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Anyon superftuid with suppressed parity violation 

111~'~I~"jj~mljjj"'I~I!I"o 1160 0019780 0 1. Introdnction~I.
ANYON SUPERFLUID WITH SUPPRESSED PARITY VIOLATION 

In two spatial dimensions there exist the possibility of having elemen­

tary excitations whose statistics is neither of the Bose-Einstein Dor of the 

.Fermi-Dirac type [1,2]. The wave function of an N-particle system may 

acquire unremovable arbitrary phases under the interchange of identicalJ.1. Goity 
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particles. This is a consequence of the mult iple connect ivity of the config­

uration space in 2 dimensions [3], in contrast with its double connectivity 

in higher dimensions which restrict s the statistics to be either bosonic or 

fermionic. On the other hand, the rot ation group in 2 dimensions is abelian, 

thus allowing for arbitrary (non quant ized) spin. The connection between 

spin and statistics for anyons has been discussed in ref. [4]. 
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Ahstract 

\Ve analyze an anYOll superfluid of the standard kind. The model is com­
posed of equal nulnber density of two types of anyons carrying comple­
menta.ry st.atistics and interactillg via a repulsive hard-core potential. This 
system shows a suppression of parity violation. The analysis is carried out. 
ill the limit of quasi-bosonic statistics, where we show that the interactions 
induced by the si rl tistics tend tn suppress the condensate. 

The study of excitations possessing fractional statis tics is relevant in 

the description of the Fractional Quantum Hall effect [5,6], and it Hlay also 

be of interest in connection with high Tc superconductivity [7]. 

The properties of a system of free anyons (no interaction beyond the 

statistics) are much harder to determine than in the case of free bosons or 

fermions. The reason for this is that the wave function of N free anyons 

cannot be obtained by suitable direct products of one-anyon wave functions, 

as it is the case for bosons and fermions. In parti cular, the determination of 

the thernlOdynamic properties of a free anyon gas is a. difficult problem. At 

low densities, the system can be studied by means of the virial expansion, 

where the second virial coefficient is known exactly [8] and part ial results 

exist for the third coefficient [9] . 

In ref. [10] jt was found, within the random phase :JP~)rox.imation , 

tha.t. in a system. composed of a single type of free anYOliS ?~l vanishiug 

t~mperat.ure -:'be current-current correlators have a IJole <-It Zf'T(1 TilOl) l('nt·Ulll 
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3 J.L. Goiiy and J. Soio 

for suitable values of the parameter determining the statistics [11]. The 

system is then a superfluid and shows the Meissner effect if the anyons 

carry electric charge , becoming a superconductor. Although the persistency 

of the zero momentum pole at finite temperature is controversial [12], this 

mechanism of superfiuidity might be relevant in the description of layer high 

Tc superconductors [7]. A signal of this kind of anyonic superconductivity 

is parity violation. However, no experimental indication of parity violat ion 

in current layer superconductors has been found so far. 

Motivated by this la.st observation, we consider here a system where 

parity violation is a subleading effect [13]. The system considered consists 

of two types of anyons wi th complementary statistics. When the chemical 

potentials for each type of anyon are equal , the Hamiltonian possesses a 

discrete symmetry, which we shall call charge conjugat ion, involving the 

exchauge of both types of anyons. This symmetry leads to the suppression 

of pari ty violation. \~ie study one such system with a hard core repul­

sive interaction between anyons in a standard superfluid phase. For quasi­

bosonic st.atistics we can show that the long range interactiohs induced by 

the st.a.t istics tend to destabilize this phase, leading t.o a suppression of 

the coudellsatc. As the repulsive interaction decreases, a phase transition 

should occur. 

Anyon superfiuid with suppressed parit y violation 

2. The model 

We consider a system composed of two types of anyons of equal mass 

and complementary statistics in the sense made manifest below. The statis­

tics is introduced in the usual way [14] by adding to a Lagrangian which 

describes bosons an auxiliary gauge field (which has no Maxwell term, and 

thus does not add degrees of freedom to the system) with a Chern-Simons 

term which accounts for the deviation of the stat istics from the bosonic 

limit. In second quantization the Lagrangian density reads as follows: 

L =i wiDoWl - _1_ (DiW J)t D(W 1 
2m 

+iW~ Dow2 - _1_ (Di'll2)t D i 'll2 (2. 1 ) 
2m 

+/11 wi WI + /12 W ~ 'lI2 + 4
1

() EJ1.I/ Pa/1-0l/a p - V (W 1' 'l'2) 

where WI and 'lI2 are bosonic fields corresponding to the two types of 

anyons, aiJ. is the auxiliary gauge field, and the indices /1 , v , ... refer to time 

/1 = 0 and to the two spatial dimensions 11 = 1,2. The covariant derivatives 

are given by: 

D /.lW 1 == (8/1- - ia/1-)'lI 1 Dp'l'2 == (oj.< + ia /1-) W2 (2.2 ) 

where the difference in sign betwP.en the coupling of aJi. to 'II 1 and W2 
impkmC"nts the cOInplementary fl tatist iC's we alluded to b efore; charact.erized 

Ly ill:; real p~JTameter e. III a.nd ilL arc rhemir 81 potential S illl O F i .=> (l 
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4 5 J.L. Goity and J. Soto 

repulsive interaction which is needed to stabilize the system in the approach 
followed in this work. 

When a particle of type 1 revolves around another particle of type 1 

the wave function acquires a phase (}. Exactly the same happens when 

a part icle of type 2 revolves around another particle of type 2. When a. 

particle of type 1 revolves around a particle of type 2 the wave function 
acquires a phase - () . 

Besides the gauge invariance inherent to this formulation, when PI = 
P2 the system possesses a discrete symmetry under the following operation, 

which we will call charge conjugation: 

WI -. W2 


'l1 2 --) WI (2.3) 


ap, --) -ap' 

It turns out th at with this symmetry parity violation will be a non­

leading effect for those systerru; composed by the same number of anyons of 

type 1 and 2. In what follows we set P I = 112 = p. A model consisting of 

only one type of anyon~ obtained for instance by setting W2 = 0 was studied 

in [15]. 

(2.1 ) is the Lagrangian written in firs t order formalism. The resulting 

Halniltonian density and the only constraint are respectively given by: 

H = 2~WiU8+a)2Wl + 2~ q;'~(ia - a)2W2 
(2.4) 

+11 ('II] . q, 2 ) - IL (\]", I 'II 1 + \II ~ W2 ) 

Anyon superfiuid with suppressed parity violation 

and 
t tl i ' G = WI WI - W2W2 + 2() € ) 8i aj = 0 (2.5) 

The last equation is analogous to the Gauss law in electromagnetism. 

2.5) implies that aj is not a dynamical field since its transverse (gauge 

invariant) part is determined by WI and'l1 2 • Choosing t he transverse gauge 

(8iai = 0)) one obtains: 

a·(x) = ~J d2 y- fij (3: - Y)j (wtW - 'l1 t w )(y-) (2.6) 
t ( _ -)2 1 1 2 2

7r X - Y 

This equation contains the essential difference between the model (2.1) 

and the models containing a single type of anyon. Suppose we set W2 = o. 
Then a fini te density necessarily implies a finite fictit ious magnetic field 

b = €ij 8 i aj . Consequently, perturbation theory must be developed on Lan­

dau wave functions [11,12] in which parity violation is a leading effect. In 

(2.6) however, if we insist that the syrrunetry (2.3) be respected by the 

ground state, we must take (0 I WiWl 10) = (0 I \IJ~\IJ2 10) and hence, the 
average magnetic field vanishes. Consequently perturbation theory must 

be developed on plane waves which leads to qualitatively different features. 

In particular, parity violat ion is not a leading effect and will appear only 

through the interactions. This is the type of configuration we will study in 

this letter. 

As it will be shown later on, the Hamiltonian (2. 4) will present sta­

bility problems if one neglects the repulsive potential term and insists in 

analyzing the system wi thin the Landau-Ginzburg approximation which we 

shall adopt here. In this case, stability is provided by such a repulsive inter­

action between anyons. One call, for instance, choose a hard core two body 

potent ial consistent with all the symmet ries of the model of the following 

form: 

UB-ECA1-PF 92/19 



7 J.L. Goity and J. Soto 

v = K (W ~ Wl + Wi W2)2 (2.7) 

where K > 0 is a constant wi th dimension mass-I. 

In the following we consider () to be a small parameter , i.e ., t he anyons 

are qua.c;i-bosons, set T = O, and assume t hat charge conjugation symmet ry 

is a symmet ry of t he ground state. We can write: 

Wi= 50 + w~ (2.8) 

where Po is the number density of each type of anyon p opulating the 

Bose -Einstein condensate. The fiuctuat ion fields W~ are supposed to be 

small such t.hat a perturbat ion theory can be developed, a.c; in t he description 

of superfiuids in 3 space dimensions [16]. At finite temperature the analysis 

must be' m0difi ed due to the phase fluctuat ions which prevent long range 

diagonal order in tW() dimensions [1 7]. From (2.4), (2.6) and (2.8) we obtain 

t.he fo ll ov,Iing effective Hamilt olliaJ.J: 

Anyon superfluid with suppressed parity violation 

H = Jd2x ( -2 Po p. - p.~ ReX(x ) 


- x t (x )( -2
1 

V2 + I-£ )X( x) - <I>t (.x)(_
1 

V2 + I-£ )<I> (x) 

m 2m 


1 () t- t­
- 2m -; i [X Vi<I> + <I> V ixJ(x) 

(2.9) 
2 

x Jd y <i; i: =~i~ [xtcp +<l>tX+ ~ ReCPJ(y) 

1 ( B) 2+ 2m :;;: [2po+ XtX +<I> t cI> + ~Rex](x ) 


x [ Jd2 y <ij i: =~i~ [xtH cp tx + ~Re<l>](y) r+ \!) 


where we have defined 

X 0= JI (lIt; + 1It ~ ) 
(2. 10) 

<l> 0= JI (lIt; - lIt; ) 

Under a charge conjugation t ransformation (2.3) ,"'e have: 

X --'r X 
(2.11 ) 

<I! --'r - <I> 

whicll er;surp.s that t he modes X and <I> will not be m ixed by the int~r­

act.jons. 
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8 9 1.L. Goity and J. Soto 

It is very important to notice that in (2.9) long range interactions 

induced by the sta tistics are present. In particular, the t erm bilinear in 

q,( t) and proportional to (O/7r)2 gives rise to a self energy which diverges 

at vanishillg wave number k, which is physically unacceptable. In fact, the 

presence of long range interactions points to the need to carry the analysis 

beyond tree level. T he singulari t ies at vanishing wave number are lifted if 

one performs a non-perturbat ive resumation, as described in next section, 

which leads to the screening of the interact ions. 

3. Non perturbative resum at ion and screening 

In order to proceed with the analysis, we first define the propagators 

in the usual manner [1 6): 

z' Go (x,t) == (01 Tat(i,t) O'(O ,O) 10) 

i Fo Ux ,t) == (0 IT o(i , t) a(O, 0) 10) (3.1 ) 

i Fl(x , t) == (01 Tat(x,t)O't(O, O) 10) o= <I>, x 

where Fo refers t o anomalous propagators, which jn an homogeneous 

syst.elll arr self conjugated [16]. Choosing Po such that: 

(0 I w~ 10) = 0 (3.2) 

the oensity of excitations above the Bose-Einstein condensate is given 

by: 

Anyon superfiuid with suppressed parity violation 

Jd2kdw ­ (3.3)Po = (2 71" )3 i Go: (k, w) exp (iwf) f --+ 0+ 

(a = <1>, X) and the total density turns out to be: 

(3.4)p = 2 Po + pcp + Px 

Followin g standard procedures, the propagators in momentum repre­

sent ation can be written in terms of the self energies Efl , ~g2 as follows: 

- 1 P ­
Co(k,w) = Do [w + 2m - Jl + ~~l(k , -w)] 

- 1 ­
Fo(k ,w) = - Do 2:g2(k, w) 

Do = 2:g/(k,w) 
_ k,2 _ k2 

- [~~l (k,w) - w + - -11- i f] [2:rl(k , - w) + w + - -11- if]
2m 2m 


f ~ 0+ 0' = X, <I> 

(3.5) 

where ~fl is defined as the self energy with one ingoing and one out­

going excitat ion whereas ~02 is the anomalous self energy with two ingo­

ing or two outgoing excitations. Sillce FO(k, w) = Fo. (k , -w), we have 

2:~2( k ,w ) = ~02 0C,-W ). Such a property is not necessarily 8harcd by ~?l' 

As ubserveJ before, the symmetry transformation (2. 11) implies that the 

self encrgjes will be diagonal in the (X; <I» space. 
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11 J.L. Goity and J. Soto 

In the present model we have explicitly checked in a diagrammatic 

expansion that the Hugenholtz-Pines relation [18]: 

I:~1 (0, 0) - Jl = I:~2(0, 0) (3.6) 

is satisfied. No such relation is satisfied by the mode <t>. Thus, for 

() small enough the system is a superfiuid and the mode X describes the 

phonon excitat ions. There is however an important remark: superfiuidity 

in this model is not a result of the interactions induced by the statistics. It 

is rather a consequence of the repulsive interact ion one needs to add in order 

to stabilize the system. It is however remarkable that (3.6), which holds 

for () = 0 (i.e. for bosons), continues to hold when the statist ics becomes 

exotic. Thus, at small enough 8 the system should retain its superfluidity. 

Qualitat ively, the spectrum of the model at small wave number consists 

of phonoHs associated with the excitations X which propagat e with velocity 

c = JI:~2 (0 , O)/m and the excitations <P will in general show a gap /j. and an 

effective mass m*. For () sufficiently small all the quantities charact erizing 

the sp"E'ctrum will be determined by the repulsive interactions,and can be 

calculated in the standard manner. For () = 0 the hard core repulsion gives 

~~2 = J1 = 4 Po K. The gap and E~2 vanish at order Ie The first contribution 

to !::!. is positive and is of order K,2: !::!. = 2 pomK2/7r, while I:~2 still vanishes 

at this order, implying that m * = m. 

Determining the corrections to the self energies due to the interactions 

induced by the statistics demands certain care. Due to their long range, 

a non-perturhat ive resurnatioll ib required. This is similar to the RPA 

for thp. Coulomb gas [19], and it ronsists in adding a chain of loops in 

the channel which shows the most singular behaviour as the corresponding 

monwntum L(lnds to zero. F ig. I shows an example of the const.ructioll of 

Anyon superfluid with suppressed parity violation 

a three- and a four-leg effective vertex following this procedure. We have 

const ructed all three- and four-leg effective vertices which are relevant in 

the present analysis. For reasons of length we postpone the details to a 

forthcoming publication [20]. The resumation leads to a screening of the 

interactions induced by the statistics. In momentum representa tion, the 

factors 1/k2 characteristic of the long range interactions are replaced in a 

first approximation by: 

1 (3.7)
k2 + A-2 

The screening length A can be expressed as follows: 

A- I m ~~/~ (3.8)- V 8 Po ()2 1(0) 0) () V8 1 (0 , 0 ) 

where d is the average distance between anyons of the same type and 

1(0,0) is the following loop integral : 

Jd2k' dw' - ­
1(k,w ) == -i r .... \~ !:J.(k, w;k', w') (3.9) 

where: 

_ _ _ - - - w ~ - w " . 
tl(k ,w;k'.w' ) = - [G x(k ,w)G4J(k',w') + Fx(k ,w)F,¢( k', w') + ]

. w'~ -w' 
(3.10) 

UB -ECA1-PF 92/19 



13 J.L . Goity and J. Soto 

1(0,0) is estimated by taking ~~2 = 0, i.e., F<1> = 0, and neglecting any 

dependence of the self-energies on the wave number. This is the appropriate 

approximation as far as the corrections to the self-energies induced by the 

statist.ics are small. We arrive at the following expression: 

1(0,0) = -2mJ= dx (~ - l )/(x - 1 + Jx2=l +~) (3.11 ) 
x 27r 1 - 1 ~x02 

This integral, which can be done explicitly, diverges logarithmically as 

the gap L\ tends to zero . Physically, two anyon probes added to the syst em 

will behave 'with respect t o ea ch other as bosons if their separation is much 

greater than >.. It should be emphasized that in the determination of >. the 

repulsive interactions due to the potential only played the role of fixing the 
. A/"" x mK.ratlO U 0 02 ~ 2' 

All a.nal ~!s is of l(k ,w) shows that it diverges logarithmically as w ---+ 

L<..' ~l (k) , the energy of an exci tation <I> of wave number k. In general (3 .7) 

should read as follows: 

1 
(3.12 ) f (k,w ) == k2 + 8P:n (J2 l(k,w) 

it turns out that this implir$ that phonons, as expected, in the limit of 

vanishing wa..v~ number will decouple from the massive excitations described 

by q>. This decoupling only occurs logarit.hmically, in contrast with the 

hnear d(:>coupli ng, observed in thrt'l' spa.tia! dimensions. 

Anyon superfiuid with suppressed parity violation 

4. Corrections to the self-energies by t he st atist ics 

In this section we discuss the corrections to the self-energies induced 

by the statistics. Since the details are lengthy, we will present them in [20]. 

Our purpose is to show that in our model the interactions induced 

by the statistics tend to destabilize the superfluid phase. In particular , 

this implies that a phase transition must occur as the coupling constant K, 

decreases at fixed () i= 0. 

It is sufficient to consider those corrections to the self-ellergies which 

only involve the effective interaction vertices induced by the statistics. As 

we show later, corrections which involve one of these vertices and a vert.ex 

induced by the hard core repulsion turn out to be negligible. The corrections 

are calculated in the usual manner [16] in terms of effective vertices and full 

propagators . As illustration, Fig. II shows some of the diagrams involved. 

A first interesting result is t.hat the singularity at vanishing wave num­

ber present in the self-energies of <I> at tree level (see terms quadratic in 

<I> in eq. (2.9)) is lifted by the one loop corrections. This is a screening 

effect similar to t.hat observed in the effective vertices, and agrees with the 

fact that at long distances two anyon probes added to the system behave 

as b080ns with respect to each other. 

As Fig. II shows, diagrams can be classified according to whether they 

involve one or two propagators. The latter give contributions to the self­

energies which are of the general form (we set the momenta at which we 

evaluate t he corrections to t.he self-energies to zero): 

UB-ECM-PF 92/19 



14 15 J.L. Goity and J. Soto 

2 2 ­

6~ ,,-, ' (8 Po ()) Jd2 k dw [J (k )]n k2(n-2) 
'l Po m (2 rr )3 ,W ( 4.1 ) 

x ((Go(k ,w);Fo(k,w )) x (Gj1 (k,±w);Fp(k,±w))) 

where for 8~x we have Q' = (3 = <I> and n = 2,3, 4, while for 8~4i we 

have 0' = X, (3 = <I> and n = 2. The form (4.1) for 8~4i assumes that one 

neglects corrections which vanish when evaluated at (k = 0, W = W¢l (0)). 

We find that the contributions to the self-energies of the diagrams with 

two propagators are all negative. The explicit evaluation of the integrals can 

be done by rotating t he integration path to imaginary w, approximating the 

self-energies by the leading contributions given by the repulsive potent ial 

(which imply ~~2 = 0) , and using f(k,w) as in (3.6). In this manner we 

obtain the following estimate for the corrections to 8~x : 

()2 P5 
(4.2)6~x rv - rr m b. 1(0, 0) 

~7ithill th is approximation, t he choice of the positive sign in the ar­

gument W of the propagator in (4 .1) leads to a vanishing result. These 

corrections 82:<1>can also b e explicitly calculated leading to complicat ed ex­

pressions illvolving various scale s 6.: ~~2 ' etc.. They are not very useful 

for our purpose and therefore we shall only use the corrections to ~~2 in 

our fur tller considera tions. 

T he fact. tha t the correction::; are negative is of general character: it 

follows from the st ability requirements that the gap and :E~2 must be pos­

itive , and the property that t he effective three-leg vertices have the same 

sign. 

Anyon superftuid with suppressed parity 7Jiolation 

The diagrams containing only one propagator involve the four-leg effec­

tive vertices. We have checked that t hese vertices correspond to repulsive 

interact ions, which, as observed before, vanish when the wave number of the 

phonon modes tends to zero. This is because the effective vertices contain 

factors of f(k,w), which in that limit are evaluated at W = w<l>(k), where 

f vanishes. We focus on the correct ions to ~x at vanishing wave number. 

The integrals involved are of the following form: 

2 
x .8 Po (j2 Jd k, dw k,2(n- l ) [ f(k, w)]n Gq, (k, w) (4.3)8:E /"'oJ ~ ~ (2rr)3 

where n = 1, 2. The prescription t o calculate these integrals is the 

same as for the Bose liquid [16], and consists in multiplying the integrand 

by the factor eiw 
f, where f = 0+, and the integral becomes well defined by 

closing the integration contour over the upper w plane. Since G<l> (k, w) only 

has a pole at W= W<l> (k), and f (k, w) has discontinuities on the real axis for 

Iw I~ w<l>( k) , the integral reduces to an integral of the discontinuity of the 

integrand on the negative real axis . From the discontinuity of f for W < 0 

given by: 

df( k, w) == f( k,w - if) - J(k ,w + if) = 2i lm (f( k ,w - if)) ( 4.4) 

and the property that Im(J(k , w - if)) < 0, as it can be deduced from 

(3.9) and (3 .1 2) , one concludes that 6~x must b e negative. It is possible to 

give bounds on 6L X by using the following inequali ty valid for w < - W<l> (k ): 

1 1 
-2 ~ - G (k- ) 1 (4 .3)w w - WeI' ( k) - 4> . ~ , w ~-w 
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16 17 J.L. Goity and J. Soto 

which implies that: 

2B <6~x < B 

8 ()2 J d2 k, l-W~(k) d (4.6)
B = i~ _ _ p(n-I) ~d n(k,w) <0 

m (2 7r)3 - 00 w I 

W hile J(k, w) admits a representation in terms of an unsubtracted dis­

p ersion int egral, [J (k, w )] n requires a subtraction . This is done at w = 00, 

where it has t he value 1/ k2 
. Using the property that dIn (k, w) = dr (k , - w) 

(here n refers to the n t h power of f), the integral over dw in (4.6) is readily 

expressed in terms of [J (k,o) )n - [f(k,oo)]n: 

2 
B = 8 Po (P J d k)3 k2(n-l ) ( [ f (k, o))n - [ f(k, 00 ))n) (4.7)

m (2 7r 

T he integrat ion over k of the term proportional to f n(k , (0) diverges 

logarithmically a t the origin. This problem is ent irely related to the two 

dimensionality of space. A proper treatment, where the fields are separated 

into fast and slow variables [21), should resolve this problem. The cut-off 

required here should then be related to the scale separating the two types 
of variables. 

T he leading corrections due to the diagrams containing one propagator 

are then approximately given by: 

2 2
6L:X,,-, _ Po B~ ]o A .x + 1 (4.8)7r m g ( A~) 

where A is the cu t-off. Its precise choice is not very relevant for the 
conc1 m;jolls w(' will draw bellow. 

Anyon superftuid with suppressed parity violation 

F inally, diagrams containing a three-leg vertex induced by the hard 

core potential (2.7), like the one depicted in Fig. II (b), give corrections of 

the form: 

. ()2 P5 K JcFkdw k2(n- l) [J(k ,w) ]n [Gcl>(k,w)]2 n = 1, 26"£x "-' Z ----:;;:;- (2 7r ) 3 

(4.9) 

where in writing this expression we use t he property that the hard core 

three-leg vertices have one ingoing and one outgoing ~ excitation, and that 

F(fJ O W ithin the same approximations which lead to (4.2), and by therv . 
comment given thereafter , it turns out that (4.9) vanishes. 

Comparing (4.2) with (4.8) , using that ,,£X rv Po K, ~ = 2 Po m K2 / 7r and 

J( O,O ) rv m log (~ IJ, we see that as K decreases the contributions depicted 

in (4 .2) become dominant over those in (4.8). This is a consequence of the 

factor 1/~ in (4.2) whose origin is traced back to the long wave length 

contributions in the loop integrals with two propagators. These type of 

contributions are absent in the case of (4.3). From (4. 2) we can draw 

an estimate of the order of magnitude of the critical K below which the 

superfluid phase becomes unstable: 

3 1 (}2 
Kcri t log (~~-) ~ (4.10) 

m Kcrit 7r rn 3 

Below Kcrit the positivity conditions that ,,£X should satisfy are not 

fulfilled and the approach we used breaks down. A new phase is then 

expected to emerge. Since in the determination of Kc rit we only used ~x , 

the possibi li t.y is open for t he inestability to occur at a larger value of K, for 

inst an cE', if ~ beconles negat ive . 
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5. 	Final remarks 

V\Te have investigated a model consisting of two types of anyons carrying 

complementary statist ics. For equal number density of each type of anyon, 

the model possesses a charge conjugation symmetry (2.3) which leads to 

a suppression of parity violation. We considered one such a system in the 

quasi-bosonic limit, and found that the standard superfiuid phase t ends to 

be destabilized by the interactions induced by the'statistics. This phase 

can only exist if a hard core repulsion between anyons is present. If this 

interaction is too weak (see eq. (4. 10)), the system should choose a different 

phase. The nature of this phase is not clear to us. One could conjecture 

that it corresponds to pairing correlations between anyons of type 1 and 

type 2, {is in the mechanism suggested for semions [22]. Another possibility 

is the spontaneous breaking of the charge conjugation symmetry by the 

ground state. It is clearly not excluded that the new phase can still b e a 

superfiuid. The problem of establishing the nature of this phase seems very 

interest.ing to us. Finally, we conj ecture that the results of this paper are 

generaL applying beyond the quasi-bosonic limit. 
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Figure captions 

Fig. I: Example of self-consistency equat ions for (a) three-leg, and (b) 

four-leg effective vertices. The solid line corresponds to the mode <I> and 

the wavy line to X. The dashed line indicates the presence of a factor ;, in = +7-----(
the bare vert ices. 

Fig. II: Some diagrams contributing to the corrections to EX induced 

by the stat istics . The second diagram in (b) contains a vertex, hc, induced + 
by the hard core repulsive potential (2.7). ~---< 

(a) 

= +) ---< 

+ ---< 

(b) 

Fig. I 




