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8 R ABSTRACT
' s §="QQD predictions for the inclusive production of W and Z bosons with fixed
\\ e bbamoveyse momentum Q7 in pp collisions at the Tevatron are reviewed in the light
Li-‘ _ of recengly completed calculations of the full O(a?) QCD radiative corrections.
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» 1,,?,1.1359 DUCTION -
> o Th dard Model makes rather precise predxctxons for the production of W and Z

ST

boé,'ons with {nvariant mass-squared Q% = M3, or M% as a function of transverse momentum

= ~Q# 2t Tevation energies, /S = 2 TeV. The total cross sections are ow R 15nbandoz = 5
| o ,L_;}bﬁ The_typjcal momentum fractions of the annihilating partons in the underlying Drell-
- .. Yan meckanfsm are of order z & /7 = /(Q?/S) ~ 0.04. At these z values, gluons
....contribute.zaughly 30% of the events at large Q7 via the Compton process ¢G — W + X:
this is a dramatic qualitative difference from CERN Collider energies at which the dominant
subprocess is ¢§ annihilation. Thus the large Q7 distribution is a potentially useful probe
of the gluon density in the proton. Since large values of Q1 probe short distances, the Qr
distribution is a good place to look for new physics. Possible signatures include anomalously
large numbers of events with lepton + jet(s) + missing transverse energy (F7) in the W
distribution, and monojets or jets + Er in the Z distribution.

Perturbative QCD may be used to obtain precise testable predictions [1,2] for do/dQr
in the range 20 GeV < Q7 < 250-300 GeV: the upper limit values are determined by Tevatron
luminosity, and the lower limit is roughly the momentum at which la.rge infrared logarithms
of Q%/Q% begin to spoil the convergence of the perturbation series. In the range 2 GeV
SQrs 20 GeV these infrared logarithms must be summed to all orders in o, to yield a
“Sudakov” form factor which causes the distribution to peak at =~ 10 GeV. Theory seems
to indicate [3] that this Sudakov region is cleanly separated from the region below ~ 2 GeV
where perturbatively intractable parton intrinsic momentum effects dominate.

2. CHOOSING RENORMALIZATION AND FACTORIZATION SCALES

The Lagrangian of QCD depends in principle on only one parameter A = 0.2 GeV
if quark masses and the CP-violating § parameter can be ignored in making predictions
at high energies. In practise, the wave function of the proton cannot be calculated with
sufficient accuracy to allow predictions to be made at high energies, and one must rely on
the QCD-improved parton model formula

dQT Z/dz,dzb f,,(z,,,Mz)fb(xb,Mz)dQ2 (aa(ﬂz)sﬂz’Mz) ’ (1)

where ot is the parton level distribution for partons with momentum fractions z, s from
which ultraviolet and collinear infrared divergences have been subtracted. This formula
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depends on the physical parameter A in an explicitly calculable way through the effective
coupling \

a,(u?) 6 _ Bylnln(4y)

2r " (33-2n;)In(47) B3 ln’(47)

as well as implicitly in an incalculable way through the parton densities f,(z,M?). The
renormalization scale p is a remnant of the process of discarding ultraviolet divergent con-
tributions “at scale u” according to some arbitrary prescription (taken to be MS renormal-
ization in what follows). The factorization scale M is likewise a remnant of the process
of discarding collinear singularities according to some arbitrary prescription (taken to be
MS factorization in what follows). In principle, the parameters u and M are unphysical,
unrelated to one another, and not specified by the theory in terms of any measured energy

scale E, (which can for example be chosen to be Qr, /@2, \/Q? + QT§ or JE) Indeed,
proofs of renormalizability, and factorization theorems imply that"

0 do 9 do ’
9 (_do =0, M2 (2 =0. 3
ﬂa/“ (dQT)exact oM (dQT)ex“‘ ( )

In practise, this exact scale independence is spoiled if the perturbation series in a, is
truncated at any finite order. This unfortunate fact is signalled by the appearance in
o°® of powers of In(u?/E?) and In(M?/E?) which are not precisely compensated by the u
dependence of a, and the M dependence of f(z,M?). While the potentially destabilizing
logarithms can be made small by choosing

) (2)

2 M2

7
(= =1 M= — =1, 4
7 ’ E? @

the theory makes absolutely no more precise determination of {, ar. This spurious scale
dependence is of course precisely cancelled by higher (uncalculated) orders of perturbation
theory. The logically optimal (but obviously unworkable) solution would be to choose scales
which minimize the remainder of the perturbation series. Various strategies for guessing
the unknown remainder have been suggested. Two such strategies will be discussed here.
The first is (a simplified version of) Stevenson’s “Principle of Minimal Sensitivity” [4] in
which the unphysical scales are fixed at a local extremum or saddle point of do/dQ7 in the
variables (:

sp C o9 (_@_) - 9 (_‘_l"_) -
“'MFQT). C“aCﬂ dQT NLQ—O, CMaCM dQT NLO—O, (5)

where SP stands for saddle point and the subscript NLO signifies that the parton level
cross section is computed through next-to-leading order in perturbation theory and the
parton densities have likewise been evolved using the next-to-leading order Altarelli-Parisi
equations. Two remarks may be made concerning this choice of scales: First, there is the
question of the existence and uniqueness of a saddle point. The answer to this question is
not known, but in practise, there does usually seem to exist a fairly well defined saddle point
at physically reasonable values of (. Second, even if a unique saddle point does exist, there is
no guarantee that using the saddle point scales yields the best estimate of the uncalculated
remainder of the series. The NLO cross section at the saddle point has the same derivatives
with respect to { as the exact cross section, but not necessarily the same magnitude. A
second strategy for choosing the unphysical scales { may be called the effective scales (ES)



prescription, which is a simplified version of Grunberg’s “Method of Effective Charges” [5].
One would like to be able to choose the scales such that the NLO approximation is equal in
magnitude to the exact distribution. In the absence of any information about the remainder
of the series, we choose scales such that the leading order (LO) cross section is equal in
magnitude to the cross section computed through next-to-leading order:

do do
ES . = — . 6
¢ua(Qr) (dQT) LO (dQT) NLO ©
This equation determines a line of possible effective scale choices in the {, — {ar plane.

The choice of scales was studied by Bawa and Stirling [6] for the non-singlet (i.e., valence

quark) contributions to the Qr distribution at V'S = 630 GeV. They chose E, = Qr
and set {pr = (,, and found that the one dimensional analogs of Eqs. 5 and 6 yielded
(SP ~ (ES ~ 0.16 for Q1 > 15 GeV. The situation at v/§ = 1.8 TeV, where gluon initiated
contributions cannot be neglected is more complicated. It was found in Refs. [1,2] that
if {ar and {, were set equal, then the one dimensional version of Eq. 5 had no physically
acceptable solution for Q7 $80 GeV. We have since studied this problem [7] by allowing
the two scales to vary independently of one another, as has been done for prompt photon
production by Aurenche et al., [8]. We find that there is a well defined saddle point in the
{m — (u plane. Results of this analysis for W production and using the parton densities of
Martin, Roberts and Stirling are shown in Fig. 1. The saddle point scales are seen to move
away from the diagonal {ar = {,, line for lower values of Q7. It is interesting that there is
an apparent clustering of ES choices at {ar = {, = .1, and that the SP scales move toward
this region for large Q.

What is the correct choice of scales? Fig. 2 illustrates what we believe is the answer
to this question. In this figure are plotted the leading order (LO) and the full (NLO)
distributions evaluated at the naive choice of scales {ps = (, = 1, and at the saddle
point scales. It is apparent that the LO distribution is quite sensitive to variations in
scale. Inclusion of the radiative corrections considerably decreases this sensitivity and makes
the choice of scales irrelevant! If experimental errors were to become smaller than the
difference between the NLO curves in Fig. 2, the only rigorous way to improve the theoretical .
prediction would be to compute the O(a3) radiative corrections, thus further narrowing the
difference and rendering a choice of scales unnecessary at this increased resolution.

3. OTHER SOURCES OF THEORETICAL UNCERTAINTY

The main emphasis of this review has been on renormalization and factorization scale
ambiguities. In this section we briefly discuss two important additional theoretical issues.

Parton densities

The most significant contribution to the theoretical uncertainty at large Qr arises
from different choices of input parton densities. For consistency, next-to-leading order
parton density parametrizations should be used in conjunction with the next-to-leading
parton level cross sections of Refs. 1,2. Ref. 1 presents results using the parametrizations
of Martin, Roberts and Stirling [9]. Cross sections derived using the MRSB and MRSE
sets typically differ from one another by less than 20% for all Qr > 20 GeV. Refs. 2
present results using the parametrizations of Diemoz et al. The different DFLM sets yield
distributions that agree to within +£15%. Taking both analyses into account, QCD with 5
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Fig. 2. Including O(a?) contributions (NLO) makes a choice of scales unnecessary.



light flavors yields absolute predictions for the @z distribution with @ > 20 GeV with a -
conservative uncertainty of no more than about 20-25%.

Sudakov logarithms

The predictions of QCD for Q7 520 GeV are less certain on account of the occurrence
in the perturbation series of terms of the type a? In™(Q?/Q%)/Q%, m < 2n — 1. These
terms arise from gluon radiation off the initial state partons. They tend to suppress the
emission of a W with very small @r, and in fact drive the cross section negative. This un-
physical result must be dealt with by summing these logarithms to all orders. It has been
shown, principally by Collins and Soper, that this can be done consistently [10]. Various
perturbative coefficients required for this analysis have been computed through O(a?) for
the non-singlet distribution [11], and a prescription for matching the exponentiated loga-
rithms at small Q7 with the perturbative large @ tail has been given [3]. The principal
result of a rather involved analysis is that the distribution should peak at Q1 =~ 10 GeV.
However, a full analysis including gluon initiated events has not been performed.

4. CONCLUSIONS

QCD makes firm and reliable predictions for the W and Z transverse momentum
distributions at large @r. Any deviation from these predictions would constitute a firm
signal for new physics beyond the Standard Model. The inclusion of the full O(a?) QCD
radiative corrections makes the choice of unphysical renormalization and factorization scales
almost irrelevant. Accurate experimental measurement of the Q1 distribution can provide
a means of probing the quark and especially the gluon densities in the proton. Further
theoretical work needs to be done on summing Sudakov logarithms in the region of small
Qr 520 GeV.
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