 5. Numerical low energy spectrum for periodic, even length (20) spin chain. The 

integer values El/ 7rV of the numerical accessible states agree with the theoretical predictions. 

T he velocity V7r = 3.69 was used [see Figure 9]. 

FIG. 6. Numerical low energy spectrum for periodic, odd length (19) spin chain (V7r = 

3.69). 

40 




FIG. 7. Numerical low energy spectrum for open, even length (20) spin chain. The 

effect of the leading irrelevant operator TL (a boundary energy operator), which gives 1-2_ 

corrections as indicated in Figure 10, is simply a length dependent renormalization of the 

velocity. We therefore chose to scale with the velocity V7r = 3.65 - 4.611 ~ 3.42 in Figures 

7 and 8 only. 

FIG. 8. Numerical low energy spectrum for open, odd length (19) spin chain (V7r = 

3.42). 

FIG. 9. Renormalization group flow towards asymptotic spectrum for periodic chain . 

The lowest excitation gap 0+, 1- is fitted to E = all + bI 13 for even lengths. Finite-size 

corrections to gaps therefore scale as 1-3. 

FIG. 10. Renormalization group flow towards asymptotic spectrum for open chain. 

The lowest excitation gap E is fitted to E = all + bl[2 for both even and odd length . 

Finite-size corrections to gaps therefore scale as [-2. 

FIG. 11. Renormalization group flow towards open chain fixed point due to one weak 

link for an odd length chain with 7 ~ l ~ 23. The lowest excitation gap!+, ! - is fitted 

to E - Eopen = 1I (a[2 + bl), exhibiting the predicted 1-2 scaling corrections up to higher 

order. 

FIG. 12. Flow away from periodic chain fixed point due to one altered link for an odd 
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length chain with 7 :S 1 :S 23. The lowest excitation gap ~ +, ~ - is fitted to E = a/11/ 2 , 

which is the predicted scaling. The parity of the two states interchanges at unit coupling. 

FIG. 13. Excitation gap ~ +, ~ - versus coupling constant for one altered coupling for 

two different odd lengths. The parity of the two states reverses at unit coupling. 

FIG. 14. Excitation gap ~+, ~ - versus coupling constant for one altered coupling for 

the next nearest neighbor and pure nearest neighbor bulk coupling models at fixed length 

(1 9). The next nearest neighbor model scales faster to the fixed points because logarithmic 

corrections are not present. 

FIG. 15. Flow towards open chain fixed point for two weak ferromagnetic links. Cor­

rections to the ~+, ~- gap are fitted to E - Eopen = Eopen(a + b/I + cln/), demonstrating 

logari thmic scaling (ac < 0). 

FIG. 16. Flow away from open chain fixed point for two weak antiferromagnetic links. 

Corrections to the ~+, ~ - gap are fitted to E - Eopen = Eopen( a +b/I + c In I), demonstrating 

logarithmic scaling (ac > 0). 

FIG. 17. Flow towards periodic chain fixed point for two altered antiferromagnetic 

links. The ~+, ~ - gap is fitted to E = a/13/2 which is the predicted scaling. The parity of 

the two states reverses at coupling one. 
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FIG. 18. Excitation gap versus coupling for two altered equal adjacent couplings for 

two differ~nt odd lengths. The ground state always has s = 1/2 while the excited state 

changes from s = 3/2 for ferromagnetic coupling to s = 1/2. The parity of the two states 

interchanges at coupling one. 

FIG. 19. Renormalization flow for weak ferromagnetic coupling to an internal s = 1 

impurity. Corrections to the 1+, 2- gap are fitted to E - Eopen = Eopen( a + b/ I + c In I), 

demonstrating logarithmic scaling (ac < 0). 

FIG. 20. Renormalization flow for weak antiferromagnetic coupling to an internal 

s = 1 impurity. Corrections to the 1+,0- gap are fitted to E-Eopen = Eopen(a+b/l+clnl), 

demonstrating logarithmic scaling (ac > 0). 

FIG. 21. Renormalization flow for strong antiferromagnetic coupling to an internal 

s = 1 impurity. Corrections to the 0-, 1+ gap flow to the open chain value E - Eopen = O. 

FIG. 22. Sign of coupling to partially-screened effective spin is reversed. 

FIG. 23. External spin of size s with ferromagnetic coupling produces a spin of size 

s + 1/2. This is coupled antiferromagnetically to its neighbors and hence gets screened to 

size s - 1/2. The resulting coupling is then ferromagnetic and therefore flows to zero. 

FIG. 24. External spin of size s is partially screened to size s - 1/2 for antiferromag­
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net ic coupling. The effective coupling of this partially screened spin to its neighbors IS 

ferromagnetic and therefore flows to zero. 

FIG. 25. Flow away from periodic chain fixed point due to weak coupling to an external 

s = 1/2 impurity. The 0+, 1- gap is fitted to E = all1/ 2 + bll exhibiting the predicted 

l-1/2 scaling corrections up to higher order. For ferromagnetic coupling the parity of the 

t wo states is reversed. 

FIG. 26. Flow to open chain for strong antiferromagnetic coupling to an external 

s = 112 impurity. The 0+, 1- gap approaches the open chain fixed point value E = Eopen. 

FIG.27. Flow away from periodic chain fixed point due to weak coupling to an external 

s = 1 impurity. T he ~+, ~ - gap is fitted to E = al l1/2 + bl I exhibiting the predicted l-1/2 

scaling corrections up to higher order. For antiferromagnetic coupling the parity of the two 

sta tes is reversed. 
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Finite Size Scaling for the Periodic Chain 
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Flow Towards Open Chain 

due to one weak coupling 
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The Scaled First Excitation Energy 

in a chain with one altered coupling 
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The Effect of Next Nearest Neighbor Coupling 

in a chain with one altered coupling (1=19) 
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The Scaled Energy Gap 

in a chain with two altered couplings 
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Chain with an Internal Spin 1 Impurity 

with weak ferromagnetic coupling 
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Periodic Chain with an External Spin 1/2 Impurity 
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