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Abstract : We compare plane-wave, coordinate-space and moment methods for evaluatillg 
operator-product expansion (OPE) coefficients of the light-quark and gluon condensates. 
Equiyalence of these methods for quark condensate contributions to two-current correlation 
functions is proven to 3.11 orders in the quark mass parameter m. The three methods are 
also shown to yield equivalent gluon condensate contributions to correlation functions, 
regardless of the gauge chosen for external gluon fields in the coordi!1a.te space approach. 
An improved method for evaluating quark-condensate OPE coefficients is presented for 
several (two-current) correlation functions. Gauge-dependent Green functions are also 
discussed. It is sho\vn that contradictory e;..,-pressions for the gluon-condensate contribution 
to the quark propagator occuring from t he plane-wave and coordinate-space approaches 
yield identical relations between the heavy-quark and gluon condensates, as anticipated 
from the gauge im'aria.:1.ce of the heavy-quark e::q)a!1Sion. 
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QCD condensates, which characterize the non-perturbative content of t!:.e QCD vac­
uum, are an essential element in determining hadronic properties through su:n.-rule meth­
ods [1-3J. In this approach, each condensate makes a distinct contribution to ~he operator­
product e>..-pansion (OPE) of a two-current correlation function. 

There are several techniques for evaluating such OPE coeffici~nts . The plane-wave 
method singles out the contribution of a given condensate by using appropr.ately chosen 
states to "sandwich" t he OPE [1 ,2]' while the coordinate-space approach involves the 
eA-pansion of a non-local vacuum expectat ion value (vev) in t erms of spacetime coordinates 
[2,4:5J. Another approach favoured by Lavelle and co-workers is the mo~ent method 
[6J which is reminiscent of a gap equation. Since the OPE is an identity among field­
theoretical operators [7J, it is expected t hat all these techniques should y:eld identical 
results when computing gauge invariant quantities. However, a precise comparison of 
these different methods has not been pursued, despite extensive applications 0: each. Such 
a comparison is badly needcd- questions of gauge independence often arLo:c because of 
the fixed-point gauge [8] chosen for external gluons in the coordinate-space 2.;:>proach. In 
contrast, the plane-wave method obscures the coordinate-space approach's u::.derstanding 
of non-perturbative effects as a direct consequence of the non-perturbative CG::ltent of the 
QeD vacuum. 

Complications arise in all methods when light quark condensate (qq) enects are con­
sidered to all orders in the quark mass parameter m. In coordinate space tec:miques, the 
OPE coefficient of (qq) is determined as a power series in m 2 j p2 (p is the extc::lal momen­
tum), and the resulting series must be summed ancl analytically continued :9,1O,13J. A 
similar difficulty arises in plane-wave methods where it becomes necessary to 2..verage over 
moment urn directions by expanding propagator factors in a series and then re-:;urnrning to 
obtain a final result [11,13J Moment techniques typically work to lowest orde: :"'1 the quark ° 

mass [6], and so they must be extended to higher orders. These difficulties as50ciated with 
existing coordinate-space, plane-wave and moment. methods suggest t he destability of an 
all-order5 analytic approach towards t he evaluation of quark condensate cor:::ibutions to 
OPE coefficients. The difficulties associated with existing order-by-order ap;noaches are 
not merely of mathematical interest. In many applications the Laplace sum-:oales are for­
mulated as contour integrals in the complex momentum plane or as Laplace transforms 
[12;; consequently, detailerl knowledge of the analytic properties of the corrcla::on function 
is essential. 

The purpose of the present paper is to study the relation between plane-wave, coor­
dinate space, and moment methods for evaluating the quark and gluon conC2nsate OPE 
coefficie:1.ts. We also develop an improved analytic approach, as opposed to ::'le order-by­
order series techniques discussed above, for the evaluation of the OPE coefficients of the 
quark condensate. 

In section 2, \ve demonstrate the €(quivalence of existing methods for e\'3.luating the 
quark condensate OPE coefficient of gauge invariant correlation functions. :-ms analysis 
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leads :-';''.7.urally to all efficient analytic approach for evduE:.ting quark cO!1densatc effects to 
all orce:s in t he quark mass. This new approach, which can be phrased in t he language of 
a new ?eynman rule. is applied in section 3 to correl~tion. functions of scalar, vector and 
a.'tia l ·,-~tor currents, confirming the results of previous c:;.lcu1ations. 

If: section 4, we demonsq'ate the equivalence of all techniques for the gluon condensate 
OPS coefficient for gauge invariant correlation functions. For coordinate-space techniques, 
we shce,' that the value of the OPE coefficients is insensitive to the gauge chosen for the 
extermj gluon fields. 

L::all.Y, section 5 will consider some applications to t he quark propagator- a gauge 
depenc.2nt Green function- in order to address some controversies about coordinate-spacf! 
and p L:.I!e-WaVe approaches. Contradictory fixed-point and covariant gauge expressions for 
the gL:on condensate contribution to the quark propagator (respectively applicable to 
standa:d coordinate-space and plane-wave approaches) are nevertheless seen to yield the 
same gauge im'ariant relationship between the heavy-quark and gluon condensate. This 
demor~-:!"ates how gauge dependence at an intermediate stage of a calculation does not 
affect 2. genuinely gauge invariant quant ity. 

2. Equivalence of OPE Techniques for the Quark Condensate 

Tc examine t he relation between plane-wave, coordinate-space and moment 
approc.::nes, it is first necessary to review each method. 

C :.ord inate space methods [2,4,5] begiIl with the W ick expansion of a time-ordered 
prod u c:: of currents. The time-ordered product is expanded in a pert urbation series, and 
t hen t:-.2 non-perturbative vacuum In) is used to obtain the correlation function. Since the 
vacuu= is non-perturbative, residual normal-ordered contributions t o the 'Vick expansion 
of a t::.-:e-ordered product of currents can have a non-zero vev. Consequently, correla­
tion fcctions are expressed in terms of non-local vevs of fundamental quark and gluon 
fields, -;:;hich are then expanded in a coordinate-space series .....·hose coefficients are t he local 
comp0~~te operators known as QeD condensates. 

A ?;iven non-local vev can only generate certain condensates in its coordinate space 
expam:on. If only quark condensate effects are of interest, then the only non-local vev 
that needs to be considered [14] is (nl : ~(z)0(y) : In) , where the normal ordering refers 
to the ~erturbative vacuum. 

It has been shown elsewhere [9, 13,14] that the quark condensate projection of the 
two-q<:ark non-local vev is 

f"'l -~ o7]~ 00 ( • 2 
( HI: 1/J (z)?j;"'(y) : 10) = T(qq) L - ~~) n(~ ._ z).2n 

n== O 

OT]~ 00 ( . )2n+l+ _(qq) L -~m " (y - Z)(y - z)2n 
(1) 

3 n=O 2(n + 2)!n!4n +1 
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where ~, 11 represe:1L colour indices and m . .s : he quark mass parameter. Denoting::; = 
(y - z), the above expression is merely a ser !~s representation of Bessel functions: 

- E 6 t;.." r-;; iT .x fi') ](nl: 'I/J (z)7jJ"'(y): In) = - (ijq ) [1-=J1(mvx2 ) - --J2(mvx2 ) 
x 2. 6m v x2 

(2) 
- bt;.7] )( .n ) [Jl (mVX2) 1j_ . - -62 \qq 1.?J + m C? 

m v x2 

An important property of the quark condensate projection of the two-quark vev is t hat :t 
satisfies t he free eq'lation of motion 

-~ (i~ - m){nl : 1P (O)0(x ) : In) = 0 (3) 

This property a lIo...v;:; a simple method for obtaining a D-dimensional version of (2) simply 
by seekiug the solution of the equation of modon which reduces to (qq) /12 at x = O. The 
result is 

(01 ' ,j/(z),p"(y) , 10} ~ 8,"r(D/~~~/'~1 (qq)(i{! + m ) [J~;~;~~)1 (4) 

T he funct ional form (2) has not previously been used in coordinate space methods, but 
the series (1) allows an evaluation of quark condensate effects as a series in m2 j p2. 

It is important not to ascribe too much physical meaning to (4), since it is simply tL<:ed 
to extract OPE coefficients of the quark condensate. Since the OPE coefficients are per.:ur­
batively calculable, any amplitude used for th is purpose will be a pert urbative expans:on 
containing free-field propagators and by analogy, will contain the free-field expression for 
the aon-Iocal vev. All the infrared nature C)f the OPE is contained in the condensates 
themselves, a lthough this factorization of low-energy effects is difficult to establish [1 5,16J. 

T hus the coordinate-space approach for obtaining quark condensate effects consists of 
retaining residual normal-ordered terms (01 : 1j}(z)'I/J(y) : In) from the Wick. expansion of 
a given amplitude and t hen utilizing (1) for t he (qq) projection of this non-local vev. 

The plane-wave method will now be reviewed for the particular example of a scalar 
current correlation function. T his a llows the relation between plane-wave and coordinate­
space methods to be explored without t he complication of non-trivial LDrentz and Dirac 
str uctures. 

Consider the OPE for the correlation function of two scalar currents j(x) (e.g. j(x) = 
~(x)1/J (x)), 

d4 i p i J x e . 
x T(j(x)j (O)) = I(P) + 1)0(p) : 1jj1jJ: + ... + 1)1 (p) : 1jjD2!1jJ: + .. . 

+ [~(p)pCtI .. . pCt 2n : "1jjD01 ' .. D02n D2! t/J : + ... 
(5) + O~ (P) pCtI • .. pCt2n+l : 1j)D l ••• DCt2n+1D21 'I/J : + ... o 

+ equation of motion operators + BRS variations 

+ operators not leading to (qq) 
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where Do is the gauge covariant derivative. The OPE must haye this form, since for 
a product of BRS invariant currents, only gauge invariant operators appear apart from 
the trivial contributions from BRS variations and equat ions of motion [17] . Perturbative 
contributions to (5) are contained in I(P) , and operators which contain anything but two 
quark fields have been neglected since they do not ultimately contribute to the (qq ) effects 
in the correlation function. Non-trivial Dirac structures such as : liYral ... ",(a"1jJ : have 
also been neglected since they are not independent objects after a yeV is formed, thereby 
contributing in a sirrtilar fashion as the operators already considered. 

A correlation function is now formed from (5) by evaluating an expectation ,-alue in 
the non-perturbative vacuum: 

ip xII (p2) = i Jcrx e . (niT (j(x )j(O)) In) 

= I(P) + ... + v1(p) (nl :1jjD21 1/J : In) + .. . 
(6)+ £:(p) pO: 1 •• 'p0:2"(nl: 1jjD01 . . . D0:2... D211/J: In) + ... 

+ O~(p) pO: 1 '" p0:2... +1 (nl :1jjDO:l '" D02"-i-1 D 21 1/J : In) + ... 
+ 0 (eqn. of motion, BRS variation) + operators not leading to (qq) 

Since we are dealing with a scalar current the vevs in the above expression can be simplified 
(the symmetrization of indices imposed by contraction into products with momenta is 
important): 

(nl :1jjDol ... D02... +1 D211jJ : In) = 0 (7a) 

(nl :1jjD01 '" D02 ... D 21 : In) = SOl ... 0 2n (nl :1jjD2
(H'n )'Ij : In), (7b) 

where SOI .. 02n is a completely symmetric tensor normalized so that sgi ...~: = l. 

If attention is restricted to the (qq) contribution to II (p2) then the equation of motion 

D 2'1j; = b · D"'(· D - i/2u!J.//G!J.//) 1/J = -m 21/J + irrelevant operators = _ m 2 '1j; (8) 

can be used, since the neglected gauge-field contributions from the complete equation of 
motion do not generate the quark condensate [14J. After vacuum averaging, the (qq) 
component of II (p2) is thus given by 

ip xII (p2) = i Jd4x e . (niT (j(x)j(O)) in) 

(9)
= (qq) [.. . + vn(p) (_m2 ( + ... + t~(p) (_m2(+1 pOl ... p02"'SO:l'''02n] 

== C (p2) (qq ) 

The plane-wave method is designed to single out the quark condensate effects and 
to simulate the effect of vacuum averaging. If a matrix element of (5) is formed between 
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on-shell one-quark states jk, s) where k is the quark momentum and s represents the sp' 
state, then only operators with two quark fields will be non-zero (in particular Do can b<: 
replaced with 00: )' and since t he states are on-shell the equation of mot ion operators wU 
not contribute. Consequently, we find that 

i Jcfx eip.:r; (k, siT (j (x)j (O)) Ik, s) = V °(p)(k, 51 : 1P1/J : Ik, s) + ... 

+ Vi (p)(k, s1 : -;jja21 1/J : jk, 5) + ... (lOa 
+ £~pa l . .. p 0: 2T1 (k, 51: -:;jja0: 1 ., .00:2,. 821 : Ik, s) + ... 
+ o~ (p) pOl l ••• p 0:2T1+l (k, 51 : -;jjaOl ••• 00:2T1+ 1 ff2 10 : Ik, 5) ..:.. ... 

i Jd4x e'p·x (k, siT (j(x )j(O))lk , s) = VO(p)(k, 51: -:V;'I/J : Ik, 5) -+ ... 

+ vl(p) (_k2)1 (k, sl : -;jj'I/J : Ik, s) -+ ... 

+ £;,(P) (-ip· k)2n (_k2)1 (k, sl : ~0: Ik, s) -;- ... 

+ O~(p) (-ip· k)2n+l (_k2) I (k , 5i :v7fi : Ik, s) + ... 
(lOb 

Averaging over the momentum directions k simulates the effect of the vacuum ~ illustrate 
by the following identities: 

Jdk kOI . .. k02n ';'1 = 0 
(11f dkko1 .. . k02n = (k 2f SOl ··02n 

An identic2.1 plane-wave approach is to average over the external momentum .'.7 , an opt io 
which is more convenient for the gluon condensate [13J. 

Since the quark states are on-shell, k2 is replaced with m 2 after avera.ging, and , 
sum oyer spin states (and implicitly a colour trace) is performed, l hereby lecding to tht 
plane-wave determination of the (qq) OPE coefficient C (p2): 

( 2) ,- ° ) ( 2) n 1(P) ( 2) n+1 0, n -J0Cp ==LD(P) . . . +Dn (p -m +· ··+tn -m p . .. . p2So:.02... 

(12 
= ~ Jd4 x e

ipz Jdl, ~ (k, siT (j(x)j(O)) Ik, s) 

At this point it should be remarked that no distinction between bare ar:1 renormal 
ized fields has been made, implicitly assuming that we are \vorking to leading order. Th 
only modification that occurs in higher-loop calculations is the effects of renor!:J.a.lizing th 
composite operators that appear in the OPE. One then identifies the next-to-:eading COIl 

tribution to the OPE coefficient of the renornJaiized composite Opel"aLorS as a C'ombinatio: 
of a next-to-Ieading amplit ude and the leading amplitucie with a rcnormalizatic::J. effect (se 
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[16] for ietails of this procedlll'e for a particular calculat ion) . This would occur in an iden­
tical f~iion both for plane-wave and coordi!late-space l!1ethods_ T he only con'plication 
t hat Ca:J. occur is the failure of infrared singularities to cancel from the OPE co:::mcients 
[15]; a p!'openy which, if desired, can be explicitly verified at the relevant order [16]. Thus 
our an2.~ysis applies to higher loop effects provided that the appropriate renormalization 
factors ue t aken into account. 

Be:ore reviewing moment techniques, we will now demonstrate the equh-J.lence of 
p lane-\\aye and coordinate-space t echniques. To obtain the connection between these 
methoc~. consider t he possible contribut ions from the Wick expansion of the fiI!:ll line of 
(12) . Cea.rly only terms containing two (normal-ordered) quark fields: 1[;(z).,.t0!J ) : can 
contrib:.:te to the matrix element with (k, sr. All other terms v:ill either be disconnected 
proces..'CS or will have a zero matrix element because of their field content. Focussing upon 
a single :erm of this type occurring in the final line of (12) leads us to consider the following 
contrib·..:tion: 

~ j dk ~ (k, sl : 1P' (z)1jl(y) : Ik, s) (13) 

where r; and '; are colour indices. Since the Wick e,,:pansion is a perturbative expansion 
of free ::eleis, this matrix element can be easily evaluated by expanding the quark fields in 
terms 0: their free-particle solutions. 

1 /" . ~ -T/ 8T/e J. t"k ( )6" J dk L,,(k, sl : </-' (z) 7,be (y): Ik, s) = 12m dk (~+ m) e- . y-z 

s 
(14) 

81/( ik x= 12m (ifJ + m) j dk e- . ,x ~ y - z 

The OL~Y remammg complication is the averaging process over k, which is facilitated 
throug~_ utilization of the D dimensional partial wave expansion [4] 

ikI ~e- r(~ - I) ~ (-i)" (n+~-I) c!;!H (.d) [X2:'t' 
(15) 

x ( ~_)n+~-l In+Q_l (v'PX2)
vk2x2 2 

The RES of (14) is then evaluated utilizing the orthogonality of the Gegenbauer polyno­
mials a::d the k2 = m 2 mass-shell condition: 

~ j dk I:(k,sl: 7f'(z)lj;((y): Ik,s) 
!1 

eTl 
= f(D/ 2)2D/2- 1 8 (i fJ+ m) [JD/2_1 (m.JX2)] (16a)

12m (m2x2 )D/ 4-1/2 

_ 61;7). [Jl (mv9')] 
- 6m2 (tfJ + m) = 4 (16b) JX2 'D . 
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· .. 
Equation (1Gb) is identical to the coordinate space representation for the two-quark non­
local vev (-1), apart from ~he (qq) factor absorbed into the definit ion (9) of C (p2), thereby 
demonstrating the equh'alence of plane-wave and coordinate-space methods for evaluat ing 
t he (qq) OPE coefficient. 

We now consider t he connection between coordinate-space and moment methods con­
sidered. )VIoment techniques [6] begin with a separation of the full quark propagator S(k) 
into a perturbat ive and non-perturbative port ion. 

SNP (k) = S(k) - SP (k) (17) 

To interpret t his relation. consider the definition of the quantities on the RHS of the 
previous equation 

iSNP(k) = j dD xeik
' 

X (DIT(7,b(x)1fj(O)) ID) - (OIT(7,b(x):;;J(O)) 10). (18) 

But the \Vick expansion 

T (7,b (x jv(O)) = (OIT (7,b(x)1[;(O)) 10)+ : 7,b (x )1[;(O) : (19) 

applied to the RHS of (18) for a normalized vacuum In) yields 

iSNP(k) = JdDxeik'X(n l : 'ljJ (x)-;jj(O) : In) 

- j dDk "k NP 
(20) 

1(nl : i '(x) 7jJ(O) : In) = (27r)D e- "XiS (k) 

Moment methods [6: then relate the local condensate (qq) to integrals of the non­
perturbative propagator SN P (k) in a fashion similar to a gap equation: 

j dDk 
(27r) D iTr [SN P (k)] = - (qq) (21)

12 

The Dirac structures of SNP(k) have moments which are related to the quark condensate. 
In particular, with the help of the ~ = m equation of motion we see that 

SNP(k) = ~A(k2) + B(k2) 
D (22a)

dD k e A(k2) = Jd k mB(e) = _ m(qq)j (27.)D (27r)D 12 

Moreover, the (qq ) component of higher order moments is found by having each additional 
integrand factor of k2 correspond to multiplying the RHS of (22a) by an extra factor of 

2m : 

JdDk (k2)s+1 4(k2 )=j dDk (k2)SB(e)=_( 2)Sm(qq) (22b)
(27r )D • (27r)D m m 12 

7 



It is now straightforward to extract the non-local version of the two-quark vev by 
returning to (20): 

(DI : T (1,&(x)1F(O) ) : In) = i J(~:)kD e-ik ·;r~A(k2) + B (k2
) 

(23) 

= if] J(~:)kD e-ik.;r A(k2) + i J(~:)kD e-ik.;rB(k2
) 

The partial wave e},"pansion (15) is then used to evaluate the angular integrals in (23) , and 
we find that 

(01 • T (W(x)~(O») • 10 ) ~ if! J(~:)kD .4.(k'jr ( ~) (.jk:X') "-1 J" -1 ( .jk'x') 

JdDk - (D)( 2 )~-1+ i (2,,)D B(k2)r "2 . Jk2x2 Jif-- 1 (Jk2x2) 

(24) 
One car:. use the series representation of the Bessel functions in (24) in conjunction with 
(22b) in o:der to find the result 

D 2 1 
(nl : T (1jJ(x)~(O)) : In) = f(D/2)2 / - (qq) (if] + m) [JD/2-1 (:~)l (25)

12m (m2x 2 ) " -~ 

identical to the coordinate-space eX"J)ression (4). 

Cor-sequcntly we have demonstrated the equivalence of plane-wave, coordinate-space 
and moment methods for evaluating the (qq) OPE coefficientso In. the next section, a new 
analytic method for e\Oaluating OPE coefficients to all orders in m will be applied to several 
example::: . 
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3. Momentum Space Approach t o Coordinate Space lvlethod 

Scalar Current Correlat.ion Function 

Coordinate space methods generally involve calculating con£guration space integr 
over each term in the series (1). In this section, we utilize the full functional form of t 
two-quark non-local vev (2) to obtain a momentum space integral for t he lowest order ( 
contribution to the scalar current correlation function: 

ipTI(p2) == i Jd4 xe ' 
X (njT (j(x)j(O)) In) ,j(x) == 1Jj(x)1jJ(x) 

The quark condensate component of TI(p2) is obtained by retaining a two-quark vev fr 
the Wick expansion of the correlation function 

ipTI(p2) = -2i Jd4xe , 
x Tr [(O:T (1jJ(O)~(x)) 10) (nl :?j;(x)ljj(O) : In)J 

Transformation to momentum space is now made using the follo~dng free-field expressio 

4 

(O!T(7jJ(O)ljj(x)) 10) =ij d q eiq.;r g+m (2
(2,,)4 q2 - m 2 + if 

(nl : 7jJ(x)ljj(O) : iD) = - (qq) (if) + m) [Jl (m-Vx2)1 
6m2 R 

== j d4ke-ik'x(~ + m)F(k) (2 

j d4ke-ik'X F(k) =_ (qq) J1 (mR) (2
6m2 -Vx2 

The Feynman rule for the normal ordered term in (27) is given by (:2Sb), and 
illustrated in Figure 1. Working directly from (27) and (28), or applying t~e Feynm 
rules for the diagram in Figure 2, the scalar current correlation function can now 
expressed as the momentum space integral after evaluating traces. 

4 2 F(k)
TI (p2 ) = 24 Jd k [m2 

- P . k + k ] (p _ k) 2 _ m2 + t€ (2~ 

An important property of the Fourier transform F(k) is its on-shell behavioc 

2(k'2 - m ) ;:(k) = 0 , (2! 

which follows from substituting both sides of (28b) into (3). Making use of t~is propel 
in the integrand of (29) we find that 

TI(p2) = 12 (d4k [4m2 _ p2 ] p'2 F(k~ \ . + 12Jf d4k:F(k ). (:
• . - 2p· • + 2€ 

9 



The second integral in (30) is determined by the x -+ 0 limit of (28c): 

lim j d4 k e-ik.x T(k) _ (qq). 11 (mS ) 
X~O .r - -- hm6m2 x 2X ...... o (31) 

j d4kF(k) = - (qq)
12m . 

~ow consider exponentiating the propagator factor occurring in the first integral of (30): 

j d-lk F(k). =-ijd4kF(k) (= dTJeiT/(p2-2p.k+iE) (32)r - 2p . k + z€ Jo 

The k ~tegral can now be done using the definition (28c) of F(k): 

j d4 k F(k) . = i(qq) r= dry eiT/P
2-ET/ 11 (217m JPi) (33a)r - 2p· k + u. 12m2 H Jo 17 

This fi::.al integral is tabulated [18], 

e-O I l
CX> 

J dx ( Ja 
2 

+ (32 - a) v Rev> 0; Rea> IIm.al o ,J3x)- (33b)
x v(3V 

and w:-.en the € ----- 0 limit is taken, the following result is obtained: 

j erk F(k). =_ (qq) [1+JI-4m2/p2]-1 (34)r - 2p . k + z€ 6mp2 

The results of (31) and (34) are now substituted into (30). Thus the lowest-order quark 
conder:sate contribution to the scalar current correlation function for Euclidean momenta 
Q2 is then found to be 

2 (qq) (1 - v)(l + 2v) = /1 + 4m2/Q2II(Q ) = -- V - V , (35)
m l+v 

I 

in agreement with previous work [13]. 
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Vector C urrent Correlation Function 

T he vector current correlation function of light quarks 

d4 lPIIl'v(P) = i j xe ' 
X (nIT(jl'(z)jv(O)) In) ,jl'(x) == 1jj(xhl'1/J(x) (36) 

is extremely important in applications because of the relation between its imaginary pan 
and the ubiquitous quantity R(s) = u(c+e- -+ hadrons)/O"(e+e- -+ muons). 

The leading quark condensate contLibution to IIl'v(P) devolves from a two-quark vev 
in the Wick expansion. 

XIIl'v(P) = -2i j cfxelP
' Tr [(OIT (<t, (O)~(x)) 10)'1'(01: 1j;(x)1jj(O) : In) '1'] (37) 

A momentum-space expression for IIl'v can be obtained using eitl:.er (28) or by applying 
the Feynman rules to Figure 2. 

F (k) 
(38)IIl'v(p) = 2 JcfkTr [(~ - p+ mhl'(~ + mhvJ (k _ p)2 _ m2 + i€ 

The correlation function IIl'v must be transverse, as required by charge conservation. 
To see this explicitly, we contract pl'pV into the correlation function, and make liberal use 
of (29b) in order to find that 

pl'pVIIl'v(p) = 24 j d4k [(m2 - k2) p2 + 2(p· k)2 - p2p. k] r F(k! 

= -24 j atkp' kF(k) 

(39) 
\Ve note from (2Sc) that 

f atkP.kF(k)=iJ~~J atke-i~k'PF(k) 

.(qq). d J1 ( m~ JP2) (40) 

=-z-hm- =0 
6m ~-.o ~ m~# I 

thereby verifying the transversality of IIl'v' If we contract gl'V into both sides of (38) we 
find, upon evaluating traces and imposing the on-shell constraint (29a), that 

III'(P2) = 6Jd4k [16m2 - 8 (k2 _ p. k)] F(k) . 
I' (P _ k) 2 _ m 2 + t€ 

(41) 
= 24 (2m2 + p2) Jatk r F(k~ . - 24jcfkF(k)

- 2p· • + t€ 
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The integrals appearing in (41) were evaluated in (34) and (31). Using the transversality 
of IIplI (P) , t he result for the vector current correlation function 

(qq) 2m2 4m2 2 
IIp.(P) ~ 3m3 [1 + (1+ 7 ) 1 - 7 ] (ppP. - p gP. ) (42)K-

is easily obtained. T his result agrees with previous work using t he coordinate-space series 
methods [9], and with plane-wave calculat ions [13]. 

A xial-Vector Current Correlation Function 

The axial-vector current correlation function is of relevance to properties of the pion 
and their PCAC relations. The correlation function for axial currents is 

II:II (p) = i Ja1xe'P'X(OIT (j;(x)J~(O») In) 

j! == 1ij(xhpls1/J(x) , l~ = 1 
(43) 

Following familiar procedures, a momentum-space expression for II~1I is obtained. Since the 
axial current is not conserved, the correlation function contains a longitudinal component 

II:II (p) == ppPII IIf(p2) + (PJlPII - p2gJlIl) II~(p2) 
4 F(k) (44) 

=2 d kTr[(~-p+m)lll(~-m)'Jl] ( k)2 2 . 
p- -m +tE 

The longitudinal part IIt of the correlation function is obtained by contracting (44) with 
pfLplI, evaluating traces, and imposing the on-shell condition as before: 

J 

pl"pIIIIA =_48m2p2jd4 k F(k) . -24jd4kp.kF(k) (45)
Jlll p2 - 2p . k + u 

Recalling the results of the integrals in (31) and (40) then finds t he longitudinal part of 
n~1I to be 

rrA(p2) = 2m(qq) [1 _ C 4m2] 
L m 2p2 V p2 

(46) 

The transverse component is found by contracting (44) with gJlIl: 

II: Ii (p) = p2IIdp2) _ 3p2IIT(p2) (47a) 

=48Jd4 k 2 F(k~ . (-3m2+-21p2)-24J~kF(k) (47b) 
p - 2p· + U \ . 

Evaluating t he integrals and solving for IIT leads to the final result for II~II' 

2 
rrAII(p) = 2m(qq) [1- VI _4m ]

Jl m2p2 p2 P/-LPII 
(48)

2
m(qq) [ 6m ( 4 2)3/2]+-- 1--- 1-~ 23m4 p2 r (PI'PII - P gJlIl) 
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confirming earlier result s [10,13J obtained through use of conventional coordinate-space a' 
p lane-'wave techniques. (The relevant equat ion in [1 3] has an easily-identified typographi 
error. ) 

4. Equivalence of OP E Techniqu es for the G luon C ondensat 

The equivalence of plane-wave, coordinate-space, and moment methods for the 01 
coefficient of the gluon condensate ({O:.scP ) appears a priori unlikely because of the fix 
point gauge employed for the non-local two-gluon vev in coordinate-space methods. T 
issue is further complicated by the possibility of operator mixing in the OPE, as illustrat 
by the ST identities for the gluon propagator [19J. Nevertheless, for the evaluation of t 
product of gauge invariant currents as in QeD sum-rule applications, then the restrict 
class of (gauge invariant) operators appearing in the OPE allows a demonstration of t 
equivalence between the three methods. 

To demonstrate this equivalence, we first review plane-wa\'e, coordinate space, a 
moment methods as applied to the gluon condensate. Consider the OPE of the prod 
of two (gauge invariant) scalar currents: 

d4 ip xi J xe , T(j(x)j(O» =I(P2)+C(p2) : G~IIG~II: 

+ TJ(p2) pApp [: G~AG~p : - 41 
g>'P : G~1I G~1I : ' J 

+ operators not leading to (Q s G 2 ) 

A non-trivial complication in (49) occurs when the (light) quark mass is taken 
be non-zero in order to deal with infrared problems. In this case, the m = 0 Emit d 
not agree with the direct calculation with massless quarks because of an ope:-ator mixi 
between ::he quark and gluon condensates (at lowest order) when m =1= 0 [13J. The resoluti 
of this p:-oblem is closely related to the heavy quark expansion (the heavy quar~ expansi 
will be ci iscussed in Section 5). For now, we will assume that all calculations of the glu 
condensate effects involve massless quarks. 

The correlation function II(P2) is formed by taking a vev using the non-perturbat' 
vacuum '0). Consequently, the gluonic condensate contributions to II(p2) are gi\'en by 

TI(p2) = i Jd4x eip'X(nIT (j(x)j(O) ) In) 
u 

= C(p2)(G2) + TJ(p2) pApP [(n l : G~AG~p : 10) _ ~gAP(G2 ) ] 

where (C 2 
) == (01 : G~II G~1I : In). The process of vacuum averaging annihila:es thete: 

proportional to TJ(p2) 
2(01 : G~AG~p : 10) = 19AP (G ) , U 
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so t hat t:.e gluon condensate contribution to I1(p2) is given entirely by C(p2): 

I1(p2) = C(p2) (G2) + terms not leading to (C 2) (52) 

The ~lane-wave method is designed to extract the gluon coridensate by forming a 
(connect c':') rnatrLx element of the OPE wit h one-gluon states ie, k): 

Jd4
:: ~ iP' I (E, k iT (j(x)j(O)) jE, k ) = 4C(p2) [f2k2 - (E' k)2] + 

(53) 
+ 4D(p2) [k2 (p. E)2 - p' kp . Ek . E - ~p2 (E2 k2 - (E' k)2 ) ] 

At this }:·)int, the origin of the operator mixing is clearly evident in the plane-wave ap­
proach, ~~ce when m -# 0 the matrix element (E, kl : -:V;l/J : if,k) is non-trivial, leading to 
the misiC:::1tiJication of gluon condensate effects as discussed in [13J . 

As v.-:: h the quark condensate, the behaviour of the vacuum is simulated by averaging 
over the::rections of the external momentum p 

J ~ 1 2
dp PoP{J = '4 P guf3 (54) 

in which :3...-~ the t erm proportional to V(p2) is once again annihilated: 

ipJdp Jd4 x e . 
x (E, kiT (j(x)j(O)) jE, k) = 4C(p2) [E2 k2 - (E . k)2] (55) 

The :"'--:variant amplitude for the LHS of (55) is constrained by gauge invariance 
(fo -- fa - ko ) to be transverse to the momentum k, resulting in two possible terms: 

iPTc.3(p,k) == Jd4xe ' 
X (a,kIT(j(x)j(0))I,B,k) 


= r(l)(p, k) [k2go{1- kokf3] 


(56)
+ T(2) (p , k) [k2PoP{1 - k . pkoPt3 - k . pkt3Po + (k . p) 2got3 

- ~p2 (k2got3 - kok.B) ] 

The tern: proportional to T(2) is zero after averaging over p, leaving dependence only on 
T O): 

O4C(pj) [t2k2 _(t. k) 2] = E f(3 JdpTo{1(p,k) =T(1) (p,O) (k2gofJ- kcrkp) . (57) 
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Thus in the plane-wave method, t he OPE coefficient of the gluon condensate (G2 ) ::;; given 
by one of t he components of the invariant amplitude evaluated at zero externaJ gluon 
momenta , 

C(p2) = ~T(l) (p, 0) (58) 

As with the quark condensate, coordinate-space tec.r.niques for the gluon condensate 
involve a non-local vev originating in the \Yick expansion of the time-ordered product of 
currents. The only non-local vev that can contribute to the gluon condensate contains two 
gluon fields (f2! : A~(x)At(y) : In) [14]. Sbce t his quant ity is gauge dependent, it must 
be demonstra.ted that such gauge depend€~ce does not affect the gluon condensate con­
tributions to gauge invariant correlation functions. Furtnermore, the equivalence between 
coordinate-space and plane-wave methods must be estabhshed. 

First consider a covariant gauge representation of the two-gluon non-local vev [20] 

flab 

(nl : A~(x)A~(y) : 10) = tV; _ 1 [C(x - Y)/l(x - y)v·~ E(x - y)2g/lv] 
(59) 

+ terms leading to higher diMension condensates 

The coefficients C and E are related to th2 dimension-four gluonic condensates. 

C-2E= ~ (G2) (60a)
24 

5C + 2E = -~m l : (8· A)2 : 10) (60b) 

The momentum space representation of (59) is 

((")1' Aa( )Aa(. ) '1(")) - -Jd4k -ik·(x-y) [C~~ E ~~] 1'4(k) .
H. /l X v Y . H e 8k/l 8kv + g/lVak>- ak>- (61)

- U 

As with the quark condensate, the normal-ordered term can be identified with a Feynman 
rule as illustrated in F igure 3. Thus the contribution of this non-local vev from the Wick 
e)."Pansion of II(P2) is related to the invariant amplitude 

4
II(p2) = - Jctk 8 (k) [C 8~o a~3 + Egot3 8~>' 8~J iTO{1(p, k) . (62) 

The symmetry factor of 1/2 originates in the double-counting when joining the external 
gluon lines in the amplitude. Using the expression (56) for Tcr{1(P, k) and performing the 
delta function integration leads to the following contribution to II(P2): 

2 J 4 (4) ( a 8 a a) [(I) (P ( 2 k k )II (P ) = - d k6 (k ) C ako akfl ..L. Egcr8 ak >- ak>. . T ,k) k go{J - cr t3 

+T(2)(p , k) ( k2Pcr PfJ - k . pkcrPfJ-k· pk{1Po+(k. p)2go{1_ ~p2 (k2 gcrt3 - kakt3 ) )] 

= 6(C - 2E)T(1)(p, 0) . 
(63) 
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Recalling the relat ions (60) between C, E and the gluon condensates leads to a coordinate­
space determination of the gluon condensate component of the scalar current correlation 
function. 

II (P2) = ~(G2)T(l) (PJO) 
(64) 

C(p2 ) = ~T(1) (p, 0) 

This result is identical to (58) , demonstrat ing t he equivalence of plane-wave and coordinate­
space approaches for covariant gauge representations of t he non-local two-gluon vev. 

A similar procedure exists for fixed-point gauges. In this case the non-local vev vio­
lates translation invariance, and the connection with plane-wave methods requires dist inct 
momenta for t he external gluon lines. T his requirement is similar to the modified non-zero 
momentum (NZI) plane-wave method [19]. The modified ~ZI plane-wave approach has 
proved to be useful in resolving questions of operator mixing and in analyzing t he infrared 
finiteness of OPE coefficients. 

In the fixed-point gauge, the gluon condensate component of the non-local two-gluon 
vev is 

(nl : A~ (y)A~(z) : 1r2) = :8 yPZr (1Vr~ 1) [gpr90.'J - gp{3gar] (G
2

) (65) 

Since this vev is not translation invariant, its momentum-space version depends on two 
momenta: 

(nl : A~(y)A~(z) : In) = - (G 
2

) Ja"kJd4£e-ik'Ye-U,z
48 (66)a 8 8 a) (4) (4)(g03 ap af).. - ak3 afo 6 (k)6 (I!) 

The invariant amplitude is also modified by the presence of different momenta for the 
external gluon lines. 

Jd4 iPYcrp(p,k,f) == xe '
X (O:T (j (x)j(O)) lo,k; j3,f) 

= T(1 )(p, k, f) [-k . [ga{3 + k{3£a J 

+ T(2) (p, k, f) fL-k . £Pop,6 + p . ktope + p. tksPo - ~ (-k . igoB + k{3fa) 1 
k J 

(67) 
Gauge invariance is again satisfied by this amplitude since it is transverse with respect to 
ka,es. In the limit £ = -k, the above expression must reduce to (56), implying that 

To;3 (P , k, -k) = Ta{J(p, k) 

T (1)(p, k, -k) = T(1)(p, k) (68) 

T (2) (p, k, -k) = T (2)(p, k) 
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Using the above results, the contribution of the fixed-point gauge non-local vev to t 
correlation function II (P2 ) is t hen given by 

II(p2) = - (~2 Jd4k J cff6(4) (k)6(4 )(l) 

a a a 8 ] 1 (t 

[go{J 8kAaf).. - akB aeCi "27'a;J(P, k , f ) 

Using the expression (67) for t he amplitude TafJ and recalling (68) provides t he final res 
for the gluon condensate component of II (p2) , 

II(P2) = l(G2 )T (l)(p, 0, 0) = l(G2)T(1)(p, 0) ( ~ 

Comparison of (58), (64) and (70) reveals that coordinate-space and plane-wave me; 
ods are equivalent for determining the gluon condensate OPE coefficient in correlati 
functions of gauge invariant currents. Furthermore, the coordinate-space techniques ( 
independent of the gauge chosen for evaluating the non-local two-gluon Ye\"o This lat" 
point is obviously a concern when combining the non-local ve\" with perturbative covaria 
gauge gluon propagators. 

As with the quark condensate, moment techniques for the gluon conde:3ate ident 
integrals of the non-perturbative gluon propagator with the gluon condensate: 

D~: (k) = D,.,,(k) - D~~rt (k) = [91L 1I _ k%~11 ] D (k2) 

4 2 ( ~'J d k k2 jj(k2 ) = (G ) 
z (27r)4 48 

Thus the rele\'ant (gluon condensate) contribution to II(p2) is related to :~e invarL: 
amplitude 

4 
2 k NP'J dII (p ) = ~ (27r)44DOfJ (k) Ta {3(p, k) ( ~ 

where the factor of 4 comes from a colour trace and a Sj'mrnetry factor to prevent dou 
counting. Substituting for D:; (k) from (71), recalling that TaB is traIL,,'erse to t 

momentum k, and using the eA-plicit form (56) for the invariant amplitude leads to t 

ex-pression 

r d4k ­n(p2\ _ : __ A nf1_2\'T'0(~ ,_ \ 

H } - ~ J (27r)4 -;l:L./ \ /\, }.i..o \]1 , /\,) 


4 (:. J d k - [ 2 ( 1 ) ' , . 1 = ~ (2,,)4 4D (k 2) 3k T(1 )(p, k) + .-2P2k2 + 2(p· k)2 T(2 \ p, j; 'J 

The angular integration annihilates the term containing T (2) , and the the :-elation (~ 
between the moments and (G2 

) gives a final result 

TI(p2) = ~ (G2)T(1)(p, 0) ( ~ 
4 
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ider:ti:: .i. to i:be previous methods. T his completes our demonstration of the equivalence of 
t he p;u.::.e-wave, coordinat e-space and moment mdhods fo r evaluating the OPE coefficient 
of the .;-~ uor.. condensate. As mentioned ear~ier, it has been assumed that massless quarks 
have be-en used in all calculat ions for the gluon condensate (see [13] for det ails on dealing 
with tl:e case when m ~ 0). 

5. Aspects of G auge Dependence: T he Qua rk Propagator 

Ar.. i.!::nportant eleme~t of the analysis of Section 4 is the nature of t he OPE. For 
produc:s of gauge invariant currents, t he OPE can only obtain gauge invariant, equation 
of mo+:on, or BRS variat ion operators. To lowest order in the gluon condensate only 
t he gaqc im-ariant operators contribute to t he correlat ion functions, in which case the 
prob ler:::s associated wit h operator mixing and renormalization of composite operators do 
not occ'J. However, for gauge dependent correlation functions there is no restrict ion on the 
operato::-s appearing in the OPE and hence the various approaches to evaluat ing the gluon 
conderc .a.te contribution will differ. An example of such gauge dependence is prov ided by 
t he ql!a:h: propagator. 

An ,mresolved issue in t he lit erature is t he gluon condensate contributions to the 
quark p:-opagatof , where the results of plane-wave [11] and fixed-point coordinate space 
techriq:.:.es [.5 .11 ,14] disagree. It is essential that such dependence disappear from calcu­
lations d (gauge invariant ) physical quant it ies. We show below t hat when t he different 
e..xpressi.) t:5 :or the quark propagator are used in the heavy quark expansion for the quark 
conde!l!:::~e , all remnants of gauge dependence cancel, and standard results [2,21J are ob­
tained. 

Fir~ consider the plane-wave and fixed-point results for the (a s G2) portion of the 
heavy c;·.:.ark self-energy L(p): 

E(p) = ~;(~ ~~~ (osC2 
) (fixed - point) (75a) 

I. r(p2 - 3m2 )p + 4m3] _ 
E(p) = - 3 (osC2) (plane - wave) (75b)

9 (p2 - m 2 ) 

The paIameter m is the heavy quark mass, and the self-energy is related to the quark 
propagc.:or !:!..S(p) in the usual fashion: 

4 iP Xi !:1S'p) :::: Jd xe ' (DIT (7/J(x)1jj(O)) ID) = (p+ m )E(p)(p+ m) 1_2 _?\? (76) 

We 7,·ill illustrate the gluonic condensate contributions to t he quark propagat or in the 
covariar:: gauge. T he t erm from the \Vick expansion that contains t he non-local gluon vev 
is 

ipi6S(P) = -g: Jd4 xe .;r Jd4 y Jd4 z(O IT(7/J (x)1jj(y)) I O) "Y~AQ(O I : A~(x)A~(y): 10) 

(O IT (1/J(y) ~(z)) IOh v>.b(O IT (7/J(z)1jj(O)) 10) 
(77) 
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as illustrated in Figure 4 (t he Feynman rule for the normal-ordered product is shown in 
(61) and Figure 3) . The coyariant gauge expression (59) for the non-local gluon vev leads, 
upon converting t.o momentum space, to t he self-energy 

__ g2~ ~ [~~~ ~~] p +m 1/ (78)E(p) - 6 y C apl" Bpi" , Eg~1I apT apT p;. _ m 2 "Y 

Evaluating the derivat ives: and recalling the definitions of C, E from (60) leads to t he 
covariant gauge result for the gluonic condensate portion of the heavy-quark self-energy 

3rrm :< rr [(P2 - 3m2)p + 3m3] . 2 \ 
L;(p) = 3 (p2 _ m2/ OJ (it l : (8· A) : :0) + 9 (p2 _ m" ,3 (05 G ) (79/ 

The explicit appearance of the (0 ' A)2 operator is a consequence of t he OPE for a gauge 
dependent current. 

Clearly the gluon condensate component of t he quark self-energy is gauge dependent. 
However, wherl calculating a gauge invariant quantity such as t he heavy-quark condensate, 
such gauge dependence must canceL The connection with the heavy quark expansion for 
the quark condensate (1jj7./J ) is made through t he gluonic contributions to the self-energy: 

-(~7/J) :::: J(~:~4 Tr [i~S(P)J (SO) 

Substituting the different w rsions of t he self-energy leads to plane-wave (pw) , fixed-point 
(fp) , and covariant gauge (cg) expressions for the heavy quark condensate: 

_/-. •1, ) = .12 _ ( G2)J d~p 4m3(p2+m2)+ 2mp2(p2_ 3m2)
\W'f' pw 1. I. O S ( )4 5 (81a) 

9 2:7 (p2 - m 2 ) 

- . 2 p p2Jd
4 

-(7/J7/J)fp = t41.m(osG ) (2 )4 - - 4 (Slb) 
;r (p2 _ m 2) 

2-. J d4 p2 + mP
-(7/J7/J)cg = t41.0sm3 (nl : (a· A) 2IO) (2_)4 5

" (P2 _ m 2) 

.4 2 J d4p 2p4 - 3m2p2 + 3m4 
+ t-r.m(O:sG) -()4 - (SIc)

3 2,. (p'2 - m 2t 
All the momentum integrals are finite, and can be calculated using the integral [4] 

J d4 k (k2)n _ _ ' (_m2 t-fH2 f(2 + o:)f(.B - 0: - 2) (82)1._

(27r)4 (k2 _ m2)p - 16rr2 r(.B)r(2) · 

T he final (standard [2,21]) result for t he heavy quark e>.--pansion contains only gauge in­
variant operators (Le. the coefficient of (O! : (a· A)2 : IO) is ~ero), and as expected, is 
independent of the gauge used to evaluate the quark self-energy: 

- (O:sG2 
)

-m(7./J0) =-- (83)
1271' 
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T his is an explicit illustration of the equivalence of plane-wave and coordinate space meth­
ods when a gauge dependent correlation function is used as an intermediate stage in the 
calculation of a gauge-invariant quantity. 

Another example of an apparent discrepancy between plane-wave and coordinate­
space methods is the (light) quark condensate contribution to the quark self-energy. The 
difference between these methods occurs for physical momenta where the plane-wave (pw) 
technique observes a "freeze-out" below p'2 = m'2 [11J that is inaccessible in the explicit 
m 2 /r? coordinate-space (cs) series_ 

g2 [ mp]E(P)cs = 9p2 (qq) (3 + a) - a--:;;: (84a) 

2E(p)pw = :; (qq) [ (3 + a) - a 1] 0 (p2 - m ) 

+ g22Wq) [(3+a)-ai]O(m2_p2) (84b)
9m m 

The coordinate space series approach, leading to a series in powers of m2 /p2, is insensitive 
to the non-analytic freeze-out. \\-e show below, however, that the improved technique 
for the coordinate-space approach developed in Section 3 yields the same freeze-out as 
observed via plane-wave methods_ 

The relevant term in the \Vick expansion of the quark propagator containing the 
two-quark vev is 

2 

i.6.S(p) = 9 jd4Xd4yd4zeiP'X(0IT (7/J(x)1[;(y)) 10h~),a(OI: 1[;(Z)7/J(y): IO)-yIl),b )
4 (85 

(OIT (A~(y)A~(z)) 10) (OIT (0(z)~(O)) 10) , 

as illustrated in Figure 5_ Convening (85) to momentum space (via (28) or through use 
of the Feynman rules) yields the following quark self-energy 

'f:( )_~ 2jd4k F(k) , (~ ) (_ ~II (_ )(P-k)~(P-k)lI) (86)~ P - 39 (P _ k)2 II" ,.. + mIll 9 + 1 a (p _ k)2 

The self-energy is now expressed in terms of its distinct Dirac structures 

I:(p) = A(p2)p + B(p2) , (87a) 

Tr (~(p)) = 4 B(p2) , (87b) 

Tr (P~(p)) = 4p2 A(p2) , (87c) 

The functions A(p2) and B(p2) are found from (86) to be 

2 _B(p) - ~ \ 2j 4 ~ -3(3+a)mg . d k (p_ k)2 (88a) 

A(p2) = 4g 
2 
Jd4kF(k)~

3p2 (p - k)2 

+ ~(l - a) d4k [(p2 + m2) P' k ­4 2 J 
3p2· 2p2m 2] - ­F(k) 

\ (P - k)4 (88b) 
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The integral determining B(p2) is evaluated by exponentiating t he denor:inator an 
utilizing (29b) in the integrand of (88a) , After evaluating the k integral 

erk :F(k) = Jd4k :F(k) 
J (p - k)2 p2 - 2p · k + m2 

(89 
= i (qq) ('" dry ei,/(p2+m2+i<: ) J (2mry..fij) 

12m2# Jo ." 1 

the remaining integral is tabulated [18] (see (33b)) , Carefully t aking t he € - 0+ limit i 
the tabulated integral leads to a result containing a freeze-out for physical mc.::J.enta, 

d4k F( k) = _ (qq) () (p2 _ m2 ) _ (qq) 0 (m2 _ 2) (9
J (p - k)2 12mp 12m3 p 

Using (90), the result for B(P2) in the physical momentum region is 

1B(p2) = 9 2 (3 + a) (qq) [ p21 () (p2 - m2) + m
2 

() (m 2 _ p2) ] (9
9 

);'ow consider e\-aluating the integrals determining A(p2). The first int~al in (88 
is simple to evaluate using (90) and (31): 

2


jd4kF(k)~ = jd4kF(k) p2 + m _ Jd4kF(k)

(p - k) 2 p2 + m2 - 2p - k 

(qq) { (2 2) [ 1 () ( 2 2), 1 e(2 2)] }= 12m 1 - P + m p2 p - m i m -_:m2 

(9 

The second integral of (8Sb) can be expressed as a linear combination c: (90) and 
new integral: 

(p2 + m 2) P ' k _ 2p2m2

j d4 k F( k) ~----'------=-­
(p2 + m2 _ 2p , k) 2 

= -~ (p2 + m2) J~k _F_(_k)_ + ~ (p2 - 171 2)2 Jd4k _F_._r.')_
2 (p - k)2 2 (p _ ~)4 

2 (9~ 
p2 + m . [ 1 1 ]= ~(qq) p2() (p2_m2) + m2() (m2 _p2) 

+ ~ ( 2 _ m2)2 rd4 k F (~), _ 
2 ,P I J (p - k)4 

The final integral in (93) is evaluated by exponentiating the denominator , usinf :he on-~he 
cons:raint , and then performing the k integral: 

Jd4 k F(k) 2 =-Jd4k roo dryryeiYJ(p2+m2-2p ' k+i~)F(k) 
(p2 + m 2 - 2p , k) J0 

(94(; 
= (qq) roo drye1YJ(p2+m2+il) J (2mry# 

12m2 JP2 Jo 1 ' 
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T he re:::laining ir.[cgTal is tabulated [18], 

x . (~-ar10 dx e-a:r: J, ·t(-Jx) = . {3v Ja + (32 Rev > -1; Re(a ± i(3) > 0 , (94b)
2 

and arer carefully e\a.luating the E -+ 0+ limit a freeze-out is again observed: 

j :l'k F (k) = (7jq) [1- p2 + m 
2 (2 _ 2)

(p2 + m2 _ 2p . k)2 24m3p2 p'2 _ m2 B p m 
(95) 

P2 -l-. 2 ], m e(2 ~)--- m-D 
m 2 - p'2 • 

SubsE:'Jting (92) , (93) and (95) back into (88b) leads to 

2 [ 1 1 ]A (p2) = _9 am(qq) p4B (p2 - m2) + m4 B (m 2 _ p2) (96)
9 

in whi6 case, the quark condensate component of the light-quark self-energy, 

~(p) = :; (qq) [ (3 + a) - a ;t] () (p2 - m 2) 
(97) 

+ 9~2 (qq) [ (3 + a) - a~] () (m2 _ p2) 

is four-a to be in agreement with the plane-wave result [11] . 

Tius the improved method developed in section 3 for the coordinate-space approach 
is ider::ical to the plane-wave result, leading to a freeze-out in the quark self-energy at the 
physical momentum point p2 = m2 . 

Conclusions 

The equivalence of plane-wave, coordinate space and moment methods has been 
demonstrat ed for the determination of the '7jq) and (aoi G2) coefficients in the OPE of 
gauge invariant currents. An important conciusion of this analysis is that the fixed point 
gauge commonly employed in coordinate space applications to the gluon condensate does 
not affect the result of the OPE for gauge im-ariant currents. 

Sources of disagreement exist between t he various OPE techniques only when gauge 
dependent quantities are considered. In section 5, however, such gauge dependence is 
shown not to affect the calculation of a gauge invariant quantity such as the heavy quark 
expansion relat ing the heavy-quark and gluon condensates. 

A new approach for evaluating quark condensate effects to all orders in the quark 
mass has been developed in section 3 and applied to products of gauge invariant currents 
of physical significance. It is hoped that this new technique will be of use in future 
calculations. 
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F igure Captions 

F igure 1: The momentum-space Feynman rule for the yacuum expectatiJn value 
normal-ordered quark fields, as in the integrand of equation (28b). 

F igure 2: The Feynman diagram for (lowest-order) quark condensate com~butions 
two-current correlation functions. 

Figure 3: The momentum-space Feynman rule for the vacuum expectatbn value 
normal-ordered gluon fields. corresponding to the integrand of equation (61) :"'1 the Ii 
y -	 x ---+ O. 

Figure 4: The Feynman diagram for the (lowest-order) gluon condensate cc:ltributio 
to the quark propagator. 

Figure 5: The Feynman diagram for (lowest-order) quark condensate con::~butions 
the quark propagator. 
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Production of charged Higgs at the ep collider LEP-LHC 
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ABSTRACT 

We study the production of the charged Higgs boson (H-) at the future ep collider 

LEP-LHC, through the reactions of photoproduction (r + b -+ H- + t) and W­

mediated (e- + b -+ II + H- + b), a..'ld compare with the production of H- through 

the decay t -+ H- +b. We find that the mechanism of photoproduction dominates for 

the mass range mH: > mt - mb, whereas for mH+ < mt - mb the decay t -+ H+ + b 

is the main source of charged Higgs bosons. 

t 	 Permanent address : Dpto. de Fisicil. Cinvestav-IPN, Mexico. 

1. 


The study of the Higgs sector remmains a crucial issue in order to test the stan­


dard model (SM) [1]. The SM predicts only one neutral Higgs boson, however, in 

several extensions, like the two-Higgs doublet model (including the SUSY ca..o:.e) or in 

technicolour theories (TC), the scalar spectrum contains also a charged Higgs (H±), 

whose detection would be a clear signal of new physics. 

Current data at LEPI excludes charged Higgs masses up to about 45 GeV [2], 

whereas LEPII will extend the limits to about 90 GeV. On the other hand, at the 

future hadron colliders it will be possible to search for a charged Higgs ~;th a mass 

within the kinematical reach of t -+ bH±, namely mt > mH: + mb, where the decay 

H± -+ Til is usefull [3]. However, no mechanism is known to detect heavier H± at ~ the future hadron colliders. The main difficulty arises because of the lack of a clear 

signature, since the one coming from the dominant Higgs decay into the heaviest 

available quark doublet, is well bellow the QCD backgrounds, although in ref. [3] it 

is claimed that a good b/t separation could help in order to allow detection of H±. 

On the other hand, the signature from the decay H± -+ n'± + hO could be usefull 

too, provided that the decay branching ratio is reasonable large. 

Another possibility for producing charged Higgses is at the proposed LEPI/LEPII­

LHC ep collider, where its detection could be more fea:;,ible if one considers that the 

backgrounds are easier to handle. Thus, it is important to find out if some mechanism 

could produce a significan number of charged Higgs bosons at LEP-LHC. 

The decay t -+ b + H+, which is usefull at Hadron colliders should allow the 

detection of H± at ep colliders too. According to ref. [4], the cross-section to produce 

rt:> a single-top at LEPI-LHC is about 2 pb for mt = 200 Ge\- (which is the largest top co c:n 
0"><C >- mass allowed by radiative corrections); and this gives about 2000 top quarks with -r­-I a: the planned integrated luminosity of 103 pb- 1• Then, it is possible to produce 10 
N - ~ events with H±."ven for BR(: - .+ IF) = 0.005, ~hich is obtained for ':'H= up to :?! z III 192 GeV and wlth tan/3 = 1. Thus, It seems posslble to exclude H- ",th a mass a: <! 
""'J

W _ very close to the threshold of the decay t -+ b+Ht. However, a detailed simulation 

~= -I will be required in order to know the largest mass that can be searched with this 

mechanism, for a given value of mt. 

* 	 We shall use the formulae for decay widths involving the charged Higgs boson summarized in 
ref [3], which .....e have verified in [5J . 



Now, we tum our atention to the productio of H= in the mass range mH:' > 

mt ...:.. m h· In this let ter we shall study the production of a charged higgs boson 

thro:.:gh the following reactions, 

e +P -> X +I + b -+ H- + t +X, (1) 

e +p -4 X + e- +b -+ 1/ + H- + b+ X . (2) 

We s~all treat the photon and the b-quark as partons ';l,-ithin the colliding electron 

and proton, respectively. The production of H- via photoproduction was studied at 

HERA in ref. [6] using the reaction of photon-gluon fusion, which is more complicated 

than ,)) to evaluate. However, both methods give similar results. On the other hand, 

the reaction e + b -4 ZI + H- +b+ X has been studied before [7]. However, both of 

these previous studies were done only for light charged Higgs and top, whereas we 

are izterested in the case of a heavy H= . 

T1::e Feynman graphs for reactions (1) and (2), at the parton level, are shown in 

F ig. l:a and 1-b, respectively. The amplitude for these reactions can be written using 

the relevant Feynman rules summarized in ref. [3]. We shall not prescnt the explicit 

expression for the amplitude since its form is not particularly illuminating. The cross­

section for ep is obtained by convoluting the result for the partonic cross-section with 

the p!loton and b-quark distribution. We shall use the Wizacker-Williams aproxima­

t ion :or the photon distribution, whereas for the b-quark distribution, we shall use 

the b.drornc structure functions of EHLQ [9J. 

Ocr results for the cross section corresponding to reaction (1) at LEPI-LHC are 

sho~ in figs. 2, as a function of mH±, and for mt = 120,150 GeV and tan f3 = 1. 

\Vhe:eas the results corresponding to LEPII-LHC are shown in fig. 3. On the other 

hand. the results corresponding to reaction (2) for LEPII-LHC are shown in fig . 4. 

The results for LEPI-LHC are even smaller and will not be displayed here. We can 

see that the photoproduction mechanism dominates the W -mediated reaction. 

Now, in order to know if these cross-sections could be usefull, one must include the 

decays of H±. For the mass range considered here, the dominat decay is H+ -4 t +b, 
with BR ~ 1. Then, for mt = 120 GeV, tan/3 = 1 and mH* = 150 GeV, we find a 

cross-section of 8 . 10-3 pb from the mechanism of photoproduction at LEPI-LHe, 

whereas the W-mediated reaction gives a cross-section of about 10-3 pb, at LEPI­

LHe too. T hus, the total number of charged Higgs that can be produced is about 9, 

3 

which seems to lay on the verge of being detectable. For larger charged Higgs m~_ses, 

the total cross-section d(;c:-easses even more; for instance we find that the number of 

events is less than 2 for mH± > 225 GeV. 

On the other hand, if we consider the High energy option of LEPII-LHC, we find 

that the cross-section is almost one order of magnitud larger, which could allow the 

detection of a charged Higgs with larger masses. For example, if we take mt = 150, 

tan{3 = 1 and mH* = 200, the cross-section is 0.01 pb. Unfortunately, since the 

planned yearly integrated luminosity is of 100 pb-1, it will require several years of 

running in order to get a sufficient number of events to find or exclude the elusive 

charged Higgs bosons. Thus, the chances to detect a heavy H± at LEPII-LHC are 

not much better than at LEPI-LHC. 

On the other hand, although the decay modes of H± does not seems to be an 

insanourtable obstacle at ep-colliders, we mention that other type of signatures could 

arise from the rare decays of H±. However, in models with elementary scalars the 

most interesting rare decays, like H± -4 W± + liZ, are found to have very small 

branching ratios, whereas in TC models the BR for the rare decays are predicted to 

have larger values [8]' but not at the level of being detectable. 

In summary, we find that the mechanisms to produce H± studied here, give small 

cross-sections for mH* > mt + mb, which could be used to detect charged Higgs only 

for c:w small window in such mass range, namely up to about 160 Ge V for mt = 150 

GeV. However, this range could be extended up to about 250 GeV if the high-energy 

option LEP II-LHC were provided with a luminosity of 103 pb-1• 
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FIGURE CAPTIONS 

1. 	 Feynman graphs for the production of a Charged Higgs boson at ep colliders. 

I-a: Mechanism of photoproduction, 1-b: W-mediated reaction. 

2. 	 Cross- section for the photo-production of H± at LEPI-LHC (solid: mt = 120 

GeV, dashes: mt = 150 GeV). 

3. 	 Cross- section for the photo-production of H± AT LEPII-LHC (solid: mt = 120 

GeV, dashes: mt = 150 GeV, dots: mt = 200 GeV.) 

4. 	 Cross- section for the production of H± AT LEPII-LHC via \V-mediated reac­

tion (solid: mt = 150 GeV , dashes: mt = 200 GeV). 
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