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Abstract 

Some quantum mechanical potentials, singular at short distances, lead 
to ultraviolet divergences when used in perturbation theory. Exactly as in 
quantum field theory, but much simpler, regularization and renormalization 
lead to finite physical results, which compare correctly to the exact ones. The 
Dirac delta potential, because of its relevance to triviality, and the Aharonov
Bohm potential, because of its relevance to anyons, are used as examples 
here. 
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An important instrument of present days physics, quantum field theory, is 
permeated by short distance singularities, which are thoroughly understood 
in the framework of regularized and renormalized perturbation theory. Our 
non-perturbative understanding, ma.inly lattice-bound, is not so firm, and 
exact solutions for pnysically relevant theories are basically absent. Quantum 
mechanics does not usually have short distance singularities, but they show 
up if the potential is singular enough (but not too much: the Hamiltonian 
should be bounded from below and self-adjoint). Then regularization and 
renormalization consistently cure the short distance singularities and lead 
to physical results independent of the precise regulator and independent of 
the precise renormalization scheme, Furthermore, renormalized perturbation 
theory reproduces the exact solutions for physical magnitudes. 

The two problems we have chosen to study are best considered in two 
dimensions, First, the Dirac delta, zero-range or contact interaction, because 
already its exact solution is most conveniently obtained by regulating and 
renormalizing, because one can perform perturbation theory to a.ll orders, 
and because of its relevance to triviality [IJ. Second, the Aharonov-Bohm 
potential, because it perturbatively induces a new interaction absent in the 
exact setting and because of being at the foundation of anyon physics [2], [3J. 

Recall that the Schriidinger equation (throughout this letter we will use 
2M = Ii = I) for positive energies E = P is equivalent to the Lippman
Schwinger equation 

,p(r') = ,po(r') - Jd~rfGk,+(r - r')V(,J)tt>(,J), 

where "'0 is a solution of the free Schrodinger equation, a.nd Gk ,+ is the free 
propagator. [n the two dimensional case that we are interested in 

Gk,+(r - r') = ~H~I) (kif" - r'1), 

Hal) being the first Hankel function of zero order, which in the asymptotic 
limit behaves as an outgoing wave and has the short distance behavior 

i I (kf )Gk,+(t)--:--:-) In(-;;-)+1" f=.r-;;, ( I) ,-0 .1 _1r ;: 
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where "( is Euler's constant. One particular way to find the solution of the 
Schrodinger equation consists in solving iteratively the Lippman-Schwinger 
equation, so that 

1/i(il 1/io(r) - Jd1PG•.+(r- P)V(r')1/io(P) 

+ J~r'dlr;'G•.+(r- p)V(p)G•.+(r' - ri' )V(,;H)1/io(,;H) +... (2) 

In the scattering problem, the above approach together with the asymptotic 
condition 

_ i(kr+f) 
1/i(f) - e,k., +~/(k,O), (3) 

r-(X) VT 

allows to define the Born series to compute the scattering amplitude I in 
perturbation theory. In this context, it is easy to understand that for a 
potential V(il which is singular enough when r ~ 0, the Born series will 
contain divergent coefficients, as the propagator exhibits the short distance 
logarithmic behavior (1). We will illustrate this fact by studying the pertur
bative approach of two different potentials which can be solved exactly but 
have that peculiarity. 

Let us focus first our attention on the perturbative approach to the Dirac 
delta potential, zero-range or contact interaction. Let us recall that contact 
interactions have been studied exactly in the literature [4]-[10]. Delta func
tion potentials in two and three dimensions are a nice and simple example 
where the concepts of regularization and renormalization, which are common 
in quantum field theory but hardly used in quantum mechanics, are very use
ful for obtaining non-trivial results. One correct treatment of the problem 
requires first regularization. This can be achieved by substituting the delta 
function potential 900(2)(f), 90 < 0, into the SchrOdinger equation by, say, 

VR(r) = 90Ro(r - R); R> 0, (4)
211' 

which in the R ~ 0 limit reproduces the original potential. The Schrodinger 
equation for negative energies can then easily be solved by well-known met
hods, finding for small R one binding energy Eo(R) = _iJ;e-Z'Ye41r/90. For 
R ~ 0 the bound state energy goes to -00. However. one can choose a 

:1 

coupling constant depending on the regulator in such a way that when the 
regulator is removed the binding energy stays finite. This happens when 

1 1 R
--=-In-, R < Ro. 
90(R) 211' ~ 

where Ro is a length which measures the strength of the interaction. Be
cause one is used to describe interactions with dimensionless couplings one 

introduces the renormalized coupling constant 9,(fI), which depends on an 

arbitrary momentum scale fI, 

1 1 1 (fiR )--=---- In-+,,( (5) 
9,(fI) - 9o(R) 211' 2 ' 

in terms of which the binding energy reads Eo = _fl2e41r/9'("). Notice that 

Eo depends on 9,(fI), but not on fI, that is, the explicit and implicit (through 
9,) dependence on fI of Eo cancel. Physics is determined by the value of 9,(fI) 

at an arbitrary value of fl· 
Similar features are found in the scattering problem. E = P > O. Only 

when the coupling constant depends on R as above is it possible to find the 

finite and renormalized scattering amplitude 

) 1/2 --"'7"-T,r (6)(l(k,O)= 27rk In;-T- g;(:)' 

Contact interactions have also been studied in the literature with the use 
of some other regularizations, such as a circular well potential [6], [9], or in 
momentum space [4], [5], [7], arriving to the conclusion that regularization 
and renormalization is a powerful approach for obtaining non-trivial results 
which are furthermore independent of the particular regulator used. It is 
a.lso important to stress that there is a large amount of arbitrariness in de
fining 9,(fI): a specific definition. as (5), defines a renormalization scheme, 
but one could have added a constant to the r.h.s. of (5) which would mo
dify the dependence of Eo and of I(k, 0) in 9,(fI) without actually changing 
physics. This is seen immediately recalling that the dependence of I( k. 0) on 
9,(fI) and fI can both be traded for a dependence on Eo, which is fixed by a 

renormalization condition [6]. 
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From references [4J-[IOJ we learn that the delta function potential in two 
space dimensions: i) is most appealingly treated by regularization and renor
malization of the coupling constant; ii) exhibits the typical quantum scale 
anomaly associated to the process of renormalization, since the problem was 
originally scale invariant but the final answer is not; iii) is only noticed by 
s-waves, since for higher waves the centrifugal barrier dominates over the 
delta function potential, which therefore is completely screened; iv) can be 
substituted by a boundary condition which ensures the self-adjoint character 
of the radial free Hamiltonian; v) is the formal non-relativistic limits of a gl/>4 
quantum field theory. 

After recalling the basic features of contact interactions, we will address 
here its perturbative approximation. One expects that perturbative renor
malization should be used to deal with this problem, and in fact this is so. If 
one substitutes directly goc5(2)(i) in (2), the second and higher order results 
are clearly logarithmically divergent. As we already mentioned, this is due to 
the short distance behavior of the propagator (I). To compute explicitly the 
divergences, we will introduce the regulated expression for the delta function 
potential given in (4). The first term in the Born series of the scattering am
plitude, if k; and k/ are the momenta of the incident and scattered particles 
respectively, is 

/1) _ __I_jd~ -ikrrv, (i') ik,.r - -gp +O(R)
B - 2y'2;k re R r e - 2y'2;k , 

where we call the coupling in which we perturb gpo Although the first order 
approximation is finite when the regulator is removed, the second order one 
is logarithmically divergent 

1(2) = __1_ jd2r'd2rlle-ikrr'v, (p)G (r'" _ ri ,) V, (,J')eik,.r"
B 2y'2;k R k.+ R 

1 2 1 kRe'Y)(i--gp - - -In - + O(R). (7)
2v'hl 4 211' 2 

In order to get rid of this divergence in the scattering amplitude we will 
choose another potential given by 

(I) (2) gp ( gp RAe")VR(r) = VR (r) + VR (r) = -R 1- -In-- c5(r - R), (8)
211' 211' 2 
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where A is an arbitrary momentum. The computation up to second order in 
gp using the above potential leads to a finite answer, since the second order 
in gp in (8) exactly cancels the logarithmic divergence in (7), and then 

f _ -gp ( 1 k))B - 2J2ik I-gp (i4'- 211'lnX +O(g~). 

Notice that the modification introduced in (8) is only aimed at making the 
physical magnitudes finite when R -+ O. not at introducing a new scale A. 
Thus gp has to depend on A in such a way as to cancel the A dependence of 

lB, 
Perturbation theory up to third order in gp using potential (8) would 

yield divergent quantities once again 

I -gp ( (i 1 k) (i 1 kRe")l)
B = 2y'2;k 1 - gp 4' - 211' In A + g~ 4' - 211' In -2- + O(g~). 

The potential that leads to finite results up to g~ is given by 

VR(r) = Vkl )+v,(2)+v,(3) = gp (I - gp In RAe" + g~ In2 RAe") c5( -R)
R R 271' R 211' 2 411'2 2 r , 

so that one obtains 

IB=~(l- (~_~ ':) 2(1 1 k)2) I2..J'fik gp 4 211' In A +gp 4' - 271' In A +O(gp). 

One can easily compute to all orders in perturbation theory, and the series 

obtained can be summed up giving 

1 gp 8(r-R). 
VR ( r) = 211' R 1 +~ (In ~A +l') 

and 
1/2 -gp/2l1'

) (9)
IB = C: 1 +UP U- T,; In r)' 

fi 



The above result agrees with the exact one (6) after imposing Ae2"/gp = 
p.e2~/g" which implies gp( II = p.) == 9r(P.). The bare coupling constant is 
defined from VR( r) as 

gp(/I) 
go(R) == u@ (In & + 1')'

1 + 2~ 2 

which coincides with (5). This identification should be understood as a re
normalization condition, that in principle, one should impose at each order 
of the perturbative expansion. 

The use of the specific regulator we chose allows to easily compute to all 
orders the Born scattering amplitude and sum the perturbative results. In 
general, with the use of some other regulator (e.g. a circular well potential), 
renormalized perturbation theory does not reproduce both the exact regu
larized potential and the exact scattering amplitude. This latter is easily 
reproduced, which is all what physics demands, but the summed regularized 
potential is not the same as the exact one. 

This analysis explains how the perturbative approach of contact interac
tions in quantum mechanics has to be performed, which is close both in spirit 
and technically to standard perturbative regularization and renormalization 
of quantum field theory. We have seen that in order to obtain finite results 
up to a certain order in perturbation theory one has to add some" counter
terms" to the potential which cancel the logarithmic divergences produced in 
the coefficients of the Born series. Then these divergences are reabsorbed into 
the bare parameters of the theory, while physical finite magnitudes can be 
defined. This is exactly the same process that is followed when renormalizing 
a quantum field theory perturbatively. 

We will address now the perturbative approach to the Aharonov-Bohm 
problem, that also requires the techniques of renormalization. The Aharonov
Bohm gauge potential is A= 2'!.. til" where <) is the magnetic flux, and il... 
is the unitary vector in the azimuthal direction and r is the radial distance. 
We define a == - ~, e being the electric charge of the particle. Restricting 
the study of the problem to 0 < a < 1, the exact scattering amplitude of this 
problem has been computed by several authors [IlJ, [12], [13], [14J and for an 
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incident wave with momentum ki = (-k,O) is, in the non-forward direction 

sin tra ( , 0) -71' < () < 71'.f(k,O) = - ~ 1 -!tan? ;
v27rk ~ 

The limit a -+ 0 can be taken in the above expression, obtaining 

_~ (1 - 0) + 0(a3 ).f(k,() = ,,&k I 'tan 2' (10) 

Notice that there is no a 2 contribution in (10). This is the result one would 
expect to recover using perturbation theory up to second order. As remarked 
by several authors [15J, [16J, [17], the Born series fails to give the correct 
results. We will show here how one should proceed to obtain the correct 

answers. 
The perturbation in this problem is 

a 0V(F) = -2i-- + -a
2 

== V(I)(F) + V(;)(r).
r 2 0tp r2 a a 

The Born approximation in first order in a gives 

i7l'a ~ 
(1) - -~ tan 'l'f B -,ffik ~ 

This does not agree with the result obtained in (10) in first order in a since 
there is one term which is missing. As noticed by Corinaldesi and Rafeli [15), 
in the first order approximation the s-wave contribution to the scattering 

amplitude is absent. 
The correction in a2 comes from two terms. The first one, from the 

iteration of VJI), is finite, and can be computed best by going to momentum 

1As noticed in the literature [12], [13J, [14], iF the exact Aharonov-Bohm scattering 
wavefunction obeys the asymptotic condition (3), then the scattering amplitude exhibits 
a singular contribution in the forward direction, This singularity can be removed by 
modifying that asymptotic condition as it was done in [11]. Here we will restrict our 
study to the non-foward direction, noticing that also the perturbative approach yields 

singularities in the forward direction, 
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space and computing the integral 

/2).1 = ~ J pdpd<p kpsin<p kpsin(O - 'P) . 
a 2..Jii;k p2 - P _ if (P + p2 + 2kpcos <pi (k2+ p2 - 2kpcos(<p - 0» 

The angular integral can be trivially evaluated by expanding each fraction 

in Gegenbauer polynomials. After some algebra, one arrives at 


f(2).1 _ 211'012 ( 
B - - 2..!'hl In(2cos 0/2) + ~)2 . 

The second contribution of order 012 to the Born scattering amplitude comes 

from V~~) and it yields a logarithmically divergent integral 


0 2(2).2 J 2 e·(k;-kf )·", 211'012 loCO Jo( Kr)
fa =---- d r =---- dr--,

2..Jii;k r2 2Vhl 0 r 

where Jo is the Bessel function of zero order, and K = Iki - kj I = 2k cos 0/2. 

Introducing a short distance cut-off. we can compute the explicit form of the 

divergence 


1(2).2 211'02 ( I KR O(R»)
a = ---- -'Y - n - + .2Vhl 2 
Adding all contributions up to second order in 0 2 , the Born scattering am

plitude is 


_ 11'01 (. 0 (.11' kR))fa -..Jii;k I tan 2" + 01 -'2" + 'Y + In"2 + O( 01 3 ). (11) 

This does not reproduce the correct result in first order in 0 and yields a 
divergent quantity in second order, even though the correct result does not 
have contribution in 012. Notice, as well, the kind of divergence in (ll): it is 
exactly of the same form as the one we found in the second order perturbation 
of the contact interaction, eq. (7). In fact, introducing a new interaction 
in the perturbed Hamiltonian, a zero-range or contact interaction V( r'j = 
211'016(2)( r'j, the wrong first order result is corrected, while the whole second 
order result, including the logarithmic divergence, is cancelled, so that one 
arrives a.t precisely the scattering amplitude (10). 

9 

We should remark here that the crossed terms in the scattering amplitude 
in 0 2 corresponding to the the delta function potential times V~I) trivially 
vanish, the reason being that they act in orthogonal Hilbert subspaces: while 
the contact interaction only affects the s-wave sector. VY) vanishes in that 

subspace. 
The contact interaction introduced here is a repulsive one. This very 

likely reflects its origin as an auxiliary interaction only seen in perturbation 
theory, but which is not present in the exact treatment (recall that repulsive 
contact interactions are trivial). It contributes to implement a feature of the 
exact wavefunction, i.e. that it vanishes at the origin. which perturbations in 
the Aharonov-Bohm potential alone are not able to implement, leading to the 
short distance divergence of 112).2. Notice also that the coupling constant of 

this interaction does not become renormalized, since its unique job is to make 
finite the perturbative theory of the Aharonotr-Bohm problem. Obviously, 
one could add a different contact interaction to the Hamiltonian and proceed 
with its perturbative study. This was studied exactly in ref. [18]. 

We should mention here that similar results were first found studying the 
non relativistic quantum field theory model corresponding to the Aharonov
Bohm effect [19J. In refs. [20], [21], [22] it was shown that in order that 
the theory is finite a </1 4 interaction is needed. We find parallel results in 
quantum mechanics: the introduction of a new interaction in the perturbed 
Hamiltonian, a delta function potential, which is the quantum mechanical 
counterpart of </14, is needed to ensure the finiteness of the perturbative ap
proach. 

These results should also be applied to the study of the perturbative 
theory of anyonic quantum mechanics in the bosonic end, where one also 
finds logarithmic divergent quantities. This problem has heen considered 
recently by several authors [23]. [241. [25], but we think that the solution we 
offer here, not unrelated to some of the ones suggested hy these authors. is 
simple, systematic and straightforward. 

In conclusion: quantum mechanics for singular enough potentials leads 
to a perturbation theory anchored on regularization and renormalization. It 
shows in a very simple setting many features of renormalized perturbation 

[0 



theory in quantum field theory, but allows to go far beyond by, i.e. comparing 

to the known exact results. 

Acknowledgements We thank X. Vilasis-Cardona, J.I. Latorr~ 
and R. Emparan for useful discussions. Financial support under contract 
AEN90-0033 is acknowledged. C. Manuel acknowledges the Ministerio de 
Educacion y Ciencia for an FPI grant. 

11 

References 

[IJ D.J.E. Callaway, Phys. Rep. 161, 241 (1988). 


[2J J.M. Leina.a.s and J.Myrheim, Nuov. Cim. 31B, I (197i). 


[3J F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); Phys. Rev. Lett. 49, 957 

(1982). 


(4J C. Thorn, Phys. Rev. 019, 639 (1979). 


[5] 	 M.A.B. Beg and R.C. Furlong, Phys. Rev. D31, 1370 (1985). 

(6] 	 P. Gosdzinsky and R. Tarrach, Am. J. Phys. 59, 70 (1991). 

[7J 	 R. Jackiw, "Delta-function potentials in two· and three·dimensional 
Quantum Mechanics", in " M.A.B. Beg Memorial Volume" A.Ali, 
P.Hoodbhoy, Eds., World Scientific, Singapore 1991. 

[8J 	 L.R. Mead and J. Godines, Am. J. Phys. 59, 935 (1991). 

(9] 	 J. Fernando Perez and F.A.B. Coutinho, Am. J. Phys. 59,52 (1991). 

[10] C.R. Hagen, Phys. Rev. Lett. 64, .503 (1990). 

[IlJ Y.Aharonov and D.Bohm, Phys. Rev. 115,485 (1959). 

[l2J S.N.M. Ruijsenhaars, Ann. of Phys. (N. Y.) 46, I (1983). 

[13] 	 C.R. Hagen, Phys. Rev. 041.20[5 (1990). 

[14] 	 R. Jackiw, Ann. of Phys. (N. Y.) 201, 83 (1991). 

(15J 	 E. Corinaldesi and F. Rafeli, Am. J. Phys. 46, 1185 (1978). 

[I6] 	 Y. Aharonov, C.K. Au, E.C. Lerner and .1.Q. Liang, Phys. Rev. D29, 
2396 (1984). 

[17] 	 B. Nagel, Phys. Rev. 032, 3328 (1985). 

12 



[18J C. Manuel and R. Ta.rrach, Phys. Lett. B268, 222 (1991). 


[19J C.R. Hagen, Ann. of Phys. (N. Y.) 41, 2015 (1990). 


[20J O. Bergman and G. Lozano, MIT preprint CTP 2182 (1993), to appear 

in Ann. Phys. (N. Y.). 

[21J M.A. Valle Basagoiti, Phys. Lett. B306, 307 (1993); R. Empa.ran and 
M.A. Valle Basagoiti, Univ. del Pais Vasco preprint, EHU-FT-93, to 
appear in Mod. Phys. Lett. A. 

[221 D.Z. Freedman, G. Lozano and N. Rius, MIT preprint CTP (1993). 

[23J J. McCabe and S. Ouvry, Phys. Lett. B260, 113 (1991). 

[24J D. Sen, Nucl. Phys. B360, 397 (1991). 


[25J C. Chou, Phys. Rev. D44, 2533 (1991); D45, 1433 (1993) (E). 


13 


