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A bstract 

The renormalizat ion-group improved effective potential for an arbitrary renormalizable 

massless gauge theory in curved spacet ime is found, thus generalizing Coleman-Weinberg's 

approach corresponding to flat space. Some explicit examples are considered, among them: 

A<p4 theory, scalar electrodynamics, the asymptotically-free SU(2) gauge model, and t he 

SU(5) GUT t heory. The possibi lity of curvature-induced phase transitions is analyzed. It 

is shown that such a phase transition may take place in a SU(5) inflationary universe. The 

inclus,ion of quantum gravity effects is briefly discussed. 

1E-mail address: eli @ ebubecml.bitnet 
20n leave from Tornsk Pedagogical Institute, 634041 Tomsk, Russia. E-mail address: odintsov @ 

theo.phys.sci.hiroshima-u.ac.jp 

1. Introduction. It is well known in modern gauge theories that symmetry breakiTlg and/or 

restoration can be caused by some external conditions, like temperature, external electric 

and magnetic fields, finite density, etc. Moreover, these changes in the vacuum structure 

(i.e., symmetry breaking and restoration) may be described as SOn' 2 phase transition (using 

the effective potential formalism). Such phase transitions are extremely important in early 

universe cosmology. Specifically, some models of inflationary universe (see [1 ,2J for a review 

and list of references) are based on the first-order phase transitions which take place during 

the reheating of the universe in the grand unification epoch. 

However, it is clear that curved spacetime effects in the early universe (the GUT epoch) 

cannot be considered at all to be negligibly small. Therefore, GUTs corresponding to the 

very early universe ought to be treated as quantum field theories in curved spacetime (for a 

general review see [3]). 

Unfortunately, at present we do not have a clear prescription how to combine quantum 

field theory at non-zero temperature and quantum field theory in curved spacetime (external 

temperature and external gravi tational field). In such a situation, it seems reasonable to 

investigate in dept h the t wo topics involved: field theory in curved space and field theory at 

non-zero temperature, always wi th the aim of combining them, later on. We will concentrate 

on t he fi rst topic here. 

In t he present paper, we shall study t he effective potential of massless gauge theories in 

curved spacetime. We will work in the linear curvature approximation Lecause, as it has been 

argued, at least linear curvature terms should be taken into account in the discussion of the 

effective potential corresponding to GUTs in the early universe. Also, quantum correction s 

with account t o gravity effects should be even more important in a chaotic inflationary 

model[1J . 

By generalizing the Coleman-Weinberg approach [4J (for a review, see [5]) corresponding 

to the case of the effective potent ial in flat spacetime, at a first instance, we find the renor

malization group (RG) improved effective potential in curved space. Hence, we extend the 

one-loop effective potential in curved spacetime, taking into account all logarithmic correc

tions. (The one-loop effective potential in curved spacetime has been calculated previously 

for the cases of scalar electrodynamics [6J and arbitrary massless gauge theory [7J . In these 

papers the corresponding curvature-induced phase transitions have been also discussed.) 

We shall here present the explicit form of the RG improved effective potential for A<p4, 

scalar electrodynamics, the SU(2) gauge model , and SU(5) GUT. The possibility of corre

sponding curvature-induced phase transitions will be briefly discussed. 

2. RG improved effect ive potential. Let us consider an arbitrary, renormalizable, 

massless gauge theory including scalars <p, spinors 1/J, and vectors AI" Denote by 9 == (g, A, h) 
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the .,et of all coupling constants of the theory (9 is the Yang-Mills, .\ the scalar, and h the 

Yukawa coupling). The tree level potential reads 

V(O) = a.\c/ - beRcl, 	 (1) 

where a and b are some positive constants, ethe conformal coupling [3], and R the scalar 

curvature. 

The RG equation for the effective potential in curved spacetime has the following form 

[3 ,7]: 

( a 8 8 a a) 	 (2)p ap + f3g 8g + 8 8a + (3e 8e - ,cp 81" V = 0, 

where a is the gauge parameter. This RG equation is standard [4,5J but not for the term 

connected with ~. 

We now split V into V == Vj +V2 == afl(p, 1", p)c,04 - bf2(P, 1", p)Rc,02 , where 11 and 12 are 

some unknown functions and P = {g, (Y, O. We also assume that both Vj and V2 satisfy the 

RG equation (2). (Notice that this is in fact a restriction, because in general only V should 

satisfy (2), and not Vj and Vz separately.) We choose the Landau gauge for the gauge fields, 

so that in the one-loop approximation 8 = 0 in (2) . The other point is that 1"2 » IRI, 

otherwise we cannot mf'.1ningfully expand the effective potential with an accuracy up to 

linear curvature terms. 

With all these considerations in mind, we can now solve the RG equation (2) in the way 

V = a.\(t)f4(t)c,04 - bW)f2(t)Rc,02, 	 (3) 

where I(t) = exp [- f~dt'1'(g(t'),a(t'),e(t'))l, t = !In(c,oZ/p2), g(t) = f%(t), art) = S(t), 

itt) = /3f.(t), g(O) = g, a(O) = a, e(O) = C and (f%, S, /3e/rJ = 1~.,((39' 8, (3e, ,). Notice that 

in the solution of Eq. (2) we have used the following initial conditions: 

Vj(t = 	0) = a.\c,04, Vi(t = 0) = -beRc,02. (4) 

These initial conditions are only slightly different from the ones used in Refs. [4,7], while 

that for VI is the same as in Ref. [5J. The differences here will lead to some differences in 

the non-logarithmic 1"4 and Rc,02 terms. 

In the one-loop approximation (in which we actually work in this paper), Eq. (3) remains 

formally the same, but now with 

I(t) = exp [-l dt', (g(t'), W'))], g(t) = !%(t), t(t) = (3e(t), g(O) = g, ~(O) = e. (5) 

Expression (5) constitutes our main result for the one-loop RG improved potential, and can 

be applied to a variety of gauge theories. 
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Let us now consider some examples. 

(a) .\1"4 theory. In this case, = 0, and (3). and (3e are well known (see for example [3,4]); 
we get from (4)3 

.\1"4 1 [1 ( 1) ( 3.\t ) -1/3]
V = 	 ( 3.\t ) - '2 Rc,02 (; + e - (; 1 - (47r)2 , (6) 

4! 1-- 
(411-)2 

where t = !In(c,o2/p 2). In the limit in which both.\ and.\t are small, our result agrees with 

the previously obtained one-loop potential [6,7J. However, as has been discussed in [4,5] for 

the case of fiat space, Eq. (5) is actually valid for all t for which the potential does not 

diverge (in particular, for any negative value of t). 

(b) Scalar electrodynamics. Using the well-known results [4,6,7J 

3ez(3 	 1 (5 2 2 4) e - ~ (1 \ 3 2) ,= - -.\ -3e .\+ge (3e = -- -A--e 
A 411'2 6 ' 411'2 3 2 ' ,= -1611'2' 

where, is given in the Landau gauge, we obtain 

1V = 	 ~14(t)c,04 L0e2(t) [v'7i9 tan Gv'7i9lne2(t) +0) +19]} 
1 [1 1 ( 2t ) -26/5 (1 )
'2Rc,02j2(t) (;+(~-(;) 1 - 2:11'2 cos2/5 2'v'7i91ne2(t)+0 

cos-2/S GJ7i91n e2 +0)] . 	 (7) 

Here e2(t) = e2 (1 - 2~;2 r\ 0 is an integration constant, which should be chosen such that 

.\(t) =.\ when e2(t) = e2, and I(t) = (1 - 2~2:2 r9/2. It is interesting to notice that for very 

small variations in e2(t) the argument of the tangent and cosinus can change by 211', leading 

to a big difference in .\(t) and W) . 

A few remarks are in order. To compare with Coleman-Weinberg's resul t [4], we consider 

the one-loop non-improved effective potential with the standard proposal .\ ~ e4 . Then one 
can get from (7) 

.\ 3e4c,04 1"2 1 1 cp2
V = _cp4 +--In - - -eRc,02 - --e2Rc,02In-. (8)4! 6411'2 p2 2 (811')2 p2 

Choose now p =< I" >, where < I" > is the vacuum (minimum) configuration. In fiat space 

the equation V'( < I" » = 0 gives the precise connection between .\ and e4. However, in 
curved space this is not the case, and 

V'( < c,o > ) 2 (.\ 3e4 ) ( e2 ) 
< I" > =< I" > (; + 3211'2 - R e+ 3211'2 = O. (9) 

~~-------------------
3Note that the one-loop effective potential for the A~4 theory has been calculated in Refs . [16J for different 

specific background spaces. 
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Hence, we obtain the connection between < <p > and the curvature corresponding to the 

minimum. 

Since we are working in the linear curvature approximation (supposing that the curvature 

correction is small), we may just impose (without much error) the flat space condition 

A/6 = -3e4 /(327r2) by hand. Then, from (9) we get 

e2 
(10)e== - 3211"2' 

and 
3e4<p4 ( <p2 e2 R<p2 ( <p21) ) (11 )V == 647r2 In < <p >2 - 2: - 647r2 In < <p >2 - 1 . 

Eq . (11) constitutes the generalization to curved space of the famous Coleman-Weinberg 

result (Eq. (4 .9) in [4]) given in universal form. Notice that , from (11), we immediately 

obtain the scalar mass which takes into account curvature effects: 

3 4 2 2R2( ) _ V"( ) _ e < <p > _ _e_ (12)m s - < <p > - 87r 2 327r2' 

(c) T he SU(2) gauge model. Let us now consider the SU(2) gauge model of Ref. [9J 

with one multiplet of scalars (<pa, a == 1, 2,3) taken in the adjoint representation of SU(2) 

and one or two multiplets of spinors also .taken in the adjoint representation. The Yukawa 

coupling acts through only one of the spinor mult iplets (see [9J for the precise Lagrangian). 

This theory is asymptotically free for all coupling constants [9] and in the case of only one 

spinor multiplet it is also asymptotically conformal invariant. 

The RG improved effective potential of this theory can be calculated to be 

V = ~<p4f4(i)k g2(i ) _ ~R 2f2(i ) [1 ( 1) ( a2g2t)-(12_Sk>l3-8k,)/a']
41 I 2 r.p 6+ e- -6 1 +-- (13)

(47r)2 , 

( •• )-1where <p2 = <pa<pa , A(t) = kl g2(t), h2(t) = k2l(i), g2(t) = g2 1 + ~ , being the values 
, , ) (6-4k,)/a' (of the numerical constants kl' k2 and a2 given in Ref. [9J, and f(t) = 1 + ~ . 

In the same way one can find the RG improved effective potential in asymptotically free 

GUTs (for a review and a list of references, see [3]). 

(d) The SU(5) GUT. Let us now study the RG improved potential for the SU(5) GUT 

[8J. In flat space this theory has been used for the discussion of inflationary cosmology [1,2J. 

The one-loop potential in the linear curvature approximation has been given in Ref. [7J . 

The tree-level potential has the form 

1 ( 22 1 4 1 2Vtree = 4A1 Tr¢) + 2A2Tr¢ - 2eRTr¢ , (14) 

where Al and A2 are scalar couplings, and for simplicity we suppose that there are no fermions 

in the theory. Even in this case, the system of RG equations for the coupling constants is quite 

complicated and can be solved only numerically. This is why we will just consider the vector 

loop contributions to the ,a-functions. Presumably [5J such approach gives qualitatively the 

same results that would be obtained with the inclusion of scalar couplings. 

We assume that the breaking SU(5) -+ SU(3) x SlJ(2) x U(I ) has taken place. Then 

¢ == <p diag (1,1, 1, -~, -~) and 

Tf 15 (\ ) 4 15 2vtree == - 15AI + 7>.2 <p - --~R<p . (15)
16 4 

Within our approach 

dg(t) _ 5g3(t) ~ [15 (5A 7 A )] == dA(i) == 5625 4(i)
67r2 ' dt 4 1 I + 2 di 1287r2g ,dt 


dW ) 30 ( 1) 2 15g2 

-- W) - - 9 (i), "'f = - -. (16)

dt 167r 2 6 167r2 

Solving Eq. (16) and substituting the result into (5) we get the RG improved effective 

potential: 

_ 3375 ( 2 g2 ) 4 4 15 [ 1 ( 1) ( 5g2t) - 9/8] (17)V - 512 9 - 1 + ~ <p f (t) - 4 6+ e - 6 1 + 37r 2 Rcp2l(t), 

where / (t) = (1 + ¥:J)9/16. 

This finishes our calculation of several RG improved effective potentials corresponding 

to different massless gauge theories in curved spacetime. 

3. Phase transitions. As stated previously, it is very common nowadays to think that 

the very early universe experienced several phase transitions before it could reach its present 

state. It is certainly possible that a phase transition could be induced by the resulting 

(very strong) external gravitational field existing at this epoch [6,7J. We will now discuss 

such possibility by using our simple (but, on the other hand, quite general) RG improved 

effective potential. 

We shall be concerned with first-order phase transitions where the order parameter <p 

experiences a quick change for some critical value, Re , of the curvature. Let us first consider 

the A<p4 theory, in which case we can write 

V _ AX2 
2
1 

EYX 
[1 ( 1) ( 3Alnx)-1/3] 

p.4 - 41 (1 _ 3;2~'x) - 6+ e - 6 1 - 327r2 ' (18) 
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where x = cp2/ li2 , Y = IRI/p2, and ~ = sgn R. The critical parameters, xc, Ye, corresponding 

to the first-order phase transition are found from the conditions 

V(x e, Ye) = 0, BVI = 0, B2V I >0. (19)
Bx 'o,Yo Bx2 'o,Yo 

For the one-loop effective potential the two equations (19) can be solved analytically [7J. 

However, for the RG improved potential they lead to some transcendental equations which 

cannot be solved analytically. For instance, in the case of the >.cp4-theory effective potential 

(18), they a re 

T = __>._ ~ + (~ - ~) T-J/3 
( 167r2+~) x + ty = 0, (20)

167r2 ~ + (~_~) T-J/3' 

where T = 1 - (327r2t J 3>'ln x. The simplest case, with an analytical solution, is ~ = 1/6. 

Here we have found no phase transition (since Ye ~ 7r2Xc, which lies outside our approach 

2'e > > Ye). In the same way we can see that there is no phase transition for ~ = 1/6 in the 

asymptotically free SU(2) model. 

Consider now the RG improved potential (17). For the sake of simplicity, let us put 

Itt) = 1. (To take into account a non-zero anomalous dimension presumably only rescales 

cp [5J.) After choosing ~ = 1/6 and solving (19), we obtain 

Xc c:; 102 , tYe c:; g4Xe . (21) 

Thus, it turns out that a curvature induced phase transition is possible in this model even in 

the simplest situation where ~ = 1/6 (there are no radiative corrections to the R<p2-term.) 

A reasonable estimation [6,7J shows that in the GUT epoch 

10- 7 s lyl S 10-5• (22) 

And for a standard choice g2 ~ 1/3 and ~Ye c:; 10, what seems to be too large and non

realistic. However, we could argue that at the begining of inflation g2 corresponds to the 

running g2(t) . In this case, a natural choice is [7J g2 c:; 10-3 and this gives tYe c:; 10-4. 

This value is already very close to the upper border of the estimation (22), what is quite 

remarkable. Of course, the inclusion of scalar loops and/or the estimation of phase transitions 

for other choices of ~ can also lower the value of Ye' This is an interesing analysis which 

demands for numerical calculations. 

4. Conclusions . To summarize, we have developed an explicit formalism for the determina

tion of the RG improved effective potential for massless gauge theories in curved spacetime. 

We have shown the plausible possibility of a curvature-induced phase transition taking place 
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for the SU(5) RG improved inflationary potential. It would be interesting to understand the 

further influence of quantum-gravitational effects in the above described picture. 

In principle, this can be done, at least for multiplicatively-renormalizable R2-gravity (see 

[3J for a review). Starting from the following Lagrangian (in EucPdean notation) 

- 1 >.
L = CiR2 + (3R"vR"v + ~Rcp2 + 2g"v B"cpBv<p + 4]"<p4 , (23) 

and forgetting for a moment about the unitarity problem (see [3J for a list of references 

concerning this point), we can employ the background field method in order to show that 

the theory given by (23) can be asymptotically free for all coupling constants [3J (see also 

[10]). 

The formalism developed at point 2 can be extended to the theory (23) (see [11]) -by 

just adding Ci and Pto the set g- working in the background-field method and in the 

one-loop approximation (then the anomalous dimension for the background gravitational 

field is zero). We cannot pretend to find the Itt) of Eq. (4) explicitly either, because to 

this end we would need to work out, in a class of gauges dependent on the parameter. 

However, as before, we can perform this calculation for the simplest ';3.Uge. Hence, we drop 

the ,-dependence and put Itt) = 1 in (4). With all this in mind, the RG improved effective 

potential in the linear curvature approximation is again given by (4). In particular, for one 

of the regimes of asymptotic freedom of the theory given by (23) [10], we get 

472 - 2
V = -'-,r.p4(3-1(t) - 0.03Rr.p , (24)

4. 

where 
- - 799 
(3(t) = ,8(0) + 60(47r)2t. 

We thus see that we actually may take into account the quantum gravitational effects in a 

rather simple way. 

The other interesting topic is the derivation of RG improved effective potentials in massive 

theories [5,12J4. There has been some recent activity in this direction [13], readdressing the 

question in flat space. It is our impression that quantum field theory in curved spacetime can 

really help to answer some questions about the RG improved effective potential for massive 

theories even in flat space. Work along this line is in progress . Notice, finally, that the 

generalization to the multiscale RG can be carried out as in Ref. [15J in flat space. 

4It would be meaningful also to improve the effective potential in the models which have composite Higgs 

scalars in curved space [14). 
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Appendix. We shall here study the behaviour of the RG improved effective potential (18) 

in the )..cp4 model. We shall also compare it with that of the one-loop effective potential for 

the same theory, which is 

Vane-loop = )..X2 ( 1 3)"lnx) _ ~ x [t (t_~) )"lnx] . (25)
Jj4 4! + 3211"2 2~Y ~ + ~ 6 3211"2 

(This is just an expansion of (18), taking).. < < 1 and I).. In xl « 1.) A very important 

difference bet ween (18) and (25) lies in the fact t hat while the RG improved effective po tential 

(IS) has a pole for X = x p = exp[3211"2/(3)..)], the one-loop effective potential (25) is a 

smooth function for the whole range of values of x and y. Notice however, in particular, that 

expression (18) is finite for all negative values of In x . The fact that the )..cp4 potential (25) 

exists fo r all values of cp makes this expression obviously wrong. 

We perform t he usual analysis of extrema of (18) and (25). Calling V(x,y) the potential 

in each case, we shall look for critical points (x c , Yc) defined by the simultaneous condi t ions 

(19) . The first two equations (19) yield, for the RG improved action (IS). 

( AXe 3211"2 1 3)" In Xc 

Yc = 2u [1 + (6~ _ I )u - I/3] ' ~ U- 3 [1 + (6~ _ I)U1/3] +1 = 0, U = 1 - 3211"2 ' (26 ) 

and , for the one-loop action (25). 

~ )"( 1 + 3v)xc 3211"2 ( 1) ).. ( 1) 1 +3v )"lnxc 
Yc = 12 [~+ (~_ ~) v]' -)..- v + 3' - 9611"2 ~ - 6' ~ + (~_~) v = 0, v = 3211"2 . 

(27) 

The following models , which are particularly interesting for different reasons, will be 

considered in fur t her detail. 

(a) Chaotic inflationary model. We consider first the potentials (18) and (25) for)" = 
and ~ = 0, both for positive E = 1 and negative E = -1 curvature. The results can 

be summarized as follows. For the RG improved effective action, a critical value appears, 

which lies close to the pole 

Xc = exp ( -3'2 10-15) xp , Yc = -E 10-3 Xc. (2S) 

Moreover, this point is a minimum of (18) (as are all the similar points obtained below). 

That is, all three equations (19) are indeed satisfied. On the contrary, the one-loop effective 
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action (25) does not yield any phase transition, the solutions of Eqs. (27) being X c = 0, 

Y c = 0, and Xc = I, Yc = ~ 1017 XC' 

(b) Variable Planck-mass model. It has been considered in [17]. For A we take a typi cal 

value corresponding to particle physics models, e.g. A = 0.05. For ~ we choose two different 

values: (i) ~ = -104 (which actually corresponds to ref. II7]) and (ii) ~ = 1/6, respectively. 

In case (i), the cri t ical point corresponding to (18) is obtained for 

_ 2/3 _ - ' 
Xc - e x P' Y c - - 5 . 10 '- c , (29) 

both for positive and for negative curvature . For the one-loop action, the only solution is 

again the trivial one Xc = Y c = O. 

In case (ii). the critical point for the RG improved action (18) is at 

Xc = e xp , Yc = -E 50 Xc, (30) 

which is not consistent with our approximation xc» Ye' For the on ~- loop effective action 

(25). Xc = Yc = 0 is again the only solution of (27). 
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