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Abstract 

It is shown that the existence of non-bosonic quantum stat istics does 

not require a topologically non-trivial r.onfiguration space. This is also so 

for the Aharonov-Bohm effect. A hole in configuration space is only neces­

sary if the wavefunction is multiple-valued and there is no point where the 

action corresponding to paths going through this point is ei ther undefined 

or divergent or where discontinuities appear in momentum space when the 

path sweeps over the point. The role of boundary conditions at these special 

points and thei r meaning as contact or zero-range interactions compatible 

with self-adjointness are explained. 
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I. Introduction 

In defining indistinguishable particles in the Feynman path integral forma­

lism for nonrelativistic quantum mechanics Laidlaw and DeWitt [1] explici­

tely exclude points of coincidence of two or more particles. This allows for a 

homotopical classification of closed paths in configura tion space. Weighing 

paths belonging to different homotopy classes with different phases. which 

correspond t.o one-dimensional unitary representations of the fundamental 

group of the multiply connected configuration space, leads then to the non­

bosonic quantum statis tics; in two space·dimensions to anyons and fermions 

[2]. As the authors remark, t he question of whether two poi nt particles can si ­

multaneously occupy the same point in space is one they do not address, they 

just say that excludi ng points of coincidence leads straigh tforwardly to phy­

sically meaningful results. No doubt these remarks reflect some uneasiness 

abou t the assumption which, since then, is usually made in defining indis­

tinguishable particles in the path integral formalism, i.e. excluding points of 

coincidence, and they leave open the quest ion on 'Nhether tfti s ;u;s umption is 

necessary or disposable. 

Leinaas and Myrheim mention, in their work on identical particles [2 ), 

that the points of coincidence in the configuration space of identIcal particles 

are singular and that when they are retained the space is si mply connect.ed. 

Then they proceed excluding these points because the multiple connectedness 

of the resu lting space suggests a relation to the different statist ics. 

This at t itude has been taken over by many of the authors studying quan­

tum statistics [3] - [6], because the condition which allows contributions cor­

responding to different paths to carry a different phase is that these paths 

cannot be deformed continuously into one another and it is generally belie­

ved that this requires i\ multiply connected space. As W f'. will see, mul t iple 

connectedness is a sufficient but not " necessary condi tion. [I, is also often 

stated that if ident ical particles were " llowed to occupy the same point in 

configuration space they would then be necessarily bosonic [:l] , [ ~ ]. [5J. Again 

.) 
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some uneasiness is reflected by the need some authors feel in justifying this 

discarding of trajectories for which particles meet by invoking a hard core 

repulsion [3], Of the centrifugal barrier which always exists for non-bosonic 

identical particles in two dimensions [6]. 
Throwing away some configurations with only a teleological justification, 

i.e. as a means for introducing quantum statistics, seems a too ad hoc foun­

dation for quantum statistics. Furthermore, even assuming that coinciding 

configurations do not contribute to the path integral, one could always just 

keep them; would that rule out statistics other than the bosonic? Finally, 

translating this exclusion to one-dimensional quantum mechanics would for­

bid exchanging identical particles to start with! 

It is our aim here to point out that the essential characteristic of touc­

hing paths for allowing for non-bosonic statistics is not their exclusion but 

that the point of contact is a singular point where configuration space is not 

differentiable and which is such that if excluded (but it is not) configuration 

space becomes homotopically non-trivial. Paths can be deformed continu­

ously in configuration space from one homotopy class to a contiguous one, 

but in doing so they jump discontinuously in phase space, and thus allows 

for discontinui ties in the action when the path sweeps over the singular po­

int. The discontinuity is h times the exponent of the phase characterizing 

non-bosonic statistics . 

There is thus no need to exclude coinciding configurations, and we a.gree 

in this with Bourdeau and Sorkin [7], who very recently took up this issue in 

two space-dimensions. They conclude that discarding coinciding configurati­

ons leads to a loss of physical information, because there is (for bosons and 

anyons) a one-parameter family of possible self-adjoint extensions of the ha­

miltonian. They also propose a plausible limiting procedure which selects one 

unique extension, which turns out to be the one for which the wavefunction 

remains finite at the point of overlap. What seems to have been overlooked is 

that the need for self-adjointness is independent of the inclusion or exclusion 

of the point of overlap; the quantum mechanics on ~+ and on cones have 
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been thoroughly and beautifully worked out by Farhi "nd Gutmann [8] and 

by Kay and Studer [9], and it is evident that whether the origin is included 

or not, or whether the tip of the cone is included or not is irrelevant: the 

hamiltonian better be self-adjoint anyhow. These authors show furthermore 

that the behaviour of the wavefunction at the origin or tip depends only on 

whether contact interactions are present or not (see also [10] and [11)) . The 

same has been found in the context of statistics in two space-dimensions, 

and anyons in particular [12], [13]: wavefunctions are singular at the point of 

coincidence if and only if nontrivial contact interactions are present, they are 

otherwise vanishing for anyons and finite for bosons . All this brin,g us to yet 

another issue: is there a relation between excluding points of coincidence and 

excluding contact interactions? [t is clear from references [8], [9], [12] and 

[13] that there is none, but given the confusion we will also come shortly back 

to this. Let us finally insist that one can, if one wishes, disregard touching 

path contributions, but it is neither necessary nor physically justified, it is at 

most practical because one comprehends quicker the introduction of phases 

in a space with a hole than in a space with a singular point. 

There are several other closely related issues which ha.ve caused confusion 

which we take up here and, hopefully, clarify. They have to do with the 

definition of spin in two space-dimensions, with the relation between the 

Aharonov-Bohm effect and multiple connectedness, with the conditions which 

allow wavefunctions to be multiple-valued and with contact or zero range 

interactions, boundary conditions and self-adjoint extensions. 

We will work in two space-dimensions throughout. Section II reviews the 

quantum mechanics of one particle when a point in R2 is somehow singled 

out. After this we deal with two identical particles and conclude in section 
III. 
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II. One particle and one special point 

There are three quantum mechanical problems on a plane in which a point 

is singled out. Two of them, the Aharonov-Bohm (AB) [14) and the Dirac 

delta, contact or zero range interaction (ZR) [10), [11 ) problems are defined 

on ~2, the third, the hole (H) [1) problem is defined on :R2 - {O}, which is 

multiply connected. 

The AB problem is given by a vector gauge field 

- <fl - 1> U'"A =-\l<p =-- 'I' = arctan 1!., r= J xz +yZ (1)
27r - 27r r ' x 

which is singular at the origin and a pure gauge elsewhere, and which leads 

to a magnetic field 

B == tijOi Al = 1>o(i) (2) 

so that 1> is the magnetic flux. If the particle has electric charge q the 

propagator is given by 

r [i l" (M:.J q' - ) ] GAB( ri, tz; rj,t tl = Jr [dF1exp h 't dt ""T r + ~r . A (3) 

with r == {it t )} the set of all paths which go from rj = i(td to ri = i(t z ). 

With r ==r U r {O} a given path I E r{ii} if it crosses the origin; if not I Er. 
As ~2 is translationally invariant the measure [drJ is homogeneous. 

The wavefunction, for which 

1/>(ri,t z) = j driG(ri,lz;rj , trJ1/>(rj, I,) (4) 

satisfies the Schrodinger equation for the hamiltonian 

HAB = _1 [- ilifJ _lJ.xjZ = _~ [~+ ~~+~ (~_ i~~)Z]
2M c 2M orz r or r2 o'P 27r nc 

(5) 

and is single-valued, 

exp [-i27r~j1/> ( r, I) = 1/>( R- I (27rjr, I) = 'b(r, t) (6) 
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here L == -iii!.; is the angular momentum operato r. Since it is somet.imes 

stated that the AB effect leads to a multiple-valued wavefunction let us dwell 

on this a bit more. We follow here an approach different from reference [15], 

where this issue was put straight. 

One can write (3) as 

G(ri ,tz;ri,t l ) =G (ri,tzJj ,ttl + G{oki, Iz; rj , ttl (i") 

in a straightforward notation. Using polar coordinates , and for rj ;i 0. r-; ;i 0, 

G(ri, tz;ri, tl ) = L Gh , 'Pz +27rn, Iz ; rl, 'PI, td (8) 
nE Z 

with 0 ~ 'Pi < 27r , and, from (1 ) and (3) 

o [ iq1> 1GAB (rz, 'Pz + 27r , tz;r l, 'P I, ttl = exp 27rn/'Pz + 27rn - 'Ptl . 

. Go(rz, '1'2 + 27rn,t z;rl, 'Pl,t,) (9) 

where the subscript a means if = O. Under a fu ll rotation 

L] 0 0 exp [- i27rr; G (rz,'Pz + 27rn, tz; rl, 'P I,t tl =G h , -pz+27r(n -l ),tz;rl, 'Pl, td 

(to) 

so that G(ri, tz;rj , Itl given by (8) remains invariant. 

Let us now write 

G{6} (r-; , 12 ; rj, ttl == 1" dtY{ii)(rz, 12; t ; ri, Itl (ll ) 

" 
where t is the time of the last crossing of the origin. Then 

g{6}(r-;,tz;t;ri ,t1 ) = j dr' G(rz,tz;? ,I')g{ii}(r',t';t:rj , lrl (12) 

with t < I' < Iz. It now follows immediately that as Gis invariant under 

a full rotation so is g{6) and thus finally G{ii)' The invariance of Gunder 

a full rotation is thus proven and (6) follows immediately. One should not 
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forget that the idealized solenoid (2) is a limit of regular solenoids for which 

certainly wavefunctions have to be single-valued. 

There are however solutions of the Schriidinger equation corresponding 

to (5), [161 
- [iq t,· - 11/>(r-;, t2) = exp hc )'1 i· Adt 1/>o(ri, tIl (13) 

where the integral is performed along a path "Y Er and where 1/10 is a solution 

of the free Schriidinger equation, and which is obviously not single. valued: 

exp [-i2rr~1-;j(i, t) = exp [-i~~l-;j(i, t) (14) 

This function -;j is thus not the correct wavefunction. It is only correct locally, 

but not in any finite region of space. 

Since the wavefunction is single· valued angular momentum is quantized 

by integers and separation of variables 

1/>(1') = eim'l'<pv(r), mE Z, -~I (15 ) II =1 m 2rrnc 

leads to the radial hamiltonian 

n2 [iJ2 1 8 II'] (16)
HAB,r = - 2M 8r' + ; 8r - r2 

IV hose regular solution satisfies 

<Pv(O) = 0, II f 0; 0< <Po(O) < 00 (17) 

and whose singular solution is irrelevant for the pure AB problem but will 

soon play an important role. These formulae solve completely t.he AB pro­

blem in the operator formalism. 

In the path integral formalism there is a hitch, however. because contri­

butions coming from paths which cross the origin are intrinsically undefined, 

as so is the change in 'P when the path goes through the origin . We do not 

~ 
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know what GAB,{ii} is. Recall that J. propagator can be written as 

G(ri, 12 ; ri, t l ) =t .pE(ri, Itltpe( r"2, t2 ) ( 18) 

where !/Je are eigenfunctions of the hamiltonian and one sums and/or inte· 

grates over the whole spectrum. Issues of normalizability and degeneracy 

can easily be avoided. The only arbitrariness in (18) lies in the boundary 

condition which the eigenfunctions have to satisfy at the origin. and which 

are given by (17) for the pure AB problem . Thus C-lB.{ii) should be fixed 

by (17). This is indeed the case. Recall 

G(ri,12;rj,ll) = JdiG(r-;,12;i,t)G(i,t;rj,td, tl < I < t, ( 19) 

which is independent ot t. Then the contributions from paths which a.t time 

t pass at a distance R«:min(rl, r2) is 

dG{ii.R)(r-;, 12 ; t; rj, ttl ~ v(t)RdtG(ri, 12; O. t)G(O, t; ri , t[) (20) 

where v(t) is the mean velocity of paths passing near the origin a.t time t and 

where continuity of the r.h.s. of (20) has been assumed. Integrating over 

time and taking R -> 0 leads to 

1" -­G{o}(ri, t2 ; ri, td ~ lim R dtv(t)G(ri, t 2 ; 0, t)G(O. I; rio t l ) (21 ) 
R-O '1 

which vanishes unless the assumption of continuity fails. more specifically 

unless the propagator. when the initial or the final point is at the origin. 

diverges. This is however excluded by (17) so that one concludes C-lB. {ii} = O. 

This, incidentally, shows that there is no need of screening the solenoid in 

the AB problem, as it is usually done [141, [17], [18], as paths going through 

it do not contribute. One might still think that choosing (t7) is "quivalent 

to screening, but we will soon see that this is not so: choosing (17) means 

not having a ZR interaction, that is . having a pure AB problem. 
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The second problem is the Dirac delta, contact interaction or zero range 

problem [10], [11] 

VCr) == gc5( r) (22) 

which, as it stands, is either trivial (no physical interaction) when 9 > 0, or 

collapses (ground state of infinite negative energy) for 9 < O. The proper 

treatment of (22) requires either a regularization or, equivalently, a boundary 

condition at the origin. 

The first approach [10] is based on subst it uting (22) by 

li 2 
.- 8(R - r), Ro > 0, R > O (23)VR(r ) == M R2 (InH; +i) 

where R is the regulating length which is taken to zero at the end, i is 

Euler 's constant, Ro is an arbi t rary lenght scale and () is the step function. 

The potential (23) is, when R ..... 0, of vanishing range and leads to a finite 

bound state energy and to a finite s-wave phase shift. There exist s no other 

circular well potential with these features. 

Equivalently (22) can be substituted by a boundary condition for rPm(r) 

[11] 

I· rPo(r) _ I I' (oJ. () I' rPo(r') I r) 1m - - - - 1m '1'0 r - 1m -- n - cPm,.O(O) == 0 (24) 
,-0 In It 'Y ,_0 , '-0 In ~ Ro ' 

which leads to exactly the same physics as (23). This boundary condition is 

the most general which ensures that the hamiltonian, in fact its extensions, 

as there is an arbi trary parameter in (24), is self-adjoint. When Ro ..... 00 

the interaction disappears and the s-wave wavefunct ion becomes regular at 

the origin: non-trivial contact interactions are unambiguously characterized 

by a singular (but certainly normalizable!) wavefunction, which is what (24) 

implies for 0 < R. < 00. 

Notice that exactly as the AB problem, the ZR problem is defined on '!R2 , 

origin included; in the regularized approach eq. (23) leads to an absolutely 
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standard problem of quantum mechanics on ;R2 , only that at the end the 

limit R -> 0 is taken. The propagator is given by 

GzR(r"i, t2 ; r~ , td == lim { [dFlexp[!.. rt'dt (-:r / - VR(i))]
R- oir Ii it, 2 

r [i {" (M :J.) ]= Jj~ i r [dtlReXp hjt, dt T r (25) 

This proves that a boundary condi tion as (24) is equivalent to a redefinition 

of the mea.~ure around the origin. This is. fo r ij?+ , very carefully explained 

in references [8], [19]. Writing 

GzR(r"i , t2; r~ , tIl == lim GR (r"i, t2; rl , td + lim G{R }(r"i, 12; rl, II) (26) 
R -O R-O 

where we dist inguish paths which pass at a distance less than R from the 

origin from the others, one finds, from (25 ) 

GzR(r"i , t2 ; rj , t1) == Go(r"i , 12; rl, tl ) +GZ R.{O} (r"i, 12; rl , td (27) 

so that GZR.{ii} ;i O. Thus paths going through the origin cont ri bllte if and 
only if there is a nont rivial ZR there. 

The third problem is a free particle on ';R2 - {O}, i.e. on a plane with a 

hole_ The propaga tor is given by [I] 

Go (r"i, t2 ;r~,td == L einO Go (r2,<i'2 + 21rn,t 2 ;rl, <Pl,t d (23) 
nEZ 

with 0 ::; fJ < 21r . From this, (4) and (10) one finds that the wavefunction is 
multiple-valued 

exp [-i21r~] 1/;o(i, t) == e'"wo(r,t) (29) 

One can make the wavefunction single-valued th rough the unitary t rans­

fo rmation 

1/;(r, t) == e'!':-1/;o(r, I) = lj;(Wl(21r)r, I ) (30 ) 

so that 1/; satisfies (4) with 

~ ~ 
GH(r"i,t2;r~,tl) = e '" Go(ri,t 2 ;rl,t 1)e ,. (:31 ) 
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which from (8) and (9) leads to 

GH(r-;, t2; ri, ttl =GAB (r-;, t2 ; ri, ttl (32) 

with () '= ~. Since G AS.{d} = 0 the H problem is equivalent to the AB 

problem, GAS = G H. This might seem surprising, as in one case one has 

a missing point and in the other a singular magnetic field. But there is 

nothing which allows to distinguish formally these two problems. In both 

cases, all what the origin does it to allow for a discontinuity in the action 

when the path, which is continuously deformed, sweeps over the origin. In 

the H problem the discontinuities, i.e. the () in (28), are allowed because the 

hole does not actually allow the path to sweep over the origin, and in the AB 

problem they are allowed because, as mentioned before, paths which cross 

the origin lead to undefined actions. 

One might still think that a hole requires making sure that probability is 

not lost at the hole, i.e. that wavefunctions are such that the hamiltonian 

is self-adjoint. This has been done behind the scene in (28), as (30) satis­

fies a Schrodinger equation corresponding to the hamiltonian (16) and (28) 

corresponds to (17) or, more properly for 1R2 - {O}, to 

lim1>v(r) =0, 0< lim <po(r) < 00 (33)/I # OJ ._0.-0 
The AB problem and the H problem are two versions of the same mathe­

matics. The multiple-valued unitary transformation trades a singular mag­

netic field for a hole. The combined H-AB problem, if one chooses not to 

transform one into the other, has been studied in reference [20). 

Let us now combine the AB/H problem with the ZR problem. This can 

be done starting from any of them. Consider, say, the AB/H problem [21J. 

We have choosen (33) as boundary conditions, because they correspond to 

the absence of a physical ZR. The general boundary conditions which lead 

to all the self-adjoint extensions are generalizations of (24) which include (). 
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The relevant formulae are, for the regular wavefunction uv(r) '= rV 1>v(r), (12) 

~~ (uv(r) ± (R,,)2V duv (r)) _d( r2v) - 0, 0< /I < 1 

limuv(r) = 0, /I 2: 1 (34).-0 

with R" > 0 an arbitrary lenght scale. The case /I = 0 is given by (24) . The 

limit R" -> 0 in the lower sign expression of (34) corresponds to the regular 

solution, which vanishes at the origin, (33), for which no ZR is present. All 

other values of Ro correspond to singular but, for 0 < /I < I, normalizable 

solutions, reflecting the presence of a physical ZR. Again, and paralleling 

(25), this corresponds to a modification of the measure around the origin 

which is natural in the sense that the origin is singled out anyhow. The 
equivalent of (26) leads to 

Gc (r-; , t2 ; ri, t1 ) = GAB(r-;, t2 ; ri, t1 ) + Gc.{d} (r-;, t2 ; ri, ttl (35) 

where the subscript C means complete or combined, and Ge.(a) corresponds 

to paths which pass at vanishing distance from the origin, and which is 
non vanishing in presence of a nontrivial ZR. 

It is amusing to notice that one can as well start from the ZR problem, in 

its regularized version (23). A standard path which goes through the origin 
will get a contribution to the action from (23) 

" RdtVR(r) ex: -VR(O)1 (36)
" v 

where v is the average velocity and which blows up when the R -> O. The 

action being divergent when going through the origin allows a discontinuity 

of it when the path sweeps the origin: this is precisely what the hole does, 

(28). Of course, the final outcome is the same combined problem as before. 

This is an instance where multivaluedness appears without multiconnec­

tedness. We will see in the next section that the phases associated to quan­

tum statistics are another example of multivaluedness in a simply connected 
configuration space. 
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One can add to whatever has been done up to now a regular, rotationally 

invariant potential in a stra.ightforward manner, whithout changing any of 

our results. 
One last, but important point concerning one particle. The rotation group 

on Rl is SO(2), which is abelian. It s unitary irreducible representations are 

either one-dimensional or infinite-dimensional. We are limiting ourselves here 

to the former, i.e. wavefunctions do not have components. The total angular 

momentum would be J = L + s, s E ~ being the spin. Then, under a 211' 
rotation one would have 

exp [-i211' ~] >jJ(r,<p) = exp [-i211'il >jJ(r ,<p - 211') = exp [-i211'il >jJ (r ,<p) 

(37) 

One should notice the difference between this and (29): no point is singled 

out in (37) which holds for rotations a.round any point, while (29) only holds 

for rotations around the origin, which is a special point. There seems to be 

some confusion related to this too [5]. 

III . Two identical particles . Conclusions 

Consider two indistinguishable particles. Neglecting the c.o.m. coordinates 

and identifying configurations which are indistinguishable, r == - r, r being 

the relative coordinates, one obta.ins a configuration space ~ x Rpl. Here 

~+ are the non-negative real numbers and ~pl is the one-dimensional real 

projective space, which is equivalent to the one-dimensional ci rcle st. This 

configuration space can be represented as a cone [2]. There is one singular 

point in this space, different from all the others, which is r = 0, the apex of 

the cone, due to which the space is not a manifold. A two-dimensional space 

with one distinguishable point can allow the introduction of phases even if 

the point is included in the space, unlike what happens with ~l , which has 

no special point. This is so because when one continuously deforms a path 

in configuration space until it goes through the apex, it has a discontinuity 
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there so that the deformation is not continuous in momentum space. Thus 

continuity arguments do not allow to relate the actions of nea.rby paths which 

are on different sides of the apex, because these paths are nearby in confi ­

guration space but not in phase space. There a.re continuous deformations 

in phase space which connect these paths, but of course these deformations 

are not sma.ll and thus the corresponding act ions can di ffer in finite amounts. 

This is then where a phase comes in, paralleling (28), substituting 211'n by 

1I'n as a full rotation around the apex corresponds to <p -+ <p +11'. Since a full 

rotation exchanges the identical par ticles once, the equivalent of (29) leads to 

non- bosonic statis tics for B i= 0 [22]. Fermions correspond to B = 11' , bosons 

to B = 0, and anyons to all others values of B. 

One can now proceed to make the wavefunction single-valued as in (30), 

only that recalling that we have now two identical pa.rticles the int roduction 

of the charge would introduce an unwanted Coulomb interaction, so that one 

should take q -+ 0 with () == ~ fixed. Also, although this transformat ion 

introduces a gauge field pa.ralleling (1) it does not int roduce a magnetic field 

in the sense of (2), as derivatives are not defined at the apex [2] . This 

only helps, as the need of taking <P -+ 00 would make the magnetic fie ld 

doubly singular. In short, it is physically more convenient not to use the 

electromagnetic analogy and just state that multivaluedness cha.racterizing 

non-bosonic statistics can be traded for an interaction corresponding to the 

potential V8 == ~ Brp . Notice the quantum character of the potential, as 

corresponds to the fact that quantum statistics has no classical counterpart. 

The analogy with the hole problem also holds with respect to the ZR 

problem: exactly as at the hole, one has to make sure that no probability is 

lost at the apex. The issue of self-adjoint extensions on the cone has been 

elegantly solved (for B = 0) in reference [9]. For B i D the solution [12] 

parallels the study of the combined problem of the previous section , without 

modification, except the obvious one that v =1 m - ! I, ~ E Z. 

In conclusion: Neither non-bosonic statistics nor the Aha.ronov-Bohm ef­

fect require multiply connected configuration spaces implemented by holes. 
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The discontinuity of velocities when the path goes through the point of co­

incidence of two identical particles (the apex of the cone) shows that paths 

which are nearby in configuration space and lead to nearby actuons are far 

apart in phase space and this is enough to allow for fermions and anyons. It 

is only when one requires that configuration space be a manifold that holes 

appear [23] . The idealized solenoid of the Aharonov-Bohm effect does not 

require screening; its single-valued wavefunction can be transformed into a 

multiple-valued one by singular multiple-valued gauge transformation, which 

gauges away the gauge field and drills a hole at the location of the magnetic 

field. The hole is only a consequence of a very special transformation . Holes 

are only required by multivaluedness if there are no points which lead to un­

defined or divergent actions, or which lead to discontinuities in momentum 

space. 

Special points of any of these types always require to make sure through 

boundary conditions that the hamiltonian is self-adjoint. One generally has 

a choice of self-adjoint extensions: of these all but one imply a priori unre­

lated attractive contact interaction, always characterized by a singular (but 

normalizable) wavefunction. One can do things in the reverse order, with the 

same result: a contact interaction allows, as it leads to a divergent action, to 

introduce multivaluedness without a hole. 

That excluding coinciding configurations is arbitrary and unnecessary has 

been put forward also in, a new approach to quantum mechanics based on 

diffeomorphism groups [24]. 
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