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Neutron-scattering data on CsNiCls, a quasi-one-dimensional spin-one antiferro-
magnet, exhibit an anomalous mode. It was later proposed, based on a Landau-
Ginsburg model, that this should be viewed as a longitudinal fluctuation of the
sub-lattice magnetization. This theory is elaborated in more detail here and com-
pared with experimental data on CsNiCl; and RbNiCl;. In particular, we give
explicitly a renormalization group argument for the existence of such modes in Néel-
ordered antiferromagnets which are nearly disordered by quantum fluctuations, due
to quasi-one-dimensionality or other effects. We then discuss the non-Néel case of
a stacked triangular lattice like CsNiClz where longitudinal and transverse modes
mix. In this case the quantum disorder transition is driven first order by fluctua-
tions and the longitudinal mode always has a finite width. Effects of a magnetic
field on the magnon spectrum are calculated both in conventional spin-wave theory
and in the Landau-Ginsburg model and are compared with experimental data on

CSNIClg

This model is compared with an alternative Lagrangian-based one that

was proposed recently.
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I. INTRODUCTION

It was first argued by Haldane' that one-dimensional integer-spin Heisenberg an-
tiferromagnets have an excitation gap above a singlet groundstate. The first exper-
imental evidence for the Haldane gap was obtained by Buyers et al.? in neutron-
scattering experiments on CsNiClz. The spin Hamiltonian for this material is highly
isotropic (ie. Heisenberg-like) in spin-space and apparently exhibits a ratio of inter-
chain to intra-chain couplings of about 2%. This weak inter-chain coupling produces
magnetic order at a temperature of 4.8°K, about 1/3 of the intra-chain coupling.
Because the lattice structure is of stacked triangular type, the ordered state has
antiparallel neighboring spins along the chains and neighboring spins at angles of
27 /3 in the planes. (See Figure 1.) Neutron-scattering experiments at temperatures
of about 10°K, above the ordering temperature but still quite small compared to
the exchange energy, indicate the existence of a gap in the purely one-dimensional
case. Experiments in the ordered phase, below 4.8 °K also exhibit anomalous be-
havior. Apart from the Goldstone modes predicted by spin-wave theory, a portion
of another excitation branch with a finite gap is also observed. This was argued® to
be a longitudinal mode, ie. a longitudinal fluctuation of the sub-lattice magnetiza-
tion, and a Landau-Ginsburg model was constructed to study the problem. In this
model the long-wavelength staggered magnetization field is treated as a three-vector
field, 5, of arbitrary magnitude and direction in spin-space. In a magnetically or-
dered state this field has a non-zero groundstate expectation value. In a simple
Néel state, as would occur for a bipartite lattice (in which all spins are parallel or
anti-parallel) fluctuations in the direction of this field give the usual two Goldstone
modes of spin—wavé theo;‘y. Fluctuations in the magnitude of the field correspond
to the longitudinal mode. The neccessity of three modes follows from continuity

from the disordered phase where the groundstate expectation value vanishes and
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the magnon is a triplet. The stacked triangular lattice is more complicated. Now
a transverse fluctuation on one site is not orthogonal to a longitudinal one on a
neighboring site in the same plane. Consequently the transverse and longitudinal
modes mix in the Landau-Ginsburg model.

The Landau-Ginsburg model predicts that the longitudinal mode has a finite
decay rate into a pair of Goldstone modes (even at zero temperature). Consequently
it is possible to view the longitudinal mode as a two-magnon resonance, making
contact with the traditional Holstein-Primakov approach to spin-wave theory. This
decay rate depends on the size of the |d; |* coupling in the Landau-Ginsburg model.
The width to gap ratio vanishes linearly at weak coupling. If this decay rate is too
large the longitudinal mode might not be observable. In general the observability
of the longitudinal mode is an empirical question, but there is one case where we
can predict with confidence that the longitudinal mode is very long-lived. This
occurs in the simple Néel case when the system is very close to being disordered
by quantum fluctuations. This would correspond to the case where the sub-lattice
magnetization is very much reduced compared to its classical value (s) at T = 0
due to quantum fluctuation effects. The strength of these fluctuation effects is
determined by the spin Hamiltonian. One way of enhancing them is by making the
system quasi-one-dimensional. As the ratio of interchain to intrachain couplings
is lowered, eventually the order is destroyed, even at T' = 0. When this ratio is
only slightly larger than this critical value the longitudinal mode is very long-lived.
This follows from the fact that this second-order, T = 0 quantum phase transition
is in the four-dimensional universality class and is consequently governed by the
weak-coupling Landau-Ginsburg model. [See for example Ma*] ie. the model
becomes exact, with a very small coupling constant very close to the critical point.

Consequently, at the critical point the gap of the longitudinal mode vanishes, as



does the width to gap ratio. Sufficiently close to the critical point, on the ordered
side, the longitudinal mode will then be very light and highly stable.

However, the magnetic ordering transition in a stacked triangular antiferromagnet
is in a different universality class than the simple Néel case. This can be seen from
the fact that a Néel state is invariant under rotations about the unique ordering axis,
whereas the triangular state has no such residual U(1) symmetry. A renormalization
group analysis in this case indicates that the Gaussian fixed point is unstable.® This
indicates the occurrance of a fluctuation-induced first-order phase transition. Since
the ]5[4 coupling constants do not renormalize to zero in this case, the longitudinal
mode does not become perfectly stable.

In general, the question of whether or not the longitudinal mode will be sufficiently
narrow to be observed is a heuristic one. It is reasonable to expect it to be more
observable for systems which are quite close to the quantum disorder transition.

We emphasize that the renormalization group argument for the stability of the
longitudinal mode depends crucially on the fact that the transition is in the four-
dimensional universality class, since it occurs at 7' = 0. The finite-temperature
transition is, of course, in the three-dimensional universality class and consequently
exhibits much less trivial critical behavior. There is no reason to expect a stable
longitudinal mode in this case.

The outline of the rest of this paper is as follows. In the next section, we review
the Landau-Ginsburg model and the calculation of the dispersion relation for both
Neéel and triangular cases. We also discuss the extent to which neutron-scattering
data on CsNiClz*® and RbNiCl;” agree with this model. While the agreement is
not completely satisfactory, we argue that the CsNiCls data clearly calls for a non-
trivial extension of spin-wave theory. In Section III we give the renormalization

group arguments for the stability of the longitudinal mode in the Néel case and



for the first-order nature of the transition in the triangular case. In Section IV we
calculate the magnetic field dependence of the magnon dispersion relation, both
in ordinary spin-wave theory and in the Landau-Ginsburg model. It is again clear
that spin-wave theory fails to capture, even qualitatively, trends in the experimental
data.® It is unclear how good the agreement with the Landau-Ginsburg model is; a
detailed comparison will require the calculation of intensities and lifetimes and more
experiments. The final section summarizes the agreement between experiment and
theory. The appendix compares the Landau-Ginsburg model to another one which

was recently proposed.®

II. LANDAU-GINSBURG MODEL

We begin by discussing a single chain, Heisenberg antiferromagnet:

The continuum limit is defined by introducing® the pair of non-commuting vector
fields, d_;(z) and f(z) representing the long-wavelength staggered and uniform mag-
netization, respectively. (z measures distance along the chain. We set the lattice
spacing equal to one for the time being.) Because the integral of I over the entire

chain gives the conserved total magnetization, its commutation relations are fixed

to be:

[(2), (")) = ie?*1*(2)6(z — ')

[I'(2), 67 (2")] = ie"* ¢* (2)6(z — 2") (2.2)

(We set o = 1.) The commutation relations of the components of gwith themselves

are not fixed by any symmetry requirement and depend on the spin-magnitude,
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s. We make the large-s semi-classical approximation that they commute. A cor-
rect treatment of the large-s limit also requires that we impose the constraints,
162 — (1)?/s2 ~ (5)2 =1, ¢ -1 =0. This defines the non-linear sigma-model, upon
expanding the hamiltonian to second order in [ and dq—S‘/dz. A perturbative treat-
ment of the o-model involves expanding 5 about its groundstate expectation value.
This gives two Goldstone modes, the same spectrum as obtained from spin-wave
theory (at long wavelengths). However, this is known to be completely the wrong
picture in one dimension. Quantum fluctuations disorder the groundstate. Roughly
speaking, ¢ fluctuates around the unit sphere so that < 0/4|0 >= 0. The spectrum
consists of a triplet of massive magnons which correspond to the three components
of d; [Since the field theory is Lorentz-invariant, the magnon dispersion has the
relativistic form E(Q — 7)) = W, where () is the momentum, A the gap
and v &~ 4Js the spin-wave velocity. Thus we may regard A/v? as the rest-mass.]
The Landau-Ginsburg model is designed to give the correct behavior at a mean-
field level.> We simply relax the constraint on q; and replace it by a quadratic plus

quartic potential. The full Lagrangian density is given by:
st 2 - 2
1 [(0¢ v [ O0¢ A A=
Proomos| et ==fot] — Zjdf =2 ,
T 2y (Bt) 2 (az) 50 ¢~ 514l (2:3)

The quartic term is, in general, neccessary for stability. The uniform magnetization

density is then determined from the commutation relations to be:

I'=(1/v)é x &S/t (2.4)

This model becomes essentially exact in the large-n limit of the O(n) o-model. We

-

may estimate the normalization factor for the staggered magnetization as: S; ~

(—l)is\/jq; where g ~ /2/s, based on the large-n and large-s limits.



We now consider a quasi-one-dimensional system:

chains planes o
Hy=J Y Si-S;+J > Si-5; (2.5)
<t,J> <1,7>

Here the first term is over all nearest neighbor pairs on the same chain and the
second is over all nearest neighbor pairs in the same plane, with J' << J. (Each
nearest neighbor pair occurs twice in the above sums.) The Landau-Ginsburg La-
grangian is obtained by introducing a separate field $i(z) for each chain, 7 and
then coupling the staggered magnetization vectors at adjacent points on neighbor-
ing chains. (A coupling of uniform magnetizations could also be included but this
leads to corrections of higher order in J’/J and, in any event, does not qualitatively
alter our conclusions.) Thus the three-dimensional Lagrangian is given by:

> i) 8=} (2.6)

L= /dz{z Li[:(2)] = 20's
i <>
Here the second sum is over nearest neighbor chains. In the ordered state < <z-5:(z) >
will be constant along each chain. Dropping the ¢ and z derivitive terms the La-
grangian becomes minus the potential energy. We see that whether or not order
occurs 1s determined by a competition between the Haldane gap, A and the inter-
chain coupling J'. The critical value of J' is O(A?/vs). In the disordered phase,
at small J’ where < 0|4|0 >= 0, we calculate the magnon dispersion relation by
simply ignoring the quartic term. We see that there is a triplet of massive magnons

with a dispersion relation:

Eiipie( Q. — 7, Q1) = v2Q2 + A2 + 8J0s £(G,) (2.7)

where



F@u)=(1/2) 3, £5H | (2.8)

and the sum runs over the vectors, 5: to nearest neighbor sites in the planar lattice
(assumed to be Bravais). This formula is valid for @, &~ m. The shift of @, by = is
due to the fact that 5 is the staggered magnetization.

Let us now consider the ordered phase, which occurs for sufficiently large J'. We
now must distinguish between different lattice types. We first consider the case of
a tetragonal lattice; ie. a square lattice of chains. (The following discussion could
be trivially generalized to the case where the transverse lattice is rectangular rather
than square.) The ordered groundstate is the simple Néel state with all nearest

neighbor spins anti-parallel. Writing,

< ¢ >= +¢o3 (2.9)

on the two sub-lattices, the potential energy per spin becomes:

V(go) = (A%/2v — 8J's)¢% + (M /4)da (2.10)

We see that the critical value of J' is

Ji = Al [16vs (2.11)

For larger J’ the size of the sub-lattice magnetization is given by:

2 = (16J's — AZ/v)/A (2.12)

We expand L to second order in small fluctuations:



(;: (¢I’¢y’¢0+ ¢z) ) (213)

z and y fluctuations are transverse and z-fluctuations are longitudinal. These do

not mix to quadratic order. We may then read off the dispersion relations:

EA(Q, — 7, Q1) =/v2Q? + 8T'vs[2 + F(QL)] (2.14)
EL(Q. — 7, Q1) = Vo Q2 + 8J'ws[2 + F(QL)] + A} (2.15)

where:
Ap = 20083 = /2(16]'vs — A?) = /320s(J — J1) (2.16)

For the square lattice of chains, of spacing a,

f(@L) = cos(aQy) + cos(aQy) > —2 (2.17)

Note that FE, vanishes at the antiferromagnetic wave-vector (7/a,n/a,n). EpL, on
the other hand, has a gap, AL at this wave-vector. Note that all three dispersion
relations, that of the triplet in the disordered phase, Eq.(2.7), and those of the
longitudinal mode and transverse modes in the ordered phase, Eq. (2.15) becomes
identical at J' = J.. ie. as we vary J', the spectrum varies continuously, the
triplet of the disordered phase splitting up into the two transverse modes and one
longitudinal mode of the ordered phase.

The intensities of these modes take a very simple form. The canonical commu-
tation relations, [¢(z,t), q'ﬁ(w',t)] = wé(xz — z'), implies that the spin correlation

function is



5°(Q.—m,Q1,E) =< 5°5° > (Q.—7,Q.1, E) x< ¢°¢° > (@, E) x §[E — E.(Q)]/E*(Q)

(2.18)

{To obtain the neutron-scattering cross-section §* must be multiplied by the
Lorentz factor (1 — Q2), and a sum over a must be performed, depending on
polarization.} Thus, in particular, the intensity of the transverse modes (a = 1,2)
blows up at the ordering wave-vector, whereas the intensity of the longitudinal
mode remains finite. The transverse modes would appear in zy-polarized experi-
ments and the longitudinal mode in z polarized experiments. As we shall see, things
are considerably more complicated in the case of a stacked-triangular lattice.

The transverse modes are simply the standard result of linear spin-wave theory?,
for @ ~ 7 and J' << J. To see this note that the standard spin-wave theory

spectrum is:

Eswr(Q) = \/(4J5 +8J's)2 — [4Js cosQ. +4T'sf(QL))? (2.19)

Expanding to first order in J'/J and Q? inside the square root, and using v = 4J s,
we obtain precisely the first of Eqs. (2.15). The longitudinal mode, on the other
hand, is not a standard spin-wave theory result. The reason is that in spin-wave the-
ory the spins are considered to be of fixed length, as in the non-linear o-model. The
longitudinal mode occurs in the above treatment simply because we have relaxed
the constraint on the magnitude of the field ¢ in passing to the Landau-Ginsburg
model. Actually, the two theories are not quite as different as they at first appear.
To see this note that the longitudinal mode is unstable, even at zero temperature.

It can always decay into a pair of transverse modes (ie. Goldstone bosons). This is
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kinematically allowed since the Goldstone modes are gapless whereas the longitudi-
nal mode has a gap. It is allowed by conservation of the z-component of total spin,
since the longitudinal mode has §* = 0 whereas the two species of transverse modes
have §? = +1. Decay into a pair of Goldstone modes of opposite spin conserves
spin. Such a decay vertex occurs in the theory due to the (/\/4)|<;|4 term in the

Lagrangian. Expanding $ as in Eq. (2.13) we obtain a cubic term:

*Ccubic = —)‘¢O¢z<¢;2p + ¢32,) (220)

We see that the decay rate, which goes like the square of this coupling constant, is
of O()\). The Landau-Ginsburg model actually reduces to the non-linear o-model in
the limit where A — oo and A? —» —oo with —A?/X = 1, since then the magnitude
of ¢ is forced to be exactly one. In this limit the mass of the longitudinal mode
goes to infinity, as does its decay rate. How light and narrow the longitudinal mode
is depends on the parameters in the model. In particular, its mass is controlled by
J' — J! and its width by A\. We expect that spin-wave theory will exhibit a two-
magnon resonance with a finite energy gap. This resonance may then be identified
with the longitudinal mode. Whether or not the longitudinal mode is stable enough
to observe depends on the parameter A in the Landau-Ginsburg model. We will
argue, using the renormalization group, in the next section, that the width to gap
ratio of the longitudinal mode vanishes in the limit J’ — J.. This corresponds to
the fact that the renormalized coupling constant A vanishes at the critical point.
We now consider the effects of anisotropy. If we consider axial anisotropy which
breaks the SU(2) symmetry down to a U(1) subgroup, rotation about the z-axis,
then we must distinguish the easy-plane and easy-axis case. In the first case, the

U(1) symmetry is spontaneously broken so there is a single Goldstone mode. Again
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the longitudinal mode is unstable against decaying into the Goldstone mode. In
the second, easy-axis case, the U(1) symmetry is not spontaneously broken in the
ordered phase, only the Z; symmetry S — —S57 is broken. Consequently there are
no gapless Goldston modes. Spin-wave theory and the Landau-Ginsburg model pre-
dict that the two branches of would-be Goldstone modes have equal gaps. However,
according to the Landau-Ginsburg model, the longitudinal mode still has vanishing
gap at the critical value of J’, and thus becomes lighter than the would-be Goldstone
modes sufficiently close to the critical point (on the ordered side). Therefore it be-
comes kinematically unable to decay in this region and should exist as an infinitely
stable excitation.

We now turn to the case of a triangular lattice of chains. We choose the triangular
lattice to lie in the zy-plane with links parallel to the z-axis, as shown in Figure 2.
The lattice spacing is a. The spacing between spins along the chains we take to be
¢/2, in order to agree with standard conventions for CsNiCl; which has two formula

units per unit cell. We choose a basis of primitive lattice vectors:
@, =(a/2,—V3a/2,0)
@, =(a/2,V3a/2,0)
63 = (0, 0, C)

(2.21)

It is also convenient to define a set of three linearly dependent in-plane lattice

vectors, 5,-, with:=1,2,3:
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(2.22)

-

(See Figure 2.) The reciprocal lattice is also triangular. The primitive vectors, b;,

1 = 1,2, 3, defined by the conditions:

l—)’i * [ij = 27r5ij

are given by:

(See Figure 3.) Wave-vectors are expanded in reciprocal lattice vectors:

3 —
Q=(Q1,Q2,Q3) = Z: Q:b;

(2.23)

(2.24)

(2.25)

We also sometimes refer to wave-vectors by z, y and z-components, and use @ to

label the projection of the wave-vector onto the basal plane. The classical ordered

state now involves three different directions, making angles of 27 /3 with each other.

We choose these to lie in the zz-plane, with one of them lying along the z-axis, in

agreement with the conventions of previous work. See Figure 1. Hence the classical

state at lattice point Z; is given by:

S = s(sin@o - 75,0, cos@o - T3

13
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where the ordering wave-vector, Qo, is given by:

o= (1/3,1/3,1) (2.27)

in the notation of Equation (2.25). It is also convenient to define the projection of

the ordering wave-vector onto the basal (zz) plane, Qo

Q.= (1/3,1/3,0) (2.28)

Note that Qg lies on the z-axis, at a corner of the paramagnetic Brillouin zone,
which is a hexagon, as shown in Figure 3.

The inter-chain coupling term in the Lagrangian is now of the form:

w=—(41)) D [dzdi(z) 65(2) (2.29)

<5,5>

Noting that for two neighboring chains, ¢; - ¢; = —(1/2)¢2 and that each chain has
six nearest neighbor chains, we find the potential energy per chain, per unit length,

in the ordered state:

V(go) = (A*/2v —12J's/c)¢g + (A/4) 0 (2.30)

Now the critical value of J’ is:

J! = A%c/24vs (2.31)

and the sub-lattice magnetization in the ordered state, for J' > J! is:
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62 = (24J's/c — A?[v)/A (2.32)

To obtain the excitation spectrum we expand the Lagrangian density to quadratic
order in small fluctuations around the ordered state. For this purpose, it 1s con-
venient to introduce two orthogonal unit vectors, both lying in the zz-plane in
spin-space, at each lattice site, ¢, é;; and €;;. €L 1s parallel to < <z_$; > and éy;
is perpendicular to it. [See Figure 4.] In terms of the projection of the ordering

wave-vector onto the basal plane, Qg, we may write:

éLi = (SinQ2 ’ 1_"1'7 07 CO‘SQZ ' fz)

é1; = (cos@, - T;,0, —sin@Q, - 7)) (2.33)

Introducing the transverse zz-fluctuation, ¢;;, the transverse y-fluctuation, ¢,; and
the longitudinal (zz) fluctuation ¢r;, as well as the unit vector parallel to the y-axis,

€2, we decompose the field at each site as:

b = éni( o+ bLi) + Eridbri + 26 (2.34)

We now substitute this decomposition into the Lagrangian, Eq. (2.6) and expand
to quadratic order in ¢;, ¢, and ¢;. It is important to note that we obtain cross-
terms between the transverse zz-mode, ¢; and the longitudinal mode ¢;. This
does not occur in the case of a bipartite lattice. It occurs here because longitudinal
and transverse fluctuations on neighboring sites are not orthogonal to each other as
illustrated in Figure 5. On the other hand the transverse y-mode, ¢,, is unmixed
(to quadratic order). The terms quadratic in the y-mode are:

1 (862> 8¢y \*  A? A 47’

<1,7>
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The terms quadratic in the transverse and longitudinal zz-modes are:

1 (080w (86t A%, 1 (0" v (¢n)' A,
ﬁ"‘Z[éZ(at)"ﬁ(az %%\ o 2\ 8z 2 L

_%ng(‘ﬁi + 3070 — (4's/c) D [(—=1/2)¢1ib1j + (=1/2)BLibL;

<4,7>
+(€Li - €4;)bLidr; + (€ni - €L;)b1:0L;5] (2.36)
Here we have used the fact that éz;-ér; = €1;-€;; = —1/2 for nearest neighbor sites.

The other dot products, éy; - €r;, take on the values ++/3/2. In terms of the lattice
vectors, 5:—, [see Equation (2.22)] the inter-chain term in £, can be written:

A 4Jlo/C)ZZZ{ (—1/2)[¢1(Z )¢1(z,iéb)+¢L( )ngL(a:l:%:&b)]

1 b=1

4:(\/5/2)[%(%‘)%(% +8,) — 1(E:) 1 (F: £ &)]) (2.37)

At this point we Fourier transform. It is convenient to define Fourier modes, 5(@),
over the entire paramagnetic Brillouin zone in the basal plane, shown in Figure 3.
In this way, we only obtain three branches of excitations, corresponding to ¢, and
two linear combinations of ¢; and ¢r. Of course the basal plane antiferromagnetic
Brillouin zone has only 1/3 the area so there should be 3 times as many excitation
branches. This simplifying step is possible because of the symmetry of the antifer-
romagnetic groundstate under simultaneous translation by one lattice spacing and
rotation of the spins by 27/3 about the y-axis. This symmetry is incorporated into
the definition of the components ¢, and ¢, via the rotating co-ordinate system, ¢,

and é€r. To obtain the experimentally observable neutron-scattering cross-section,
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we must translate the zz branches into the antiferromagnetic zone, giving a total

of 5 branches. Explicitly, we see from Eq. (2.33) that:

$(Q) ~{ _il[—nm(@#n@z)m(Q”+nc}‘2>]/2,¢2(Q‘>, _i_l[¢L(c§+nc§2>+m¢l<Q‘+nc§2n/2}
o - (2.38)
We find that the dispersion relation for the y-mode is given by:
Ex(Q. - 2n/e, (1) =V (vQ.)? + (807's/)[3 + 2(QL)] (2.39)
where now:
FQL) = cos(2rQy) + cos(27Q5) + cos[2m(Q1 + Q)] (2.40)

The two rz modes are given by the solution of the eigenvalue equation:

((szY + (87'sv/c)(3 ~ f) i8V/3J'svf/c ) ( 2 ) _ g ( 2 )

—i8V3J'svf/e  (vQ.) +(8]'sv/c)3~ f)+ AL ) \ o 2
(2.41)
where
f(QL) = sin(27Qy) + sin(27Q,) + sin[27(Q, + Q1)) (2.42)
Note that this is a slightly different notation than in Ref. (3).
A} =48J'vs/c — 2A? (2.43)

The two frequencies are:
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EX(Q.—27/c, 1) = (vQ:)*+(8J'vs/c)(3—F(Q1)+AL /241 (A2 /2)? + 3[8'sv f(G 1)/ c)?

(2.44)

The intensities of the modes, can be calculated from the eignenvectors obtained
from Eq. (2.41). Normalizing the eigenvectors to one: |¢;[? + |¢[* = 1, we may

write:

S(Q. =2/, G, B) o g 81E = Bo(Q)

2

§%%(Q, — 2r/c, 3., E)=57(Q. — 2r/c,Q ., E)

1 4 —_ P 2 — ¥ =3 =]
wr ¥ 3 OOl Gy 1ot - Bu(G 4 )
%

n=-1

(2.45)

The shift of @ by néz (n = #£1) results from the rotating coordinate system implicit
in the definition of ¢, and ¢, see Eq. (2.38). The constants of proportionality are
the same in both of the above equations. Finally, solving the eigenvalue equation,

Equation (2.41), we obtain

8v/3J'svf /e — n(A%/.‘Z == \/(Ai/2)2 ‘A 3[8J’svf/6]2)]2

|1+ — nidrs|* = (2.46)

(8\/..'°_>J’.sv/cf)2 - (Ai/2 F \/(A%/Q)?' EE 3[8J’svf/c]2)2

We see from its definition, Eq. (2.43) that A? < 48J'vs/c provided that A? > 0.
However, A? must be regarded as a renormalized parameter and, for sufficiently
large J'/J it may become negative. Therefore, it is interesting to consider the

qualitative behavior of this spectrum as a function of the parameter A} for 0 <
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A? < oo, with J’ held fixed. Let us first consider the limit, A7 — oo. In this limit,
E, — oo and E* — (vQ,)? + (8J'vs/c)(3 — f(Q'L)) In this limit, E_ becomes
purely transverse and E, purely longitudinal. This limiting formula for E_ can be
seen to be the same as that of conventional spin-wave theory in the limit of small
Q. — 27 /c and small J’'/J. Likewise, the y-mode, which is unaffected by A%, has
the same dispersion relation as the corresponding mode in conventional spin-wave
theory in this limit. However, as we reduce A%, the transverse zz fluctuations mix
increasingly with longitudinal fluctations so that E_ deviates from the spin-wave
theory result. Likewise the other branch, of energy E, moves down in energy.

Finally, at J' = J!, A? = 0 and the zz-energies become:

E}(Q: —2/c,Q1) — (vQ.)* + (8T'sv/c)3 - f(QL) £ VBIF(QL)]  (247)

Using the identity:

F@L)£VEF(QL) = —2f(Q.L + §») (2.48)

we see that:

EL(Q. —27/c,QL) — (vQ.)* + (87'sv/c)[3 + 2f (@1 F €02)] (2.49)

where € = sn[f(@l)] Comparing with Eq. (2.39) and Eq. (2.7), we see that
Etr,-pzet(é), Ez(é) and Ei(é + 6@2) all become identical at J' = J/. Furthermore,
in this limit the eigenfunctions take on the simple form ¢r. = Feigy = 1/1/2.
Thus, in the formula for the neutron-scattering intensity, Eq. (2.45), two of the
terms vanish and the other two become identical, giving: S*%(Q, E) = S22(Q, E) =

SY(Q, E) at A} = 0. The neutron-scattering cross-section in the ordered phase
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goes over continuously to that of the disordered phase. Note that the way this
occurs is that the intensity of two of the five branches goes to zero and the other
three become degenerate, with zero gap in the limit A7 — 0. For a relatively small
value of A, we should expect two of the five branches to be very weak and the other
three to lie quite close to each other.

The theoretical spectrum is compared with the experimental results?® on CsNiCls
in Figure 6. The theory contains three parameters, v, J' and Ar. These can be
used to fit the slope, 8E/3QZ(C§0), the bandwidth of the basal plane dispersion at
Q. = 27 /c and the gap of the stronger mode of non-zero energy at the ordering
wave-vector (ie. E_(gg - 2@2). This procedure gives: 2v/hpc =~ 1.38THz., J'/hp =
.0052THz and Ay /hp = .28T Hz. (hp is Planck’s constant; we attach the subscript
P, to distinguish it from the magnetic field. We follow the standard convention in the
neutron-scattering literature of quoting frequencies, rather than angular frequencies;
hence they must be multiplied by hp, not i to obtain the corresponding energies.)
Given the weak intensity of two of the branches, as shown in Figure 7, the agreement
between theory and experiment is fairly satisfactory. The main discrepancy is that
the second zz branch, E,(Q+Q,) = E, [See Figure 6b] is only resolved for small @,
where its energy is about 10% lower than the theoretical prediction. It is important
to realize that various effects (such as perturbative corrections from the }\q—;“—term in
the Lagrangian) will renormalize the dispersion relation. It may well be that these
effects reduce the energy, E, sufficiently that it can only be resolved from FEs at
small @, . The prediction of normal spin-wave theory is compared with experiment
in Figure 8. Here we use J/hp = (1/4)(2v/c) = .345THz and the same value of
J' as above. Both theories fit the y-mode quite well; indeed they make essentially
identical predictions. However, conventional spin-wave theory disagrees badly with

the observed zz-dispersion. Of course, there are also renormalizations of spin-wave
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theory, which can be calculated in a 1/s expansion using the Holstein-Primakov or
Dyson-Maleev formalism. Is it possible that these might eventually lead to good
agreement between theory and experiment?

In fact there is a qualitative feature of the data which conventional spin-wave
theory will not be able to capture including arbitrary higher-order corrections. This
is the striking fact that the energy of the zz-polarized mode observed at Q. =0
1s at about 2% times higher energy than that of the upper mode at the ordering
wave-vector. Spin-wave theory predicts that these two frequencies should be equal.
Furthermore, this is actually a consequence of a symmetry and thus should survive
all higher-order corrections. The symmetry argument is most easily understood
by plotting the zz-mode in the entire paramagnetic Brillouin zone. The observed
neutron-scattering intensity is then obtained by translating this branch into the
reduced zone, C} — Q' o @2. The paramagnetic reciprocal lattice is shown in Figure
3. The experimental results shown in Figure 6 correspond to moving along the
z-axis, @, = 47n/a, shown in Figure 3. Note that a link of the reciprocal lattice
1s a perpindicular bisector of this line, cutting it at n = 1/2. This implies that the
dispersion relation is symmetric about 7 — 1 — 7. The fact that the excitations
can be defined over the entire paramagnetic Brillouin zone is a consequence of the
symmetry of the antiferromagnetic groundstate under combined translation by one
site and rotation by 27 /3. The symmetry n — 1—7 is a consequence of a symmetry
of the paramagnetic Brillouin zone. Thus we expect this symmetry to survive all
higher order corrections. Upon translating the spectrum into the antiferromagnetic
zone, this symmetry implies that the upper zz branch is symmetric about n = 1/6
and, in particular, implies the equality of the energies of the upper zz-mode at
(1/3,1/3,1) and the zz-mode at (0,0,1). Any model which predicts a single zz

branch in the paramagnetic zone, will predict that these energies are equal. [This
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includes the alternative model® discussed in the appendix.] Thus the observed
marked difference in these energies indicates that there are two different 2z branches
in the paramagnetic zone, as predicted by the Landau-Ginsburg model. Note that
this model also obeys the same symmetry. Both zz-branches have the feature that
the upper energy (upon translating into the antiferromagnetic zone) at (1/3,1/3,1)
is degenerate with the energy at (0,0,1).

RbNiCl; is another s = 1 quasi-one-dimensional Heisenberg antiferromagnet with
properties very similar to those of CsNiCl;. The only importance difference ap-
pears to be that the ratio of interchain to intrachain couplings is about 80% higher
in RbNiCla. So far, only unpolarized neutron scattering experiments have been re-
ported on this compound.” They exhibit a dispersion relation very similar to that of
CsNiCls. Again only a single spin-wave energy is observed near (0,0,1). Again this
energy is considerably higher than that of the upper mode at (1/3,1/3,1). How-
ever, in this case it is higher by a factor of approximately 2 rather than ‘2%. A fit
can be obtained to the Landau-Ginsburg model, this time with 2v/hpc = 1.94TH z,
J'/hp = .0143 THz and Ar/hp = .9 THz, corresponding to a negative value of
A?, perhaps indicative of large renormalization effects due to the interchain cou-
pling. The agreement between theory and experiment seems to suffer from the
same defect as in CsNiCl;. See Figure 9 and 10. Branch number 2 of Figure 9 is
again not observed near (1/3,1/3,1). The situation near (0,0,1) is more ambigu-
ous since polarized experiments have not yet been performed. A single broad peak
is observed. Since it has the same shape at two different equivalent wave-vectors,
if it results from two branches they must be very close together in energy. Since
the predicted splitting between y and zz modes is larger in this case, due to the
increased three-dimensionality, this is difficult to understand. An alternative possi-

bility is that the observed peak only results from the y-branch. Possibly the higher
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energy zz branch is too broad to be observable in RbNiCl;. If this is the case
then the spectrum is not qualitatively different than that predicted by conventional
spin-wave theory. The main quantitative difference is that branch 3 is higher in
energy than predicted by that theory. This issue could be resolved by polarized
neutron-scattering experiments.

Experments have also been reported on the s = 5/2 quasi-one-dimensional anti-
ferromagnet, CsMnlI5.° This differs in several respects from the other two com-
pounds. Apart from having a larger, half-integer spin, it may also exhibit more
Ising anisotropy; the spins on the B and C sub-lattice (see Figure 1) are measured
to make an angle of 51° with the z-axis rather than 59° as in CsNiCls. It is not
clear if the Landau-Ginsburg model is ever applicable in the case of half-integer
spin since the zero temperature phase transition may be in a different universality
class, even for a cubic lattice. In any event, since the spin is quite large in this
case, as 1s the anisotropy, it seems likely that conventional spin-wave theory would
provide an at least qualitatively reliable description. So far only a single peak has
been observed near (0,0,1). Polarized neutron-scattering experiments are needed
to determine if this peak again contains contributions from two branches. The var-
lous other branches predicted by anisotropic spin-wave theory have not yet been

observed.

III. RENORMALIZATION GROUP ARGUMENTS
In this section we apply renormalization group methods to go beyond the Gaussian
approximation to the Landau-Ginsburg model used in Section 2. We use universality
arguments to justify the passage from “hard spin” to “soft spin” models. We show
that the phase transition as a function of interchain coupling, J’, is second order

for a bipartite lattice but first order for a stacked triangular lattice. In the former
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case we show that the longitudinal mode becomes stable at the critical point. We
verify the conclusions in this case by comparing with the large-n limit of the O(n)
non-linear o-model.

It must be emphasized at the outset that we can deduce exact results (subject to
generally accepted assumptions) about these problems because of the fact that the
phase transition as a function of J', at zero temperature is in the four-dimensional
universality class. Since this is the upper critical dimension for the phase transition
it is Gaussian, up to logarithmic corrections. Consequently, conclusions drawn from
a weak-coupling analysis of the Landau-Ginsburg model become exact at the critical
point.

We begin by considering the bipartite lattice case. As we approach the critical
point we expect the correlation length to diverge, both along the chains and also
for interchain correlations. Thus, we may replace the discrete sum over chains in
Eq. (2.6) by an integral. Upon rescaling lengths in the basal plane appropriately,
we obtain the standard ¢* quantum field theory in (3 + 1) space-time dimensions

with Lagrangian density:

L = (1/20)(84/0t) = (v/2)(V$)* = (A3/2)| 4] — (\/4)l4]* (3.1)

Here AZ is an effective parameter in this long-wavelength theory which corresponds
roughly to A? — 16J'vs. A crucial point is that this model is Lorentz-invariant
due to the second-order time derivitive. [See the appendix for a review of how this
second-order term arises.] We expect all breaking of Lorentz-invariance to become
irrelevant near the critical point. The Feynman path-integral formulation of the
theory is most easily studied by going to imaginary time (ie. Euclidean space):

t — i17. The Euclidean space Lagrangian density is:
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Lg = (1/2)(Vi)® + (A2/2)6]2 + (A/4)|8]* (3.2)

Here V4 represent the gradient in the four-dimensional space, and we have absorbed
the velocity v into a rescaling of the time co-ordinate. This is precisly the standard
classical Landau-Ginsburg Hamiltonian in 4 (space) dimensions which would be
used to model a finite-temperature classical magnetic transition. The Feynman
path integral corresponds to the usual Boltzmann sum. Thus the fact that the
classical system in four dimension is governed by the Gaussian fixed point applies
immediately to the quantum system at 7" = 0 in three dimensions. This result
1s well-known in quantum field theory of course; it is usually referred to as the
triviality of ¢* theory.

The renormalization group flows* are shown in Figure 11. The critical trajectory
separating broken and unbroken symmetry phases flows into A2 = A = 0 at long
length (or time) scales. This is much different than in lower dimensions. In 4 — ¢
space-time dimensions the Gaussian (A = 0) fixed point is unstable and the phase
transition is controlled by a fixed point at A. of O(¢). In three space-time dimensions
A is expected to be O(1) at the critical point. Consequently the zero-temperature
phase transition, as a function of J’ is much more trivial than the one that occurs
as a function of temperature. In the T = 0 case, along the critical trajectory, the

effective coupling constant is governed by the S-function:

dA/dinL = —(11/87*)A\? 4 (69/647")A° + ... (3.3)

The solution, at large length scales and small couplings is:

ML) = A(Lo)/[1 + (11/87*)A(Lo)in(L/ Lo)] (34)
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The coupling constant flows to zero logarithmically slowly, at large length scales.
Away from the critical point, this decrease of A ceases at a scale L of order the
correlation length. [See Figure 11.] On the ordered side we may estimate this scale
as the inverse-size of the order parameter: Lo/L x< ¢ >. Thus we obtain the

universal prediction:

ML) — 87/11|in < ¢ > | (3.5)

as < ¢ >— 0. To lowest non-trivial order in A, the mass of the longitudinal mode,

for A2 < 0 is given by A? = —2A% and its decay rate is given by

FL — /\AL/32W (36)

Thus the width to gap ratio is: I'y/Ap = A/327. The renormalization group
prediction can be obtained from this by simply replacing A by A(L), the effective
coupling constant at scale L. (The anomalous dimension factors which normally
arise cancel between Ay and Az.) Hence:

™

4 Y, P G a—
LA < g

(3.7)

The longitudinal mode becomes infinitely stable at the critical point. We note
that S** contains a two-magnon continuum starting at zero energy, as well as the
longitudinal mode. The strength of this two-magnon contribution vanishes as the
critical point is approached. This means that the spin Green’s function, expressed as
a function of the invariant momentum p? = E?—v?p?, has both a cut on the positive

p? axis beginning at p? = 0 and a pole displaced off the axis at p? ~ A2 + 2A,T.
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As we approach the critical point the intensity of the cut goes to zero and the pole
approaches the origin along a trajectory which approaches the real axis. We give
an explicit example of this behavior below, using the large-n limit.

So far, we have only discussed the Landau-Ginsburg model in this section. How-
ever, by universality, we expect these arguments to be much more general. The
Gaussian fixed point is expected to be the universal stable fixed point governing
the symmetry-breaking phase transition SO(3) — SO(2) in four space-time dimen-
sions. Essentially any model which undergoes such a phase transition is expected to
flow to the zero-coupling Landau-Ginsburg fixed point under renormalization. This
should be true, for example, of the non-linear o-model. Formally, this is obtained
from the Landau-Ginsburg model by taking A2 — —oo with A2/\ held fixed. In
this limit (}3'2 = 1; longitudinal fluctuations have infinite mass. However, if we as-
sume that the renormalization group flows shown in Figure 11 extend all the way to
infinity, then we conclude that the non-linear o-model renormalizes from A\ = oo all
the way to A = 0 at the critical point. This flow is noted schematically in Figure 11.
This tmplies that the Landau-Ginsburg model should be better than the non-linear
o-model for describing the physics close to the critical point. We expect that the
quantum Heisenberg model, which is the starting point or microscopic model for
the study of quantum spin systems, will also be attracted to the Gaussian fixed
point.

An instructive illustration of the above discussion is provided by the large-n limits
of both Landau-Ginsburg and non-linear o-models. We briefly review this limit,
following the notation and approach of Ref. (11). The starting point is to generalize
the 3-component vector, q?, to n components, and then let n — oo. The four-
dimensional Langrangian is written exactly as in Eq. (3.1) except that we replace

the coupling constant A by A/n in order to have a smooth large-n limit. The non-
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linear o-model is obtained by taking the limit A2 — —oo with < ¢ >*= —nA2/\ =
n/g held fixed. In this limit longitudinal fluctuations of ¢ are frozen, at short
wavelengths, so 5 obeys the constraint 52 = n/g. The parameter g is the coupling
constant of the non-linear o-model. (The model is often written in terms of a
rescaled field, so that the constraint becomes q?" = 1 and a factor of n/g appears
in front of the derivitive terms in the Lagrangian.) A convenient way of dealing
with the large-n limit is to introduce an auxiliary field, x(z) in terms of which the

(Euclidean space) Lagrangian is rewritten:

L = (1/2)Vad - Vad + nx /22 + (ix/2)(|]? + nAZ/N) (3.8)

Upon doing the Gaussian integration over the auxiliary field x in the path integral,
we obtain the original Lagrangian. Note that in the non-linear o-model limit, the
term in £ quadratic in x vanishes so the effect of the x integration is to impose the
local constraint ¢? = —nAZ/). The next step is to integrate over the fields 5in the
path integral. This can be done exactly since they now appear only quadratically
in £. Because there are n ¢ fields, the resulting trace-log term has a prefactor,
n. In order to study the possibility of spontaneous symmetry breaking in which
< ¢ ># 0, it is convenient to integrate only over n — 1 of the ¢-fields and leave ¢,
in the action so that it may obtain an expectation value. The resulting effective

action becomes:

S(¢1,x) = /d4x[(1/2)V4¢1-V4¢1+nx2/2/\+(ix/2)(¢f+nA§/)\)]+[(n—l)/2]tr In[—8%+iy]

(3.9)

We now look for a saddle-point configuration in which the fields ¢; and y are

constant and expand the functional integral in powers of the fluctuations away
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from the saddle-point. It can be easily seen that this gives a series in 1/n. The
saddle-point configuration is of two possible types depending on the values of A
and A? (or ¢ in the o-model limit). In the broken-symmetry phase, which we are
interested in here, < Yy >= 0 and < ¢; >7# 0 at the saddle point. The value of
< ¢1 > is determined by setting to zero 05/0x. This gives the equation, in the
large-n limit:

d*k 1

We must impose an ultra-violet cut-off, A on the momentum integral (effectively
given by the lattice spacing and the exchange energy, J, in the quantum spin prob-
lem), so the above integral gives A?/16n%. We see that a solution exists (ie. the
system is in the broken symmetry phase) provided that —AZ2/XA > A?/167? (or
1/g > A?/167? in the o-model limit.) We now expand the action to quadratic order
in the fluctuations around the saddle-point, writing ¢; =< ¢ > +¢r. The term
quadratic in x involves the integral:

dk 1 1

(3.11)

For momenta much less than the cut-off, B(p?) & (1/327?%)[1+InA?/(—p?)]. Here we
have made the analytic continuation back to real time and p? = E? — p?. Rescaling

x by a factor of \/n, the quadractic part of the action, written in momentum space,

in matrix form, becomes:

2

_lrdp p 1< > ¢1(—p)
s=3 seonel( LT ) (55)) e

Here (¢ > is given by Eq. (3.10). The propagator (ie. the Fourier transform of the
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time-ordered Green’s function) is given by the inverse of the matrix appearing in

S. Thus in particular the ¢, propagator is given by:

2y _ i{1/A + (1/327°)[1 + In(A?/(—p*)]}
D(p*) =< ¢r¢1 > (p) = 7+ (132 + A ()] — < § 57 (3.13)

In the non-linear o-model limit this takes the simpler form:

(1/327%)[1 + InA?/(—p?)]
p*(1/3272)[1 + InA?/(—p?)]— < ¢ >?

D(p®) =< ¢r¢1 > (p) =

The real part of D gives the 11 component of the neutron scattering cross-section,
< 8'8' >. This illustrates all the general features expected from the renormal-
ization group arguments. First focus on the weak-coupling limit of the Landau-
Ginsburg model, assuming 1/\ >> (1/327%)In(A?/ < ¢ >?). We see that D(p?)
has a pole given approximately by p* &~ A\ < ¢ >?~ A%. The pole is actually dis-
placed slightly off the real axis since In(—p?) has an imaginary part for positive p?.

Thus, at the pole,

Im p* ~ A\A%/32n (3.15)

The position of the pole can be written as A? + 2iA, T, where T is the decay rate.
Thus we find:

T~ AAL/64r (3.16)

This agrees with Eq. (3.6) up to a factor of 2 which arises from rescaling A and
making the large-n approximation. A better approximation to I' is obtained by

making the replacement:
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/A= 1/ sy = 1/X +(1/327%)InA? /AT (3.17)

in Eq. (3.16), with A}, determined by:

< ¢ >2= A [1/) + (1/327%)In(A?/ A})] (3.18)

We see that Eq. (3.16) will be approximately correct with these replacements
whenever A\ sy << 327.

Aess 1s just the effective coupling constant determined from the renormalization
group (in the large-n limit) evaluated at the scale A;. We see that, for A2 << A?
the effective coupling becomes small, even if the bare coupling is not. In fact this
remains true even in the non-linear o-model limit, where the bare coupling is infinite.

In this case Eq.(3.17) reduces to:

1/Xess = (1/327%)InA?/ A2 (3.19)

Thus we see explicitly, in the large-n limit, that the non-linear o-model becomes
equivalent to the Landau-Ginsburg model with a small coupling constant, near the
critical point where < ¢ >? and A? vanish. Up to a In In term we may replace A?
by < ¢ >? inside the logarithm.

We also see from Eq. (3.13) and (3.14) that, for [p?| << A2, the propagator has

a cut:

D(p") = ~ 55—z nAY/ (=) (3.20)

This arises from the two-Goldstone boson intermediate state. Thus the real part
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of D, which gives the neutron-scattering cross-section, has a constant part at small
positive p? coming from the two-magnon contribution and then a resonance at
p? &~ —A? from the longitudinal mode. As < ¢ >2— 0 the resonance moves down to
p? = 0, and right at the critical point the propagator reduces to D(p?) — i/(p®+1ie);
the real part collapses to a §-function at p? = 0. Close to the critical point most of
the integrated intensity comes from the resonance, not the cut.

We now turn to the triangular lattice case. It is important to realize that the order-
disorder phase transition is in a different universality class than in the bipartite case.
This follows from the fact that there is an unbroken SO(2) symmetry in the Néel
state on a bipartite lattice (rotation of the spins about the unique ordering axis)
but not in the triangular lattice where the ordered state involves three different
axes making angles of 27 /3 with respect to each other, as shown in Figure 1. Now
taking the continuum limit of the three-dimensional Landau-Ginsburg model, we

must introduce three fields, qz_S‘,-, 1 = 1,2, 3 labelling the three inequivalent sub-lattices

in the basal plane. The quadratic part of the potential energy is of the form:

3
Vo =D (8%/20)|4il* +120's(¢1 - b2+ 62 - b3+ b3 - 61) (3.21)

i=1

It i1s now convenient to change variables to:

o= (261 — 1 — ¢3)/V6 (3.22)
<;b=(52 — $3)/V2 (3.23)
$e=(81+ &3+ ¢3)/V3 (3.24)

This diagonalizes the quadratic terms giving;:
Va = (1/2)(A% /v = 127'8)(|al” + |65 + (1/2)(A% /v + 24T's)|gefF (3.25)
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We see that as we increase J’, the a and b modes eventually become gapless whereas
the ¢ mode gets a larger gap. 56 is the ferromagnetic order parameter; its gap
vanishes if J’ is sufficiently large and negative. Since we are interested in the anti-
ferromagnetic case, we may simply drop the massive mode, 56, from the low-energy
theory. The two remaining modes, q;a and 5;,, can be combined into a complex

three-vector field:

& = (ga+ids)/V2 (3.26)

The original spin operators are related to 3 by:

S;  Re (®e'92%) (3.27)

where Qg 1s the ordering wave-vector projected onto the basal plane, given in Eq.
(2.28). The complete Landau-Ginsburg model may be rewritten in terms of & (after

eliminating (/_;C) as:

L=V,8"V,8 4+ A8 &4 (0, /4) (3" - 8)? + (M,/4) (8- 8)(F"- &) (3.28)

Here A] is an effective renormalized gap parameter, as before. The two coupling
constants, A\; and A, are determined by the original single coupling constant, A.
To lowest order in A, they have the values, A; = 4)/3, A\, = 2)/3. They are both
positive, resulting in an ordered state with Re & L Im &. This gives the expected
2m/3 structure, from Eq. (3.27). Higher order corrections to the Lagrangian are
obtained from integrating out 50- However, these only produce corrections to A2,

A1 and Az together with terms of higher order in derivitives or in powers of the
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fields. This follows from the discrete symmetry: 51 - e;g — 53 o d-;l, which
corresponds to d — e~?mi/3®. This symmetry forbids any other non-derivitive
quadratic or quartic terms. [Note that this Z3 symmetry is actually enlarged to a
U(1) symmetry in the Landau-Ginsburg model. Only by keeping sixth order terms
in £ is the symmetry reduced to the Z; subgroup.] Thus the effective Landau-
Ginsburg Lagrangian density must have the form of Eq. (3.28) with some effective

parameters, A2, A\;, A;. The B-function has been calculated for this model:®

d)\y/dinL = —(1/1672)(TA2 + 4X\ X2 + 402) + O(X®) (3.29)

dA\y/dInL = —(1/167%)(6A1 A2 + 3A3) + O(\?) (3.30)

The resulting renormalization group flows are shown in Figure 12. Note that only
the line A\, = 0 flows to the origin in coupling constant space. Otherwise all tra-
jectories flow to A\; = —oo, A\; = +o0o. Thus we see that the Gaussian fixed point
1s not stable, for this phase transition, in four space-time dimensions. The usual
interpretation of this kind of renormalization group flow is that the phase transition
is driven first-order by fluctuations. This is signified by the negative value of ),
upon renormalization. Including positive |$I6 terms for stability, we find a first or-
der phase transition in Landau theory. There has been some controversy lately over
the corresponding phase transition in three dimensions, which would correspond to
the finite-temperature transition in CsNiClz. It may be first or second order. How-
ever, in four dimensions there seems to be no questioﬁ; the Gaussian fixed point is
unstable so the transition is expected to be first order.

What does this imply about the longitudinal mode? We should expect that as the
interchain coupling, J', is decreased in the ordered phase, the sub-lattice magneti-

zation will decrease smoothly for a while, but eventually will make a discontinuous
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drop to zero at J.. Correspondingly, we expect that the mass of the longitudinal
mode will decrease smoothly before dropping abruptly to zero. It also seems plausi-
ble that the effective coupling constants will at first decrease, before the first order
transition point is reached. Thus we might expect the width to mass ratio of the lon-
gitudinal mode to decrease with increasing J’. Of course, this ratio will never reach
zero; before this happens the transition to the disordered phase will occur. The
value of this ratio at the first-order transition point, J., is non-universal. Whether
or not the longitudinal mode will ever be observable in a stacked triangular system
1s an empirical question. As we have tried to argue in Section II, the experimental

evidence in CsNiCls suggests that it has been.

IV. NEUTRON-SCATTERING IN A FINITE FIELD

In this section we consider the effect of a magnetic field on the magnon dis-
persion relation in the ordered phase, for the case of a stacked triangular lattice
antiferromagnet.'> We first present the result of conventional spin-wave theory. (As
far as we know, this simple result has not been published before in its entirety.) We
then present the analagous result using the Landau-Ginsburg model; ie. including
the longitudinal mode. Some comparison is then made with finite-field neutron-
scattering experiments on CsNiCls®. Finite field effects in the disordered phase
of Haldane gap antiferromagnets have been discussed elsewhere.!® In the case un-
der consideration here, where crystal field (or exchange) anistropy can be ignored
and the Zeeman energy is smaller than the Haldane gap, the result is extremely
simple. The Haldane triplet simply undergoes a Zeeman splitting with energies
A, A £ guph, where h is the magnetic field. As we have emphasized above, in
‘the Landau-Ginsburg model we go smoothly from disordered to ordered phases by

varying the interchain coupling. (However the transition is driven first order by
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fluctuations in the stacked triangular lattice case.) This remains true when a mag-
netic field is included, with the field lowering J.. Thus, in weak fields, for J’ only
slightly bigger than J. the Landau-Ginsburg model predicts behavior much dif-
ferent than does conventional spin-wave theory. This behavior goes over smoothly
into the simple Zeeman-splitting of the disordered phase as J' — J.. The finite-field
experiments provide evidence for such an effect in CsNiCl;.

Following the experimental set-up, the spins are ordered in the zz plane (at h —
0), as in Figure 1 and the magnetic field, h, is applied along the y-axis. We first
consider the classical problem, regarding each spin as a classical vector, of length
s. This gives the starting point for standard spin-wave theory. (Note that this
is not quite the same as the classical limit of the Landau-Ginsburg model because
that model is developped in terms of the staggered magnetization.) Classically, each
spin cants in the y-direction by the angle 8, without changing its orientation in the

zz-plane. The classical energy per spin is:

2

4

2
E/N = —2J5%c0s20 — guphssin 8 4 6J's? (1 o 2 9)

Minimizing E with respect to 8 gives:

guh
(87 + 187)

sinf = (4.1)

We note that for CsNiCl,, J/hp & .345T H z, so, for the maximum field of 67 used

in the experiment, sinf =~ .06.

To calculate the dispersion relation using conventional spin-wave theory, we ex-
pand around the classical groundstate, calculated above, to quadratic order in
magnon creation and annihilation operators. The calculation can be considerably

simplified by the observation that, as in the zero-field case, the classical groundstate
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is invariant under translation by one site together with a rotation by 27/3 in the
zz-plane. (This symmetry is not destroyed by canting.) For zero canting, the spin

operators on the A sublattice (see Figure 1) are expanded as:

S0 = <\/§(chr + a),z'\/g(aT —a),s — aTa> (4.2)

This is the correct representation when the spin points in the z-direction in the
classical approximation. Here a (a') annihilates (creates) a boson. To obtain the
correct representation on the six different sub-lattices, in the presence of canting, we
simply rotate S0 by the rotation matrix which produces the correct classical state
from the one where the spin points in the z direction. The needed rotation matrices
are: R,, the cant (rotation by —6 about the z-axis), R, a rotation by —%’r about

the y axis, and Rj a rotation by 7 about the y axis. The needed representation on

the six different sublattices, shown in Figure 1 is:

Si=R,S°
Sp=R,5,
Sc=R25,
Sp=R354
S =R,Ss
Sp=R,Ss

The Hamiltonian may now be written in the fully translationally invariant form:
N . . 3 .
H=2% (J Sz, BS o a + T 2 Sz - AS) L s - gthst,y) (4.3)
j=1 =1 I

where the 6;’s are the lattice vectors defined in Eq. (2.22) for i = 1,2,3 and 64 = a,,
defined in Eq. (2.21). A and B are real matrices.
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Note that, while B is symmetric, A is not. Thus the Hamiltonian of Eq. (4.3) is
not invariant under reflections in the basal plane. We now Fourier transform. Since
the Hamiltonian of Eq. (4.3) has the full lattice translation symmetry, we may
introduce Fourier modes in the full paramagnetic Brillouin zone. The quadratic

terms in H become:

i . 2 ) ; i 8eos?8
H2=Z{[4Jsc0529~4Jss1n9cos(cQ,/2)+nghsm6+12Js = -1
k=1 &
+J'3f(@l) (1 - 3sin29)]a%ad
3 =~
2 ’ 2 t 1
— [2]3 cos“8 cos(cQ)./2) + §J s cos Gf(QL)] (aéa_d - ada_é)} (4.4)

f(@l) is defined in Eq. (2.40). We now diagonalize H, by a Bogliubov transforma-

tion, giving the dispersion relation:

E¥Q)= [4Js (1 — sin’6 COS(CQZ/Q)) +J's (6 - f(@_L) - 3sin20f(Q‘L))]2
— [4]3 cos?d cos(cQ./2) + 3J'scos® f((:?‘l)}2 (4.5)

Defining EO(Q) to be the zero field energy:

EXQ) = [47s + J's (6 + £(QL))] — [47s cos(cQ./2) +37's f(G.)]’

this can be conveniently rewritten as:
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) + ¢(Q)s?sin?6 (4.6)

Q1

E(Q) = VEX(

where

o(Q)=32J? (cos2(cQZ/2) - cos(cQz/Q)) +8JJ' (SCOS(CQZ/Z) F(QL)—3f(QL) — 6cos(cQz/2)>

+12J72 (f(@L)* - 3£(Q1))

Taking into account the rotating reference frame implicit in the definition of the a;’s,

we find a single branch of magnons with y-polarization and two with zz-polarization:

E,(Q)=E(Q) (4.8)
E..:(Q)=E(Q + Qo) (4.9)

Note that, in zero field, Eo(@) vanishes at C_j = 0 and also at the twelve corners of
the paramagnetic Brillouin zone. (See Figure 3.) Consequently, E, and E,.. each
vanish at one inequivalent wave-vector in the antiferromagnetic zone. These are
the three Goldstone modes corresponding to the complete breaking of rotational
symmetry. E, and E,,_ vanish in zero field at (Q,,Q2,Q3) = (1/3,1/3,1), the
ordering wave-vector. [See figures 6a and 8.] At non-zero field, E(Q) only vanishes
at Q = 0 since ¢(Q) vanishes at @ = 0 but not at the corners of the parmagnetic
zone. Thus only E.,_ vanishes at the ordering wave-vector. This corresponds to
the fact that, classically, rotations of the canted spin configuration in the zz-plane
costs zero energy but any rotation involving a change in the y-components of the

—

spins costs energy. In fact, ¢(Q) is relatively small, of O(J'J) whenever @, = 0.
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Consequently the change in the energies of the zz modes for fields less than 67 in
CsNiCl; is negligible for all wave-vectors considered in this paper. Only the y-mode
is significantly effected by a 67T field, and that effect is itself rather small except
near the ordering wave-vector. The y-mode dispersion relation at fields of 0 and 67
is shown in Figure 13. We do not show the zz-dispersion relation at 67" because,
to the naked eye, it is indistinguishible from the zero field result in Figure 8.

Note that this field-dependence, predicted by spin-wave theory, is completely
different than that which occurs in the disordered phase. In this case, for the field
applied along the y-axis, the y-mode, which has §¥ = 0 is completely unaffected by
the field and the zrz-modes, which have §Y = +1 have a Zeeman splitting +gugh.

Let us now consider the experimental field dependence at (0,0,1) , (.1,.1,1)
and (.39,.39,1) shown by the circles in Figures 14-19. Note that the y-mode is
quite weakly affected by the field, and its field-dependence is quite well-predicted
by conventional spin-wave theory. However, the rz-mode shows a stronger field-
dependence than the y-mode and is not at all described by conventional spin-wave
theory which predicts essentially field-independent frequencies. Remarkably, the
experimental behavior is much better fit by the disordered phase behavior than by
spin-wave theory, despite the fact that the system is in the ordered phase. Since
the Landau-Ginsburg model interpolates smoothly between spin-wave theory and
the disordered phase behavior, we might expect it to give a good description of this
behavior.

We now consider magnetic field-dependence in the Landau-Ginsburg model. The

Lagrangian is obtained from Eq. (2.3) by the replacement:

B¢/t — 0¢/0t + gugh x & (4.10)
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We must first recalculate < q_ﬁ' > in the presence of the field. Assuming a uni-
form value of ¢ on each sub-lattice of chains, we obtain the potential energy per

antiferromagnetic unit cell:

(guph X ;)

| 4 (47061 G+ G- by + G5 ]

A’ 2 74
V= Z 2—v¢i + (A/4)¢; —

1=1

(4.11)

Choosing the magnetic field to lie along the y-axis, we see that the minimizing
configuration for the g;i’s is still the 27/3 structure in the zz-plane, but with a
different magnitude of gg This might seem to contradict the classical result discussed
above which involved a canting of the spins in the y-direction. However, there is
no contradiction because this canting is uniform along the chains. Thus it does not

show up in 5, the staggered magnetization but only in
I=(1/v)¢ x (8¢/0t + guph x ¢) = (gup/v) < ¢ > h (4.12)
Assuming the 27 /3 structure, the potential energy per chain per unit length becomes:

V — {[A% — (guph)?]/2v — 12J's/c}¢? + Agp* /4 (4.13)

Note that the applied field decreases the effective A? and favours the ordered phase.

The sub-lattice magnetization is given by:

6% = [(gush)® + 24J'sv/c — A/ v (4.14)

This sensitive dependence of the sub-lattice magnetization on external field leads

to a strong field-dependence of magnon energies.
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To calculate the dispersion relation, we introduce the same rotating co-ordinate
system and modes as in Eqgs. (2.33,2.34) and expand the Lagrangian to quadratic
order. The terms quadratic in the y-mode, ¢, are exactly the same as previously,
Eq. (2.35), except that the value of < ¢ > has changed, now being given by Eq.
(4.14). On the other hand, the terms quadratic in transverse and longitudinal zz-
modes, ¢; and ¢, are the same as previously, Eq. (2.37) (expressed in terms of the

new value of < ¢ >) plus the additional terms:

B = Z [Q#Bh <3¢1i 6¢Li¢li) n (gush)*(61; + 63,) (4.15)

Ty o E T o 2
At this point we Fourier transform with respect to space and time. The energy of

the y-mode is given by:

Ey(Q. —27/¢,31)* = (vQ.)* + (87'vs/0)[3 + 2f(Q )] + (9ush)* (4.16)

This is the same result as obtained from conventional spin-wave theory, Eq.(4.6),
for small @, — 27/c and J'. The agreement with experiment, shown in Figures
14-16, 1s quite good. The classical equations of motion mix the transverse and
longitudinal zz-modes as before. The classical frequencies are now given by the

vanishing determinant condition:
~E? +02Q% 4+ 8J'sv/(3 — f)c —~2iguphE — 8/3iJ'svf/c B
2iguphE + 8V3iJ'svf/c —E*+v2Q% 4 8J'sv(3 = f)/c+ A2 + 2(gugh)? |
(4.17)

This gives a quartic equation in E with four real solutions of both signs. Since

—

f(—Q]_) — —f(QZ_), the classical solutions at wave-vector —() are —1 times the
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solutions at wave-vector C} At the quantum mechanical level, it can be seen that
the magnon energies are given by the absolute values of all four classical frequencies,
at each wave-vector. The doubling of the number of solutions occurs because the
modes at C} and —C} are mixed. The same wave-vector shift occurs, due to the
rotating reference frame as at zero field. Thus there is a single y-mode and, in
general, eight zz-modes given by the absolute value of the four solutions of Eq.
(4.17) shifted in wave-vector by +0,, defined in Eq. (2.28). The zz-frequencies
are quite strongly field dependent, due to the field-dependence of < ¢ >, unlike in
conventional spin-wave theory where the field dependence of rz-modes is minute.
The field dependence at wave-vector (0,0,1) of the zz-modes is shown in Figure
17. There are only four independent zz branches at this wave-vector. They display
behavior reminiscent of Zeeman splitting, as expected, and as observed experi-
mentally. There is some experimental evidence that the single zero-field zz peak is
actually split into two with frequencies of about .42T H 2 and .58T Hz. However, due
to the low beam intensity in this polarized inelastic neutron scattering experiment,
the apparent double peak structure may not be statistically significant. [See Figure
3a of Ref. (8)]. Higher-intensity experiments are needed to resolve this issue. If
this splitting is really present, it is probably a result of crystal-field anistropy. Such
anistropy can be included in the Landau-Ginsburg model. We expect it to split the
upper zero field zz peak into two components. [It also mixes zz and y modes.] We
also show the experimental results and theoretical predictions for zz-polarization
at wave-vectors (.1,.1,1) and (.39,.39,1), in Figures 18 and 19. The non-zero field-
dependence of zz-polarized branches disagrees badly with conventional spin-wave
theory which predicts an essentially field-independent spectrum given in Figure 8.
It is more difficult to say how well it agrees with the Landau-Ginsburg model be-

cause we have not yet calculated the intensity or width of the branches at finite
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field and because of the low intensity and resolution of the experiments. At (0,0, 1)
and (.1,.1,1) we expect that lower branches to be of very low intensity at small
fields. The Zeeman-like behavior of the upper branches is in at least rough agree-
ment with experiment. Note that at (.39,.39,1), near the ordering wave-vector,
the lowest, Goldstone, zz -branch is essentially field-independent, whereas the next

lowest branch is split into two by the field.

V. CONCLUSIONS

We may summarize the agreement between theory and experiment as follows.
In CsNiCls, the y-polarized spin-wave spectrum is in good agreement with both
theories, which make essentially the same prediction. The zz-polarized spin-wave
spectrum disagrees badly with conventional spin-wave theory. In particular we have
identified two qualitative features which are missed by this theory: the large ratio
of frequencies of the upper mode at (0,0,1) and (1/3,1/3,1) and the strong field-
dependence. It is more difficult to estimate the agreement between the Landau-
Ginsburg model and experiment for zz-polarized modes. Certain qualitative fea-
tures are well-explained: the existence of a mode near (0,0,1) which is nearly
degenerate with the y-mode and about 27 times higher than the upper mode
at (1/3,1/3,1); strong field-dependence which is Zeeman-like near (0,0,1). The
most serious discrepency is probably the none-observation, near (1/3,1/3,1), of
zz-branch number 2, shown in Figure 6b, predicted at a frequency of .28T Hz and
an intensity of about 1/3 that of branch number 3 at .18THz. High intensity and
resolution experiments have so far failed to discover this mode.'* However, we can
argue with some confidence that it must be there since it is the continuation of
the upper branch which is observed near (0,0,1). It seems quite likely that its en-

ergy is renormalized downward so that it cannot be resolved from branch 3, near
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(1/3,1/3,1). This hypothesis could be checked by measuring intensities. Another
fact to keep in mind is that the upper branches are in general of finite width. These
widths have so far not been calculated; in particular we do not know their wave-
vector dependences. Possibly the second branch becomes unobservably broad near
(1/3,1/3,1).

The number of so far unobserved modes becomes much higher at finite field. Thus
higher intensity and resolution finite-field experiments may provide a more definitive
test of the Landau-Ginsburg model.

As we have emphasized, the spin-wave spectrum of the Landau-Ginsburg model
goes over smoothly from the ordered to disordered phase (ignoring fluctuation effects
which drive the transition first-order for a stacked triangular lattice.) Thus certain
features of the experimental data, taken in the ordered phase, which are reminiscent
of the behavior of the disordered phase, are explained naturally by the Landau-
Ginsburg model. These features include the fact that the zz-modes are nearly
degenerate with the y-mode near (0,0, 1) and the fact that these three modes exhibit
a Zeeman-like fleld-dependence. These features are approximately reproduced by
the Landau-Ginsburg model with the choice of parameters we have made. There
1s some indication that CsNiCl; is exhibiting behavior near (0,0,1) which is even
more like the disordered phase than that of the Landau-Ginsburg model with these
parameters. It is quite possible that higher-order corrections to the model might
reproduce this; ie. these might give an effective Ay which depends on wave-vector
and might by smaller near (0,0,1) than near the ordering wave-vector.

A major experimental issue which needs to be resolved is whether the zz-mode at
(0,0,1) is split into two components even in zero field. The experimental situation

presently seems ambiguous. If so, this presumably represents an effect of the Ising-

anisotropy.
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The situation is RbNiCl; remains more ambiguous pendipg polarized neutron-
scattering experiments. We do not know whether a portion of branch 2 lies inside
the peak observed at (0,0,1). It is possible that this peak contains only the y-
mode and that branches 1 and 2 are at higher energy and may be too broad to be
observable.

Another type of theoretical prediction that we have made involves the dependence
on interchain coupling. We have predicted a first-order transition for a stacked
triangular lattice but second-order for a tetragonal lattice. If a material could
be found with an interchain to intrachain coupling ratio very close to the critical
value, then it might be possible to study the transition by applying pressure to the
sample. One could search for such a material by looking for ordered systems with
very small antiferromagnetic moments. We note that, in the triangular case where
the transition is first order, the moment would decrease, upon decreasing the ratio,
to some limiting non-zero value, before dropping discontinuously to zero. Since this
limiting value is not known, it is difficult to estimate how close CsNiCl; is to the
phase transition.

We would like to thank Dan Arovas, Bill Buyers, Matthew Fisher, K. Kakurai,
Lon Rosen, Michael Steiner and Zin Tun for useful questions, discussions and sug-

gestions.

APPENDIX A: FORM OF THE LAGRANGIAN

An alternative Lagrangian was proposed recently® for quasi-one-dimensional an-
tiferromagnets which also contains longitudinal fluctuations, but gives a rather dif-
ferent spin-wave spectrum. The purpose of this appendix is to compare the two
approaches and justify the form of the Lagrangian used here.

The path-integral formulation of a single quantum spin is written in terms of
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a unit vector, $(¢) with an action § = sA[S(t)] — [ dtH[sS(t)], where A is the
oriented area swept out on the unit sphere by the closed path S'(t), and H(SS’) is
the Hamiltonian.!® [See Figure 20.] There is a 47 ambiguity in the choice of area, A,
but the weight, ¢ in the path-integral is single-valued since s must be an integer or
half-integer. The equations of motion are derived by varying the action with respect

to an infinitesimal change in the path S(t) — S(t) + 65(t). Using [See Figure 21.]:

§A = /dtas“ [$ x 85 /081] (A1)

we obtain the Euler-Lagrange equation:

s0S(t))0t = —S(t) x OH/DS(t) (A2)

For a lattice of coupled quantum spins with Hamiltonian of the general form:

H = SZZ J,'J‘S,‘ . 5]' (AB)

1,

this gives the first order classical equation:

Bgi/at = —S Z J,']'g,' X S'j (A4)
J

Note that this is the classical torque equation. The continuum limit is obtained,
for an antiferromagnet, by keeping only long-wavelength fluctuations of the uniform
and staggered magnetisation density, I'and sd_; respectively. ie. we approximate:

—

S8 = &) + (—1)'sg(&7) (A5)
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where we obtain a plus or minus sign for the two sub-lattices, and we have again set
the lattice spacing to one. For a stacked triangular lattice ¢ labels distance along
the chain. Note that fdxﬁi") is the total conserved spin and 55 is the Néel order
parameter. In the large-s limit, we expect I'and ¢ to both be of O(1). Assuming

that | and gg vary slowly, the unit-vector constraint on S;, becomes:
P=1-1Js~1

$-1=0 (6)

We substitute this form, Equation (A5) into the action, assuming that both fields,
I and $ vary slowly over one lattice spacing. Noting that A[S’(t)} is odd under
S(t) — —5(t), we see that the leading term cancels between neighboring sites.

There is a correction, of O(1/s) which couples ['and q;:

A = (1/5)/th- [ x 08/04] (AT)

In general, it is also important to keep the the other correction which is a triple
product of ¢, Bq_ﬁ‘/@t and ad_)'/ax. This gives the topological term in the non-linear
o-model in (1 + 1) dimensions. However, for integer-s this term has no effect. The

one-dimensional Heisenberg Hamiltonian is also rewritten in terms of I and ¢:
S 27525+ §; — ¢ / dz[—1 + (1/2)(dé/dz)? + 21/ s?]

= / dz[(g/2) + (1/29)(d$/dz)2] + constant (8)

with v = 4Js and g = 2/s. Including the time-derivitive term, we obtain the

Lagrangian in the form:
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L= [doll(§x 86/0t) ~ (va/2) ~ (v/29)(06/02)’] (A9)

Note that written in this form, the Lagrangian contains only a first time-derivitive.
If we replace d_; by < q? > in the time-derivitive term then it becomes identical
to the one used in Ref. (7) in the long wavelength approximation. To obtain the
second-order time-derivitive term of Eq. (2.3) we simply eliminate l_: using the

Euler-Lagrange equation:

vgl = ¢ x 040t (A10)

This is equivalent to integrating out I'in the path-integral where it appear quadrat-

ically. This gives a new term in L; of the form:

Lkinetic = (1/2vg)(¢_>‘ X 6(;/6'02 (All)

Finally, using the large-s result |<;_5‘|2 = 1, we may replace

(6 x 0¢/0t)* — (04/0t)? (A12)

Thus we see that the first and second-order time-derivitive forms of the Lagrangian
are actually equivalent. The difference between the results of the present approach,
and those of Ref. (8) lies in the passage from hard to soft spins. The approach
that we have taken consists of beginning with the Lagrangian in second-order form,
Eq. (2.3) and then relaxing the constraint of the field ¢ and introducing a phe-

nomological potential energy with quadratic and quartic terms. The approach of
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Ref. (8) amounts to beginning with the Lagrangian in first order form, Eq. (A9)
and then following the same steps (the constraint I ¢ =0 also being relaxed). We
may still eliminate I after removing the constraint. However, the kinetic term is
now (1/2vg)(q_§ x O¢/0t)? rather than (1/2v9)(84/8t)?. These two forms are no
longer equivalent with the constraint fernoved. If we replace gg by < 5 > 1n the
kinetic term then we obtain the term that is effectively used in Reference (8). This
alternative form of the Lagrangian contains, to quadratic order, no time derivitives
of the longitudinal component of 4_; Consequently the Euler-Lagrange equation
8L/6é;, = 0 becomes a constraint equation. For a standard Néel state it simply
imposes the constraint ¢; = 0, but in the triangular lattice case where the La-
grangian contains cross-terms between longitudinal and transverse components of
¢ the constraint determines the longitudinal component of ¢ to be proportional
to the transverse part. Thus the number of excitations is not increased relative
to ordinary spin-wave theory; there is no extra branch. However the mixing in of
the longitudinal component with the transverse ones can substantially modify the
dispersion relation and intensities.

Which of these approaches is correct? We present arguments here in favour of the
approach used in this paper. First of all; as discussed in Section 3, the passage from
hard-spin to soft-spin models can be accomplished using the large-n limit of the
O(n) non-linear o-model. Using this approach the kinetic energy has the (85/815)2

form. Indeed, a Lagrangian density of the form:

L = (1/20)(¢ x 04/0t)* — (v/2)(8$/dz)* + ... (A13)

is not Lorentz invariant. The spin-wave velocity is no longer v but is rather given

by v/ < ¢ >. Thus as we decrease the interchain coupling the velocity increases
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and would actually diverge at the critical point in the Néel case. The disordered
phase would not contain harmonic magnon excitations. If we begin with a Lorentz-
invariant hard-spin long-wavelength theory, such as the non-linear o-model then we
should expect that whatever renormalization processes produce an effective soft-spin
model should preserve the Lorentz invariance, and hence not change the spin-wave
velocity. Including small breaking of Lorentz-invariance some renormalization of
the spin-wave velocity would occur but there is no reason to expect it to diverge at
the critical point. A possible solution to this problem might be to also modify the

spatial derivitive term, taking a Lagrangian density of the form:

L= (1/20)(¢ x 8¢/0t)2 — (v/2)($ x 8/0x)? + ... (A14)

This 1s now Lorentz-invariant and the spin-wave velocity no longer depends on
< ¢ >. However the disordered phase would again not contain harmonic magnons.
Furthermore, there is no reason why the (6$/6x)2 term, present in the hard-spin
Lagrangian, should be excluded from the soft-spin Lagrangian.

From a more general perspective, (&;_5‘/6:5)2 and (65/&)2 are a couple of perfectly
good terms which respect all the symmetries of the problem and there is no rea-
son to exclude them from the Lagrangian. The same is true of (¢ x 05/602 and
(gz? X 65/635)2. In general we should include all four terms (together with quartic
interchain couplings) in the effective Lagrangian. The quartic terms were omitted
In our treatment in the usual spirit of Landau-Ginsburg theory. If we are sufficiently
close to the critical point so that < ¢ > is small then they are unimportant. Fur-
ther from the critical point they could be included and would modify the spin-wave
spectrum. (Indeed by including them with several additional free parameters we

could presumably get a better fit to the experimental data.) However, they do not
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change the qualitative picture presented here. In particular, as long as the (0(}?/61‘)2
term is present in the Lagrangian the extra branch will be present.

Apart from these theoretical arguments, there is an experimental reason to prefer
the Lagrangian used here. As discussed above, the main qualitative feature which
distinguishes the present approach from the alternative of Ref. (8) and from con-
ventional spin-wave theory is the presence of an additional excitation branch in the
paramagnetic zone. We argued in Section 2 that the experimental evidence for this
branch in CsNiCl; is very compelling. The presence of an zz-polarized mode at
(0,0,1) with a energy 23 times higher than that of the upper mode at (1/3,1/3,1)
implies the existence of a second zz-polarized branch in the paramagnetic zone
since with a single branch these two modes would have to be degenerate. In both
conventional spin-wave theory and in the model of Ref. (8) this degeneracy cannot
be lifted by higher-order corrections due to the symmetry argument spelled out in
Section 2. We note that in Ref. (8) the theory is compared only to unpolarized
data. The agreement then looks very good since the extra zz branch 1s masked
by the y-polarized branch near (0,0,1). As the above discussion indicates, it is
crucial to compare the theory with the polarized neutron-scattering experiments.
The present theory gives an extra zz-polarized branch, albeit with an energy which
is about 10% higher than experiment near (0,0,1). The alternative of Ref. (8) does
not contain this experimental feature at all.

In conclusion both theoretical and experimental arguments favor the Lagrangian

used here with a (85/81?)2 term, or perhaps better still, a combination of both types

of terms.
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FIG. 1. Orientation of spin vectors on the six inequivalent sub-lattices (See Figure 2)
for the stacked triangular lattice antiferromagnet.

FIG. 2. Labelling of sites and lattice vectors in the basal plane.

FIG. 3. The reciprocal lattice, projected onto the basal plane, showing the paramagnetic
Brillouin zone, the wave-vector correponding to (7,7, 1) and the reflection symmetry: n —

1—-mn.

FIG. 4. Unit vectors in spin-space.

FIG. 5. A longitudinal fluctuation on sub-lattice A is not orthogonal to a transverse
fluctuation on neighboring sub-lattice B.

FIG. 6. Dispersion relation in CsNiCly compared to Landau-Ginsburg model: a) y-
polarization, b) zz-polarization. Thick, thin and dotted lines represent strong (I > .64),
medium (.13 < I < .64) or weak (/ < .13) relative intensity, where the intensity is normal-
ized to one for the y-mode at (0,0,1). (See Figure 7.)

FIG. 7. Intensites from Landau-Ginsburg model for CsNiCl3. Curves 1,2,3 and 4 refer
to zz-polarized modes noted in Figure 6b.

FIG. 8. Dispersion relation in CsNiClz with zz-polarization compared to conventional
spin-wave theory.

FIG. 9. Dispersion relation in RbNiCl; compared to Landau-Ginsburg model. Thick,
thin and dotted lines represent strong (I > .64), medium (.13 < I < .64) or weak (I < .13)
relative intensity, where the intensity is normalized to one for the y-mode at (0,0, 1). (See
Figure 10.)
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FIG. 10. Intensites in Landau-Ginsburg model. Curves 1,2,3 and 4 refer to zz-polarized
modes noted in Figure 9.

FIG. 11. Renormalization group flow for O(3) — O(2) universality class in four dimen-
sions.

FIG. 12. Renormalization group flow for triangular lattice antiferromagnets in four di-
mensions.

FIG. 13. Dispersion relation of y-polarized mode in a magnetic field of A = 0 and A = 67,
according to spin-wave theory and Landau-Ginsburg model.

FIG. 14. Field dependence of y-polarized spin-wave frequencies at wave-vector (0,0, 1)
in CsNiCls, compared to Landau-Ginsburg model.

FIG. 15. Field dependence of y-polarized spin-wave frequencies at wave-vector (.1,.1,1)
in CsNiCls, compared to Landau-Ginsburg model.

FIG. 16. Field dependence of y-polarized spin-wave frequencies at wave-vector (.39,.39, 1)
in CsNiCls, compared to Landau-Ginsburg model.

FIG.17. Field dependence of xz-spin-wave frequencies at wave-vector (0,0,1) in CsNiCls,
compared to Landau-Ginsburg model.

FIG.18. Field dependence of xz-spin-wave frequencies at wave-vector (.1,.1,1) in CsNiCls,
compared to Landau-Ginsburg model.

FIG. 19. Field dependence of xz-spin-wave frequencies at wave-vector (.39,.39,1) in
CsNiCls, compared to Landau-Ginsburg model.
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FIG. 20. Classical path traced out on the unit sphere by time-evolution of spin variable.

FIG. 21. The change in the area resulting from an infinitesimal deformation of the path.
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Field-dependence of spin-waves:
CsNiCI3 data vs. Landau-Ginsburg Model
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Field-dependence of spin-wave frequencies:
CsNiCI3 data vs. Landau-Ginsburg Model
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Field-dependence of spin-wave frequency:
CsNiCI3 data vs. Landau-Ginsburg Model
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Field-dependence of spin-wave frequency:
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Field-dependence of spin-wave frequency:
CsNiCI3 data vs. Landau-Ginsburg Model
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