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Abstract 

Two-dimensional M&Xwell-dilat.oD quantum gravity, which coven & large fantily of the 

actions for two-dimensional gravit.y (in particular, atring-inspired models) is invest.igated. 

Charged black holes which appear in the t.heory are briefty discussed. The one-loop di ­

vergences in the linear COV&l'ia.nt gauges are calculated. It is shown t.hat for some choices 

of t.he dilaton potential iLDd dilaton-MlLXweU coupling, the t.heory i. one-loop multiplica­

tively renormalizable (or even finite). A comparison wiLh the divergences structure of 

four-dimensional Einstein-Maxwell gravit.y i. given . 

PACS: 

03.70 Theory of quant.ized fields, 04.50 Unified theories and other t.heories of 


gravit.at.ion, 11.10 Field t.heory, 11.17 Theories of strings and other extended 


objects. 


IOn leave Crom DepulmeoL of Maa.hematica and Phyaica, Pedqor:icaJ InaLiluLe, 6J.4~1Tomslr., Ruaaia. 

1. Introduction . As is known, the string-inspired models of t.wo-dimensional gra.vity 

conta.in black bole solutions 111 as well as the Hawking radiation 121, and c.an be exact.ly 

solvable classically (21. These theories (sc.a.lar-tensor or dilaton gravity) give us the possi ­

bility to have a very useful toy model which can tell us a lol about the general properties 

of quantum gravity. 

The study of the qUiLDtum properties of t.wo-dimensional dilaton gravity [3-10) shows 

that for some choices of dila.ton potent.ial the theory can be renormalizable 15-JO!. or 

even finite [8,101. This can be compared with four-dimensional Einstein gravity, which is 

ODe-loop finit.e (on shell) but, unfortunately, is not renormalizable. In the present letter 

we shall discu88 quantum corrections (divergences) in Maxwell-dilaton two-dimensional 

qUMtum gravity with the aclion 

S =Jdlx Jge-l~ [R + 19l"'al'~fJ,,¢ - ~e«(~)~F!. +V(¢)] , (1 ) 

where F,... = 8,..A., - 8"A,. is the electromagnetic field-strength, ¢ the dilaton, a nd V(¢) 

the dilaton pot.ential. Particular caBe8 of action (1) describe a number of well -known 

modela, like tbe Jackiw-TeiteJboim model 13), the bosonic string effecLive acLion (for i = 4, 

F,... = 0, V = A) or the heterotic string effective action (for f = 0, V = A) IIlJ. 
The model with the action (1) is connected with four or higher-dimensional Einstein ­

MaxweU theories (or their generalizat.ions), which admit charged black hole solutions 

1121. The theory (1) can also be considered as a toy model for four -dimensional Einstein ­

MaxweU theory. Finally, as it has been shown in refs_ (11,131. for l = const . and dilaLolI 

'potential of the type produced by string loops, the theory admits charged black hole 

solution8 with multiple horizons. 

Actually, t.he study carried out. with the aclion of Ill) can be generali~ed to the fol ­

lowing one 1141 (see alB? 1131 (or constant a and b)l 

S= Jcfx Jge- l~ [R + ')'(V¢)3 - ~Q(¢)F;" + b(¢)('V!Jo)2 + V(¢, tI')] , (2) 

where a( ~) and b(~) are arbitrary functions of the dilaton field~. The equa.tions of motion 

for this generalized action are easily obtained: 

1 
2Vl¢ - 4(V¢)1 + - a(¢)F;" + V(¢, tP) = 0,

4 

lin order Lo compare ... ilh the resulLa in [131. we uae here Lhe 5ame MinKowlki nolalions of [13J when 

diacuainA the cI..icai black hole IOlutiolUl. 
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2 1 2] 1 lR,." + 2\7,.V,,; + (-y - 4>[V,.;V,,; - 9,..,(\7;) + 29,.,,\7; - 2a(~)F" F,,). (3) 

-.!.. (I)() 2 ! (I) 2 _ ! oV(~,tP)
+ 16 a 	 ¢>9,...,FOI(J+b(~)V,..pV"tP- 4b (~)g",,(VtP) 49,.., o~ 0. 

V" (F,."a(lP)e-1.) = 0, 2b(IP)\72.p +2I b(I)(,p) - 2b(lP)I\7~. V,p _ oV(IP, tJ;) 0, 

wbere a(l) means derivative with respect Lo;. In tbe case of static spherical configurations 

(also considered in 1131): F = J(r)drAdt, ;(r), .p(r), with AD uymptotic&lJy flat metric 

ds1 = - g(r)dt l +g(rtldrl, a.nd g(r) -t 1 as r -t 00, we obtain: 

(glP')' - 2g(IP,)1 - iJ'l + ~V(~,tP) = 0, 21P" +(-y - 4)(;')2 +b(tjI')2 0, 

( fae-2.)' = 0 (g,p')' + (bill _ 2) g;'1/1'_..!.. oV(I/>.I/I) (4)0, 
, b 2b lhP 

where the prime means derivative with respect to r. 

However, in the present paper, the emphasis will be put in the fad of a.llowing the 

Maxwell-dilaton coupling in (2) to be a.n arbitrary function of the field I/> (through the 

exponent l(IP» a.nd - for the sake of simplicity of the discu~ion- we shall not take into 

account tbe dependence on the scalar spectator field 1/1. We ~all now calculate the one­

loop divergences in linear covana.nt gauges and find the form of V and t(l/» for which the 

tbeory is one-loop renormalizable. Tben, we use these f(t;) and V for the discussion of 

tbe cbarged black hole solutions wbich generalize tbose of refs. [11,131. 

2. Calculation of tbe divergences. To this end. we write tbe action (2) (without tP field) 

in a slighlly different form, which is more convenient for the investi!alion of quantum 

corrections: 

s = Jlfx ..Jge-2
• [~g~"O,.t;8.. t; +..,R - ~ecl.).F! +V(t;)] . (5) 

This action will be now our starting point. With the cha.nge of field variable: ~ = e-·, 

we can write it as follows ' 

s = f d2 x Jg Bg~"Q,.¢a,,~ +l~lR - ~~2- C( - In~)F~" +~lV( - In ~)] , (6) 

Applying the 'transformation 

1/2 -2 1 _ - - ClIPClIP = ...,t;'l, g,..., = e'l"g,...,. ~ = ( -;-) 
..,~ - -Inl/>, (1)

p = 4cf 8..., 
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"It 
expression (6) ca.n be rewritten in the way 

I 	 ( )1 - 1/(8-') ( I ( ))S = 	 Jd2x{9 { ;{g""O"lPo"lP+c'IPR+e'P/'k, C~IP V - 21n c~t.p 

~e -op/2c'exp{[1_ if (-~In (c~IP)) + 8~J 10 (c~IP)} t;,,}. (8) 

(wbere F~" = gl'Qg"P F,...FQ(J) or, dropping the tilde, 

s = Jif;r,.;g Ug""O,.IPO,,1P + cIIPR - ~ f(IP)F:" + V(IP)] . (9) 

Here the first two terms represent the action of diiatoD gravity, the third one is the 

MaxweU term iuteracting with gravity, and t.he fourtb one (the potential) has dimension 

[V} = M - 2. Note thal the action (9), wi~h arbitrary J and V, is the natural generalization 

of d::: 4 Einstein-Maxwell or higher derivative gravity-Maxwell theory. 

The renorma.iization of tbe action (9) without the Maxwell term has been investigated 

in linear covariant gauges in refs . (5-7) and in the conformaJ gauge in (101. It has been 

shown that the theory is renormalizable3 for some choices of the polentiaJ V (i n particular. 

for V = A or V = ",eO") . Note that, generally speaking, there exist gauges where the 

dilaton gravity is not one-loop renormalizable, and others where it is a one-loop fillite 

theory (8]. 

Our main purpose in this paper will be to calculate the one-loop counterterms in tht' 

theory (Maxwell-dilaton gravity) given by the action (9) in the linear covariant gauge 

(harmonic type g&ut;e) . 

We use the background field method. According to this procedure, we split t.he field~ 

into Lheir qua.ntum and backgrouod parls: 

g~ --+ g,... = g~ +h~, IP -- .p = ~ +<p, A" --+ A" = B" + A", ( 10) 

where the second terms (h,...,~, A,.) are the quantum fields . 

Let us choose the gauge fixin! actions in the gravitational and eleclromagnetic field 

sectors, respectively, as lhe following (linear gauge) : 

3
CI f 	 ( 1 1) ( 1 1 )~F - '2 d x../9 V' ..h: - 2V ,.h - ~V~IP ¢> V',It'" - '2 V"h - ¢'V"t.p ,(11 ) 

S~F - ~ f d
3
x.;9J(t;)(V',.A")'l . (12) 

~Power coun'ins ,hOWl that the theory i. renormaJizable in the «euerllhted aen~ (liuPPOtiing til!' 

pogible cb&ose of f and V UDder renormalitaLion) . 
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One should add the gauge-fixing actions (11) and (12) to the quadratic expansion (S(2» . 

of (9) on t.he quantum fields . 

Now let us reca.ll a few simple expressions that are necessary for the one-loop coun ­

tert.erma calculation . The one-loop divergences of the euclidean effective aclion are given 

by 

r"." = - -2
1 

Tr In j{t . +Tr In M,,,I . , (13)
'~I.... "." 

where ii is defined through S(2) + SCF, and M,,, is the ghost operator corresponding to 

the gauge fixing action. 

If R has the following form 

R = 16 +2E"V>, +fi, (14 ) 

where R acts in the space .of all quant.um fields (as well as 1, i;). and fi), and 6 = 'VI'V,.i 

then, in dimensional regularization, 

1 (- - - )Tr In 1i . = -Tr n - E>'E" . (IS)H1III... c 

Here, the parameter of dimensional regularization is c = 2r(n - 2). Notice that we bave 

dropped in (15) tbe surface terms like R. AfLer the preceding remarks, we can now start 

the explicit calculation of the one· loop counterterms. 

2&. The djlaton -gravjtational bacJcground (Maxwell sector contributions). In order to 

simplify the calculus we will do it in two steps. In the first step we will be interested in 

the cont.ribution of the MaxweU sector to the action of dilatoD gravity (the first two terms 

and V of (1». In this case we can puL the background vector field B,. =O. Moreover, one 

can immediately see that, due to the presence of only quadratic terms in A,., in S('~), the 

Maxwell seeLor decouples from the gravitational sector. The corresponding term in the 

path integral baa tbe form (witb account of tbe gauge fixing term (12)) 

J1?A"exp ( --2
1 Jdlxv'9/(~)A,.fj""'AJI)I . = _!Tt InH""'1 ' (16) 

""V 2 "." 


wbere 


HI''' = g"" 6 - R"" - f:~) (6~ (V" /(¢)) - 6: (V" /(4)) ) - g"" (Vof(4»)1 VO, (11) 

5 

the local fact.or /(~) not giving any contribution to divergences. One can see that the 

operator ii,..,. haa exactly the form (14), with 

fi = -R""' , Eo = - 2f~~) [6: (V"/(~» - cS: ('v" /(4))) - g."" (Vof(~))\ · (18) 

The simple calculation of the one-loop counterterms with this H"" shows that there is no 

non-trivial contribution from the MaxweU sector t.o the dilaton gravity sector (except for 

the trivialsurfa.ce terms which we consequently drop) . The ghost operator corresponding 

t.o the gauge fixing (12) is 6, which again gives only contribution t.o the surface terms. 

Thus, the complete Maxwell sector does not provide any contribution to the quantum 

gravitational sector. 

2b. Arbitrary vector and constant djlatoll background. We proceed now with the cal ­

culation of the one-loop counterlerm for the Maxwell action . For the sake of simplicity, 

one can put ~ = const. and g,..,. = 6,..,. in the bac.kground field splitting (10) . Note that 

the ca.lculation of the one-loop counterterms in the gravitational sector has been already 

done for the gauge under discussion in (S,1) . It is not influenced by the addition of F"", 

as we showed before; and that is why one can cboose 9,..,. = 6,." . 

First of all, we should writ.e the qua.dralic expansion of the action (9) with account. Lo 

tbe corresponding gauge fixing terms. A straightforward (although lengthy) calculation 

gives, for tbe background under consideration: 

(19)Sl') +~F +S~F =HJ'z.,;g (A, I... h "') R [ ?l' 
the 16 components of ii being given by 

Htl /(4))g~11, Hn = - f(~) [B'",V8 - b,1) BO·V,,] - i f (4)) (VI) Ir') - 6P/J(V"lIO")] , 

HI3 - ~/(4))B'''V,, - ~/(~)(V"B"')' H14 = /(I)(¢)B"'V" + ~/(I)(~)(V"B"') ' 


Hll f(~)(B~V" - 6~"B""V..1- ~/(~) I(V" B"~) - 6~"(V'"B"")I. 


Hn ! (c ..L6 - V) P"JI,ol) - /( -')B"" B' 6"~ polJ H = - / ( 4» BIi" HI' = II
2 I'#''#' II ~ I 13 4 ,,32• 
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I(I)(¢I) 1 1 
H2C -2-B""8". = HCl • H31 == "2!(¢I)IrT V. - 4/(¢I)(V"Ir'). H33 = 0, 

H34 ~ (- CI~ + VII) + I(I~(¢I) 8!,,) = HC3 • HCI = _ /(I)(~)B"''V" + ~/(l1(4>)(V"B"')' 

H.. (~ - 1) ~ + 2VP), (20) 

where 13 == 6"",00 - ~g""gOP, h,.., == h,." + ~c5....h. B,.., == "1,.8" - "1,,8,., V == V(¢I) ­

!/{¢I)B!., and VII) and y(2) are the first a.od eecond derivatives of the potential with 

respect to ¢I. 'V" being a flat derivative. The contraction of the projector 13 of terlllB with 

a/J and IJII indices should also be done (because hQO = 13:;'1.1"' h,.., = .f>::hIW ). 

One easily Bees that the operator it (20) does not have the canonical structure (14) 

and, therefore, we cannot use the aJgorithm (15). In order to render it possible" the 

application of this algorithm, we use a Lrick introduced in refs . 15,1). We express 

ii :: Rfi. (21) 

where R is the constant ma.trix: 

6"" 
1(4)) 

0 

2 ~ 

0 0 

0 -p 0 0 

K= I 
0 

CI4> 

0 4(1 
CJ Cl 

1)
¢I 

2 

Cl 

(22) 

0 0 
2 

0 
CI 

and the operator il - which can be easIly evaluat.ed (rom (21)- has now the canonical 

structure (14). It is evident that, due to the fad that K is a constanl maLrix, we have 

1'r In iiI . :: 1'r In jf1 . , (23)01,.. ' ~10I... 

80 that we can now concentrate on the operator ii only. 

Uaing the explicit for~ of H, we get 

ii == i~ +2EA"1~ + ii, (24) 

where the only non-zero components of the matrix E>, are: 

(E~h2 - ~ lU-'6~ - BQ),6PP - 6oPB/]. (E~h3 = - ~B/, 

7 

(E~)14 I(I)(¢I) B P (E) = I(~) (B"" 6'" - B" /?'" _ g"''' B ') (25)2!(~) ~, ~ 21 CI~ A A ~ , 

(E~)31 ~ [(~ -!) !(¢I) + I(II(~)] B/. (E~)41 = _/(~) B/. 
Cl CI ~ 2Cl 

Concerning the operator ii, we need only iLs diagonal components ror the calculation of 

divergeoces. They are 

n = 0 
11 , 

n = - V pop,,... _ 2!(~) poll B""" D' 6th P"" 
II cl ~ CI ¢I ,.' ..' " P" • 

V(I)
llJ3 = ll..4 = - -

Cl 
-

1(1)(¢I) 2 
- - 8 .

2cI "'.. 
(26) 

Now, it is straightrorward to apply tbe algorithm (15) and to calculate the one-loop 

di ver«eoces: 

ra.. =-!Tr lnil = !jtP%..;g{V(¢I) + V(l)(~) _ !8!.. [/(~) + fl')(~)]} . (27) 
2 E: cI¢I CI 2 2c1 2cI 

Notice, as is easy to see, that. the ghosts corresponding to the gauge fixing actions (11) 

and (12) give contributions to Lhe surface term!! only. Here, the expressioll (21) is the final 

one for the one-loop divergences of the effective acLion . We call also see tha.t t.he one-loop 

countertttma for the potential V (which come from the gra.vitationaJ sector) coincide wilh 

the corresponding expressions found independenlly in refs . 15,71 (using the sall'l.e gdur,e 

condition). 

10 order to writ.e the final answer we should lake into account the counLerterms of the 

gravitational sector (arbitrary dilaton-graviton background). These countert.erms have 

been ca.lculated in refs. [5.71 (with the gauge fixing aclion (11), ill particular). As it has 

been shown above (poiot2a), lhe Maxwell sector does nol give here any contribution. So, 

finally, the one-loop divergences of the effective aclion for the theory (9) are 

r cU.. = _! fd'lx J9 [~(V~4» ("1A~) + V(~) + V(I)(¢I) ! 8!" (f(:) + I(I)(~))] . 
E ¢I CI4> c, 4 c, Cl 

(18) 

This expression constitutes lhe main result of Our work . 

2c. Renormalization . Let. us now discuss the renormalizat.ion of the theory under COII ­

sideration. It follows (rom (28) that the one-loop renormalized action is 

SR = f tPI v'9 U (1- E:!l) g""'o"v>o"v> + clv>R + V(v» (1 - celie,?) 
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V(l)(Y') _ 1('1') F' (1 _~ _1(1)('1'»)] (29) 
UI 4 "''' E~ ECt/(Y') . 

Cho08ing the one-loop renormalization of fields and constant in the dilaton-gravity sector 

as the following (see 171 for a discussion of this point) 

'I' = Y'R, Cl = CIR, 9"", = e"'("·CI}g"",, (30) 

where, in the one-loop approximation, q(Y',c.) = 3/(2cIEY')' we obtain 

SR jcPz fg [!g'WlJ~Y'8"Y' + clY'R +V(Y') (1 __1_ + _3_)
2 UlY' UlY' 

V(I}(Y') _ f(tp) i'!, (1 _~ __3_ _ 1(1)('1'))] , 
(31 ) 

t:c. 4 £~ t:c. tp t:c, 1('1') 

where i'!, = 9,.a9"11 F,."Fo~, being g/lO the renormalized metric tensor. 

1L follows from expression (31) that, in the gauge under consideration, MaxweU-dil&ton 

gravity is one-loop renormalizable (or t.he following choices of the functions V and f: 

V(Y') = pY"e-·", P = (1 - ~) PR. 
Eel 

(32)f(tp) = ; exp [- (t +b) '1'), fo = (1 - E~J It 

Here 0 and b are arbitrary functions of CI (note that P and 10 can be choosen to be zero). 

Thus, we have shown that tbe theory under consideration is one-loop multiplicatively 

renormalizable in tbe gauge (11). (12), Cor special choices of V and / (32). 

By expanding in e-., this V is seen to correspond to a special case of the type of 

dilaton potential one expects from closed string loop corrections Ill). In fact, in terms of 

the original dilaton field ~ (see (5)). we get 

",' eQtP eA'e-
2 e-(Q - 6)¢ eB'e- 2tPV(tP) = ¢ , a(¢) =0' (33) 

These are indeed very nice functions of the vaciable t;. In particular. for positive values 

of all the coefficients involved, V develops a minimum for a rather small value of ¢ 

(depending, of course, on the precise values of the constants), while 0 has a monotonical. 

exponentially decreasing shape. When A' and B' are negative, V is an exponentially 

increasing function of t; while a has a maxirrrum previous to an exponential decrease. V 

also develops a minimum for nega.tive values of p', Q and A'. Notice that if one uses the 
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expansion on ¢ of exp(exp( - 2¢)) (as in the perturbative case of refs . II 1,131), then the 

minimum is never seen . 

Let us now compare the one-loop strudure of the lheory (9) with the structure of 

four-dimensional Maxwell-Einstein theory, which is known to be one-loop non·renormal· 

izahle (I5J, even on shell. First of all, one can see that there is the contribution to the 

Uavita.tional sector (R'-l.erma) from the eledromagnetic sedor in four dimensions 1151· 
As we have seen, in the two-dimensional case there is no contribution to the dilalon­

gravity sector . . ~econd, while there is no contribution from the gravitational sedor to F~" 

in four dimensions, here, on the contrary, we see that for Maxwell-dilaton gravity there is 

such contribution from the dilaton·gravity sector , even if the function 1('1') is choosen to 

be constant. Third, new counl.erterma ,appear 1151 which differ (rom the original action 

and which, in the end, lead to the non-renormalizability of four -dimensional Maxwell­

Einstein theory even on shell. Such terms have not appeared in the th(:ory (9), which is 

one-loop multiplicatively renormalizable off-shell for V and J given in (32). (Note thal 

if, moreover, we take 0 = 0 and b = 0 in (33), then two-dimensional MaxweU-dilaton 

gravity is actually one-loop finite,4 compare with [8,10)) . Finally, we must remark that 

for the two-dimensional theory under consideration, as well as for the four-dimensional 

Maxwell-Einstein theory, one-loop counterterms (off-shell) depend on the gauge. Here, 

presumably, the use of a gauge independent effective action (see [16,171 for a discussion of 

ga.uge independent effective action in two dimensional gravity) can add some information 

on the renormalization structure of the theory. 

2d. Cbarged black boles. The solutions of the two last eqs. (4) (when t/J is absent from 

the begining) are: 

¢o + ~ In r, for.., # 4,
fer) = 10o- l (¢(r)k'·(r). ¢(r) = Q. (34)

{ ¢o - '2 r, for .., = 4, 

where Q = 4/("' - 4)' and fo, ¢o and Q ace arbitrary conlilanls (see also (l31) . The solulion 

for g( r) (coming from the first oC eq8. (4)) is 

rO+1 [-2m - ! r ds s-aw(¢(s))]. for.., '" 4, 
g(r) = (35)

{ e- Qr [-2m + ar dS.! -OW(~(s)], for.., = 4, 

4Perturbative properti~ (in particular, L~loop fini~n~) ohhe luperaymmeLric ext.ension or mallet ­

dilaLon sravity (d = 2 luper«ravily) have been recently iovesLi,al.ed in ref. (191. 

to 
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where W(4)) == V(4)) - fJe 4·f(2a(;) and m is a new constant (it turns out to be the 

black hole's mass). 

This solution for the potential (33) describes a Reissner-Nordslr0ffi black hole. We do 

nol discu8s the properties of (34 )-(35) here due to lack of space. 

In summary, we have studied the renormalization structure of two-dimensional Maxwell ­

dilaton quantum gravity and showed tbat thie theory can be one-loop multiplicatively 

renormaJized. This theory admits &l80 charged black holes. However, it &eems (13,18) 

that these solutions do not satisfy 8c&lar no-hair theorems. In order to have these the­

orems we ought to introduce scalar specLator fields (13) (as in eqs. (2)), which arise in 

the 8uperstring context from the Ramond-Ramond field. Then it would be interesting to 

investigate the one-loop structure of such theory. Work &long this line is in progress. 
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