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Abstract 

We present the extension of the Lagrangian loop representation in 

such a way to introduce matter fields. The partition fundion of lattice 
compact U(l) Gauge-Higgs model is expressed as a sum over closed 
as much as open surfaces. These surfaces correspond to world sheets 
of loop-like pure electric flux excitations and open electric flux tunes 
carrying matter fields at their ends. There is a duality transforma­
tion between this description in terms of loop world sheets and the 
topological representation in terms of world sheets of Nielsen-Olesen 
strings both closed and open joining pairs of monopoles. 

L 


In a previous paper [11 we showed a natllTal procedure in order to set 
up the Lagrangian Loop representation correlative to the original Hamil ­
tonian Loop formulation [21. In reference [II, starting with the Villain form 
of the action, was obtained straight.forwardly the partition function of 4D 
lattice pure QED as a sum of closed world sheets of electric loops. In the 
present paper we shall extend this Lagrangian loop approach in such a way 
to include matter fields . We consider the lattice compact U (1) Gauge- Higgs 
model which describes the interaction of a compact gauge field 0,. with the 
scalar field ¢ = 1¢lei'P. The self-interaction of the scalar field is given by the 
potential A{I¢12 - 1¢~)2. For simplicity we shall consider the limit A -+ 00 

which freezes the radial degree of freedom of the Higgs field (it is known that 
the numerical results obtained already at A = I are indistinguishable from 
the frozen case). Thus the dynamical variable is compact, i.e. <p E (-7r, 7r). 
This model is known to possess three phases, namely confining, Higgs and 
Coulomb [31. The Higgs phase splits into a region where magnetic flux can 
penetrate in form of vortices (Nielsen-Olesen strings) and a region where the 
magnetic flux is completely expelled [41, the relativistic version of Meissner 
effect in superconductivity. Relying on this, we call this two subregions: 
Higgs I and II in analogy with superconducting materials. 

The Villain action of this lattice model is given by 

z = /(d())L/(d<p)Lexp(-~ II "'10-27rn W-~ II "'1<p-27rI-O W) (1) 
n I 2 2 

where we use the notations of the calculus of differential forms on the 
lattice of [51. Tn the above expression: f3 = ~, 0 is a real compact I-form 
defined in each link of the lattice and <p is a real compact O-form defined on 
the sites of the lattice, V is the co-b,mndary ope:-ator, n are int<>ger 2-forms 
defined at the lattice plaquettes, and L integer I-forms, and II .W=< .,. >. 

If we use the Poisson sumation formula Ln f{n) = L! f~oo d¢f(¢)e21ri
",. 

for each of the compact variables, the partition function (1) transforms into 

j +OO j+oo f3 2 
Z = ~~ / (dO) / (d<p) -00 (dl/J) (dx)exp( -2 II "'10 - 27rl/J II-00 

-~ II \lcp - 27r X - () W)ei<!,w> ei<I,x>. (2)
2 
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Integrating in the 1/; and X variables 

Z ex ~~J(d(J) J(dVJ)exp(-2~" s W-2~ II t W) 
x ei<.,vs> ei<I,V..,> (3) 

using the partial integration rule < 1/;, ~4> >=< 01/;,4> > (0 = *V'* is the 
boundary operator which maps k-forms into (k-l )-forms ) and integrating 
over the compact VJ and (J we get the constrains 6(ot = 0) and 6(os = t) and 
thus, we finally arrive to 

I 1 
Z ex Lexp[-a "s W-- "oS W] (4)• 2/-, 211: 


or 


Z ex Lexp[-~ < s ~a+ M2 (5)• 2(3' 112 S >] 

where M2 = ~ is the mass acquired by the gallge field due to the Higgs 
mechanism. If we consider the intersection of one of the surfaces defined by 
the integer 2-forms s (open and closed surfaces) with a t=constant plane we 
get pure electric loop as much as 'electromesons' configurations. Thus, we 
have arrived to an expression of the partition function in terms of the world 
sheets of string-like configurations: the loop (Lagrangian) representation. 
In this representation the matter fields are naturally introduced by means of 
open surfaces which correspond to the world sheets of open paths, i.e. 'meson­
like' configurations. The corresponding Hamiltonian description in terms of 
gauge invariant path-dependent operators is the so-called P-representation 
[6],[7]. The creation operators of loop-states I are the 4>(C) for pure gauge 
excitations and ip(P:) for 'meson-like' configurations, that is 

ip(C)IO >= II U(I)IO >= IC > (6) 
lEG) 

1 We still use the t.erm 'loop' for the configurations in presence of matter fields albeit 
in a relaxed sense which covers both closed as much as open paths. 

2 

4>(P1')IO >= 4>t(x)U(P1')4>(y)IO >= IF: > (7) 

where 10 > is the zero loop state (strong coupling vacuum of the system), 
U(I) are the lattic.e gauge group operators, 4>( x) are the matter field operators 
and U( P:) corresponds to the product of the U(I) along the path P with ends 
x and y. 

Another equivalent description of the Villain form is the topological or 
B KT (for I3crezinskii-Kosterlitz-Thouless) representation in terms of the 
topological objects. As our model has two compact variables we have two 
topological excitations: monopoles and Nielsen-Olesen strings [81 . The B KT 
expression for the partition function of compact scalar QED is obtained via 
the 'Banks - Kogut - Myerson' transformation [91 (see Appendix) and is 
given by 

Z ex L exp[-21T2(3 < *n(m), f)V' 
M2 

* n(m) >] (8)II? 

n(m) + 
where the * denotes forms on the dual lattice, m = f)*n are closed integer 

I-forms attached to links which represent monopole-loops and *n(m) = *n­
0* q are integer 2-forms attached to plaquettes corresponding to the world 
sheets of both Dirac and Nielsen-Olesen strings (with monopole loops as 
borders). Thus, comparing (5) and (8) we can observe a complete parallelism: 
in both representations we have a sum over surfaces, and intersecting with a 
plane t=constant we get closed as much as open strings with point charges 
at their ends. In the first case this string-like excitations are 'electric' whilst 
in the second they are 'magnetic'. Loop and topological representations 
are connected by a duality transformation. While loops provide the most 
natural description of the strong coupling confining phase, Nielsen-Olesen 
vortices are the relevant excitations in the weak Higgs II sector of the phase 
diagram . We want to remark that there is a slight difference between both 
equivalent descriptions. In the BKT representation monopoles occur at the 
ends of both the Nielsen-Olesen strings (physical excitations) and the Dirac 
strings (non physical gauge variant objects) so we have the corresponding 
two types of world sheets mixed in the 2-form *n(m) of equation (8). On the 
other hand the gauge invariant loop description is simpler and completely 
transparent from the geometrical point of view. 

3 



In summary, we have shown t.hat the partition function of U(l) Gauge­
Higgs theory can be represented as the sum over world sheets of loops (open 
and closed). A correspondence between the loop and the B J(T descriptions 
is patent and suggests some kind of dl\al connection between the confining 
and the Higgs II regions of the phase diagram . 

The next step will be the implementation of the Pauli exclusion principle 
in the Lagrangian loop approach in order to include fermionic fields. This 
task has been accomplished in the context of the Hamiltonian loop formalism 
in reference [6J where a transparent geometrical description of 'filII' QED was 
given. 
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Appendix 
To obtain the monopole represent.ation (8) we start with the Villain form 

(1) and fix the gauge V!.p = O. Then, we parameterize the n = Vq + n(v), 
where q run over arbitrary I-forms and v over all co-closed 3-forms (Vv = 0). 
n( v) is a solution of V n = v. If we perform a translation I ----t I + q we get 
the expression 

roo 
z = J" (dA) E E Eexp(-~ II VA +27Tii W 

q I 2·00 
v 

(Vv = 0) 

-~ II A + 27TI W) (9)
2 

where A = 0 + 27Tq is a non-compact variable. By shift.ing A by 27TI we 
find dependence on the combination n + VI, which turns to be a solution 
of Vn = v so we can eliminate the I variable and perform the gaussian 
integration yielding 

4 

M2 
z= exp[-27T 2,6 < n(v), r7!l , U?n(v) >J (10)E 

V 

(Vv = 0) 

Performing a dllality transformation we get (8) where m = *v are now 
integer closed I-forms (8m = 0) and *n(m) = *n( v) so 8 * n = m. It is 
possible to express (10) in terms of the I instead of the n vari(lhles which 
reflects the presence of Dirac and Nielsen-Olesen sheets. 

5 
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