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Abstract: We compare plane-wave, coordinate-space and morent methods for evaluatin'cey
operator-product expansion (OPE) coefficients of the light-quark and gluon condensates.
Equivalence of these methods for quark condensate contributions to two-current correlation
functions is proven to all orders in the quark mass parameter m. The three methods are
also shown to yield equivalent gluon condensate contributions to correlation functions,
regardless of the gauge chosen for external gluon fields in the coordinate space approach.
An improved method for evaluating quark-condensate OPE cocfficients is presented for
several (two-current) correlation functions. Gauge-dependent Green functions are also
discussed. It is shown that contradictory expressions for the gluon-condensate contribution
to the quark propagator occuring from the plane-wave and coordinate-space approaches
yield identical relations between the heavy-quark and gluon condensates, as anticipated
from the gauge invariance of the heavy-quark expazsion.
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QCD condensates, which characterize the non-perturbative content of the QCD vac-
uum, are an essential element in determining hadronic properties through sum-rule meth-
ods [1-3]. In this approach, each condensate makes a distinct contribution to :he operator-
product expansion (OPE) of a two-current correlation function.

There are several techniques for evaluating such OPE coefficients. The plane-wave
method singles out the contribution of a given condensate by using appropriately chosen
states to “sandwich” the OPE [1,2], while the coordinate-space approach involves the
expansion of a non-local vacuum expectation value (vev) in terms of spacetime coordinates
[2,4,5]. Another approach favoured by Lavelle and co-workers is the moment method
[6] which is reminiscent of a gap equation. Since the OPE is an identity emong field-
theoretical operators [7], it is expected that all these techniques should yield identical
results when computing gauge invariant quantities. However, a precise comparison of
these different methods has not been pursued, despite extensive applications o each. Such
a comparison is badly needed— questions of gauge independence often arise because of
the fixed-point gauge [8] chosen for external gluons in the coordinate-space zpproach. In
contrast, the plane-wave method obscures the coordinate-space approach’s uzderstanding
of non-perturbative effects as a direct consequence of the non-perturbative content of the
QCD vacuum.

Complications arise in all methods when light quark condensate (gg) efiscts are con-
sidered to all orders in the quark mass parameter m. In coordinate space tecaniques, the
OPE coefficient of (g} is determined as a power series in m?/p? (p is the exte-nal momen-
tum), and the resulring series must be summed and analytically continued '9,10,13]. A
similar difficulty arises in plane-wave methods where it becomes necessary to zverage over
momentum directions by expanding propagator factors in a series and then re-summing to
obtain a final result {11,13]. Moment techniques typically work to lowest order in the quark
mass [6], and so they must be extended to higher orders. These difficulties associated with
existing coordinate-space, plane-wave and moment methods suggest the desizbility of an
all-orders analytic approach towards the evaluation of quark condensate cor-ributions to
OPE coefficients. The difficulties associated with existing order-by-order aporoaches are
not merely of mathematical interest. In many applications the Laplace sum-rules are for-
mulated as contour integrals in the complex momentum plane or as Laplace transforms
[12]; consequently, detailed knowledge of the analytic properties of the correlazion function
is essential.

The purpose of the present paper is to study the relation between plane-wave, coor-
dinate space, and moment methods for evaluating the quark and gluon concznsate OPE
coefficients. We also develop an improved analytic approach, as opposed to :ae order-by-
order series techniques discussed above, for the evaluation of the OPE coefficients of the
quark condensate.

In section 2, we demonstrate the equivalence of existing methods for evzluating the
quark condensate OPE cocfficient of gauge invariant correlation functions. This analysis
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leads naturally to an efficicnt analytic approach for evaluating quark condensate effects to
all orcers in the quark mass. This new approach, which can be phrased in the language of
a new Teynman rule, is applied in section 3 to correlation functions of scalar, vector and
axial vector currents, confirming the resulis of previous czleulations.

Ir. section 4, we demonstrate the equivalence of all techniques for the gluon condensate
OPE coefficient for gauge invariant correlation functions. For coordinate-space techniques,
we show that the value of the OPE coefficients is insensitive to the gauge chosen for the
externzl gluon fields.

Finally, section 5 will consider some applications to the quark propagator— a gauge
depencent Green function— in order to address some controversies about coordinate-space
and plzne-wave approaches. Contradictory fixed-point and covariant gauge expressions for
the gluon condensate contribution to the quark propagator (resvectively applicable to
standa-d coordinate-space and plane-wave approaches) are nevertheless seen to yield the
same zauge invariant relationship between the heavy-quark and gluon condensate. This
demorstrates how gauge dependence at an intermediate stage of a calculation does not
affect 2 genuinely gauge invariant quantity.

2. Equivalence of OPE Techniques for the Quark Condensate

Tc examine the relation between plane-wave, coordinate-space and moment
approeanes, it is first necessary to review each method.

Ccordinate space methods [2,4,5] begin with the Wick expansion of a time-ordered
produc: of currents. The time-ordered product is expanded in a perturbation series, and
then tZe non-perturbative vacuum |Q) is used to obtain the correlation function. Since the
vacuur is non-perturbative, residual normal-ordered contributions to the Wick expansion
of a time-ordered product of currents can have a non-zero vev. Consequently, correla-
tion functions are expressed in terms of non-local vevs of fundamental quark and gluon
fields, which are then expanded in a coordinate-space series whose coefficients are the local
compcsite operators known as QCD condensates.

A ziven non-local vev can only generate certain condensates in its coordinate space
expanson. If only quark condensate effects are of interest, then the only non-local vev
that needs to be considered [14] is (€] : ¥(z)¥(y) : |2), where the normal ordering refers
to the derturbative vacuum.

It has been shown elsewhere [9,13,14] that the quark condensate projection of the
two-quark non-local vev is

) g 2n
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where £, n represenc colour indices and m s the quark mass parameter. Denoting = =
(y — z), the above expression is merely a series representation of Bessel functions:
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An important property of the quark condensate projection of the two-quark vev is that it
satisfies the free equation of motion

(0 - m)(Q : T O)(a) : ) =0 . (3)

This property allows a simple method for obtaining a D-dimensional version of (2) simply
by seeking the solution of the equation of motion which reduces to (gg)/12 at z = 0. The
result is

T(D/2)2P/2-1

:—Ez H Q) = 857
Q7 (2)"(y) : 1 =6 T

; 4
(m2z2)%—
The functional form {2) has not previously been used in coordinate space methods, but
the series (1) allows an evaluation of quark condensate effects as a series in m?/p%.
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It is important not to ascribe too much physical meaning to (4), since it is simply used
to extract OPE coefficients of the quark condensate. Since the OPE coefficients are pertur-
batively calculable. any amplitude used for this purpose will be a perturbative expansion
containing free-field propagators and by analogy, will contain the free-field expression for
the non-local vev. All the infrared nature of the OPE is contained in the condensates
themselves, although this factorization of low-energy effects is difficult to establish [15.16].

Thus the coordinate-space approach for obtaining quark condensate effects consists of
retaining residual normal-ordered terms (Q| : ¥(z)¥(y) : |Q) from the Wick expansion of
a given amplitude and then utilizing (1) for the (gg) projection of this non-local vev.

The plane-wave method will now be reviewed for the particular example of a scalar
current, correlation function. This allows the relation between plane-wave and coordinate-
space methods to be explored without the complication of non-trivial Lorentz and Dirac
structures.

_ Consider the OPE for the correlation function of two scalar currents j(z) (e.g. j(z) =
Y(z)¥(z),
i/‘“ "= T (j(2)5(0)) = Z(p) + D°(p) : ¥ : +---+ D'(p) : pD¥ 3 +-

+ E (p)p™ - p®* 1 YDa, ... Doy Dot +

+ O (p)p™ -+ p+ 1 YDg, ... Doy D¥ i -+ )
+ equation of motion operators + BRS variations

+ operators not leading to (gq)
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where D, is the gauge covariant derivative. The OPE must have this form, since for
a product of BRS invariant currents, only gauge invariant operators appear apart from
the trivial contributions from BRS variations and equations of motion [17]. Perturbative
contributions to (5) are contained in Z(p) , and operators which contain anything but two
quark fields have been neglected since they do not ultimately contribute to the (gg) effects
in the correlation function. Non-trivial Dirac structures such as : 7% ---4%"1) : have
also been neglected since they are not independent objects after a vev is formed, thereby
contributing in a similar fashion as the operators already considered. )

A correlation function is now formed from (5) by evaluating an expectation value in
the non-perturbative vacuum:

() =i [ dla ™= @I (G(=)50) 1)
=Z(p) + -+ D) (U : YDy | + - -

+ET ()P %O : TDay .. Dagy D1 [R) - ©

+ Of‘l(p)pal - pntt (Ql : EDm = 'D02n+1D2lw : IQ) -

+ 0 (egn. of motion, BRS variation) + operators not leading to (4q)
Since we are dealing with a scalar current the vevs in the above expression can be simplified
(the symmetrization of indices imposed by contraction into products with momenta is
important):

( :¥Dq, ... Doy, D*V: Q) =0 (7a)

Q] : PDg,y - .. Doy, D : Q) = Say. o (R : $D* M50 1) (7b)

where Sa, . ay, is a completely symmetric tensor normalized so that Sg3 ---gr = 1.

If attention is restricted to the (gg) contribution to II (pg) then the equation of motion
D% = (y- Dy D —14/20,,G )% = —m?y + irrelevant operators = —m%p  (8)
can be used, since the neglected gauge-field contributions from the complete equation of

motion do not generate the quark condensate [14]. After vacuum averaging, the (gq)
component of IT (p?) is thus given by

The plane-wave method is designed to single out the quark condensate effects and
to simulate the cffect of vacuum averaging. If a matrix element of (5) is formed between
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on-shell one-quark states |k, s) where k is the quark momentum and s represents the spir
state, then only operators with two quark fields will be non-zero (in particular D, can be
replaced with 8,), and since the states are on-shell the equation of motion operators wil
not contribute. Consequently, we find that

i / &'z P (k, S|T ((2)F (0)) [k, 5) = D) (ks s| - B : [k, ) + -+

+ Do)k, 5| : 5% [k, s) + - - -
+€:;.Pal ‘..pot'z"(k’sl :Eaul ...602"621 : Ik,s) TR
+ Oi(p)p‘” coepPenri(k sl E@al o aaz"+15217_3 Ak 8) = -

’/ dtz &P (k, SIT (G (@7 O) [k, 5) = D)k, o] - b = [k, 5) =+ -

+ Do) (=K (ky sl s T : kys) + -
+ EL(p) (—ip- k)> (=k2) (k,s]: DU s [k, s) = -

+OL(p) (—ip- B)*H (=k) (k. s): D [hos) 4
(106
Averaging over the momentum directions k simulates the effect of the vacuum zs illustrate
by the following identities:

/dl}km...ka2m =0

(11
2 n
/dk koy - kay, = (kQ) Say-agn
An identical plane-wave approach is to average over the external momentum g, an optior
which is more convenient for the gluon condensate [13].

Since the quark states are on-shell, k? is replaced with m? after averazing, and :
sum over spin states (and implicitly a colour trace) is performed, thereby leading to th:
plane-wave determination of the (gg) OPE coefficient € (pg):

€ (5%) = [D°() -+ + Dalp) (~m?)" + -+ EL(P) (—m?) ™" P2 5]

' i 12
— é/d“x cw-:/dl:;(k,s[T(j(z)j(o))|k35) (

At this point it should be remarked that no distinction between bare ard renormal
ized fields has been made, implicitly assuming that we are working o leading order. Th
only modification that occurs in higher-loop calculations is the effects of renormalizing th
composite operators that appear in the OPE. One then identifies the next-to-:eading con
tribution to the OPE coefficient of the renormalized composite operators as a combinatio:
of a next-to-leading amplitude and the leading ainplitude with a renormalizatica effect (se

5


http:p2So:.02

[16] for Zetails of this procedure for a particular caleulation). This would oceur in an iden-
tical fasaion both for plane-wave and coordinate-space methods. The only complication
that caa occur is the failure of infrared singularities to cancel from the OPE cocficients
[15]; 2 property which, if desired, can be explicitly verified at the relevant order [16]. Thus
our anz’ysis applies to higher loop effects provided that ths appropriate renorrnalization
factors zre taken into account.

Be:ore reviewing moment techniques, we will now demonstrate the equivalence of
plane-wave and coordinate-space techniques. To obtain the connection betwsen these
methods, consider the possible contributions from the Wick expansion of the final line of
(12). Clearly only terms containing two (normal-ordered) quark flelds : %(z)i{y) : can
contribute to the matrix element with (k,s|. All other terms will either be disconnected
processes or will have a zero matrix element because of their field content. Focussing upon
a single term of this type occurring in the final line of (12) leads us to consider the following

contribution:
/dkz ksl T (0E@) Ik s) (13)

where 7 and £ are colour indices. Since the Wick expansion is a perturbative expansion
of free Zelds, this matrix element can be easily evaluated by expanding the quark felds in
terms o their free-particle solutions.

/deks] P 20 (w) : |k, ) = /dk(}é+m —ik-(y—2)

5775

(14)

zﬁ-rm /dke ez r=y—z

The ory remaining complication is the averaging process over k, which is facilitated
throug? utilization of the D dimensional partial wave expansion [4]

iker D = D D_ o [22k2172
'k'zr‘__ AL = _ (-1 AL l'—
e (3 1);:()( i)" {n+2-1) €8 (z k) -
D
2 nt+g-—1
e N
x( k%:?) Jn+%_1( kr)

The RES of (14) is then evaluated utilizing the orthogonality of the Gegenbauer polyno-
mials and the k? = m? mass-shell condition:

5 [ EX sl T e

(15)

L Jpja-1 (m 372)
& (m )
=5z (10 +m) — 7 D=4 . (16b)

Equation (16b) is identiczl to the coordinate space representation for the two-quark non-
local vev (1), apart from the (gq) factor absorbed into the definition (9) of C (pQ); thereby
demonstrating the equivalence of plane-wave and coordinate-space methods for evaluating
the (gg) OPE coecfficient.

‘We now consider the connection between coordinate-space and moment methods con-
sidered. Moment techniques [6] begin with a separation of the full quark propagator S(k)
into a perturbative and non-perturbative portion.

SNP(k) = S(k) — SP(k) (17)

To interpret this relation. consider the definition of the quantities on the RHS of the
previous equation

iSVP (k) = / Pz QT (p(@F0) 19) — (OIT W@FO)[0) . (18)

But the Wick expansion
T (¥(z)0(0)) = (OIT (¥(2)%(0)) 10)+ : $(z)$(0) =, (19)

applied to the RHS of (18) for a normalized vacuum [{2) yields

iSNP (k) = / Pz e* (0 : p(z)B(0) : |)
Lk (20)
@ w(@B0):19) = [ 5 e =isVP (k) |

Moment methods {6, then relate the local condensate (gg) to integrals of the non-
perturbative propagator SVF (k) in a fashion similar to a gap equation:

/ = )kD e [P ) = -2 (21)

The Dirac structures of SVP (k) have moments which are related to the quark condensate.
In particular, with the help of the f = m equation of motion we see that

SNP (k) = FA(K?) + B(k?)
dPk dPk m(gq) (22a)
/ 57D KA = @ mB(k?) = == -

Moreover, the (gg) component of higher order moments is found by having each additional
integrand factor of k? correspond to multiplying the RHS of (22a) by an extra factor of
2
m*:
dPk
m
(2m)P

= (#)' B0 =~ (m?) 22 oy

s+1 <
()7 AR?) = B




It is now straightforward to extract the non-local version of the two-quark vev by

returning to (20):

— D & - -
(Q: T (¥(2)%(0)) : |) =1 / % e Tk A(K?) + B(k?)

D -~
e 6/(2 )D —zk-zA(k2)+i/(gw)}cD c—isz(kZ)

The partial wave expansion (15) is then used to evaluate the angular integrals in (23), and
we find that

(23)

(€ T (9(2)$(0)) :

m = [ g aer (3) ( :%2)%_1@-’ (V)

+i (;il?)"u (k2)r< )(%){HJ@_I (Vi)
24)

One car use the series representation of the Bessel functions in (24) in conjunction with
(22b) in order to find the result

[(D/2)2P/?-1
12m

Jp j2-1(mv/z?)

(Q: T ($(2)9(0)) = 1) = - (m2z2) 53

@) (ip + m) [ ] v (29)

identical 1o the coordinate-space expression (4).

Cornsequently we have demonstrated the equivalence of plane-wave, coordinate-space
and morment methods for evaluating the (gg) OPE coefficients. In the next section, a new
analytic method for evaluating OPE coefficients to all orders in m will be applied to several
examples

3. Momentum Space Approach to Coordinate Space Method:

Scalar Current Correlation Function

Coordinate space methods generally involve calculating configuration space integr:
over each term in the series (1). In this section, we utilize the full functional form of t
two-quark non-local vev (2) to obtain a momentum space integral for the lowest order (g
contribution to the scalar current correlation function:

M) = i / d'z P QT ((2i0) Q) . i) = T@)b(@) - (2

The quark condensate component of II(p?) is obtained by retaining a two-querk vev frc
the Wick expansion of the correlation function

n(p?) = -2 / d*z e Tr [{O]T ($(0)%(2)) [0) (Qf : w(2)$(0) : |)] . (8

Transformation to momentum space is now made using the following free-field expressios

T . d4q 1q-T ¢+m
(OIT (wO)F(@)) 0) =i [ el evsAER (o5
(Ql: v(2)h(0) : ) = —%(im m) [——J‘(\TZ—‘?)}
= [atkems k4 m)z(h (28
N ) R (m‘/_>
/d4ke k2 Fk) = - i R (2¢

The Feynman rule for the normal ordered term in (27) is given by (28b), and
illustrated in Figure 1. Working directly from (27) and (28), or applying the Feynm
rules for the diagram in Figure 2, the scalar current correlation function can now
expressed as the momentum space integral after evaluating traces.

F (k)
N(p?) =24 [ d'%k [m? —p k+k? 2
() / [ p ](p k)2 —m? + e (
An important property of the Fourier transform F(k) is its on-shell behaviou-
(k2 —m?) F(k)y=0 , (2

which follows from substituting both sides of (28b) into (3). Making use of tais prope:
in the integrand of (29) we find that

f(k) . [

9



The second integral in (30) is determined by the z — 0 limit of (28c):

) J1 {mVz?
lim [ d*ke = £ (k) = -39 yiry <——)
z—0 6m2 20 z2 (31)

f d*kFk) = ——>
12m
Now consider exponentiating the propagator factor occurring in the first integral of (30):

/d”‘ _2p kHE /d%fk)/ dnein(P*—2pktic) (32)

The k integral can now be done using the definition (28¢) of F(k):

/qup"’—pr(?cHe - 12m2\/—/ Tt (27]7"“\/_) ' (33a)

This fizal integral is tabulated [18],

= Rev > 0; Rea > |ImJ| , (33b)

and wzen the e — 0 limit is taken, the following result is obtained:

The results of (31) and (34) are now substituted inte (30). Thus the lowest-order quark
condersate contribution to the scalar current correlation function for Euclidean momenta
Q? is then found to be

o) - -LEMED) o e (39

/aooe““:J,(jz) d?:z: B (\/QQ + 6% - a)

in agreement with previous work [13].
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Vector Current Correlation Function

The vector current correlation function of light quarks

M (p) =1 / d*zeP QT (u(2)3, (0) 1), Ju(z) =D(2) 19 (2) (36)

is extremely important in applications because of the relation between its imaginary part
and the ubiquitous quantity R(s) = o(¢Te™ — hadrons)/c(e*e™ — muons).

The leading quark condensate contribution to II,,(p) devolves from a two-quark vev
in the Wick expansion.

I (p) = -21/d4$6"” [{OIT ((0)%(=)) |0) 7,‘( L o(@90) : D] (6D

A momentum-space expression for II,, can be obtained using either (28) or by applying
the Feynman rules to Figure 2.

F(k)

I (=5

() = 2/d4kn [k - p+ m)7u(k+ m]

The correlation function II,,, must be transverse, as required by charge conservation.
To see this explicitly, we contract p#p* into the correlation function, and make liberal use
of (29b) in order to find that

F (k)
—2p-k+k?—m?+ie

PP T (p) = 2 [ a'k [(n? = k) 5+ 20+ B2 — K]

= —24/d4kp- kF (k)

(39)
We note from (28c) that

/ dkp- kF(K) =i éiﬂ)% / ke F (k)

a0 a i) “w
“ém e-«od{ mé/p2

thereby verifying the transversality of II,,. If we contract g*” into both sides of (38) we
find, upon evaluating traces and imposing the on-shell constraint (29a), that

b(p2) — _ . F (k)
H“(pZ) =S 6/d4k [16m2 S(k2 p k)] (p— k)2 —m? + i€ , (41.)
F(k)

11


http:eitl:.er

The integrals appearing in (41) were evaluated in (34) and (31). Using the transversality
of .., (p), the result for the vector current correlation function

M. (p) = % [ (1 + %) 1- 5;"72} (Pupv — P9uv) (42)

is easily obtained. This result agrees with previous work using the coordinate-space series
methods [9], and with plane-wave calculations [13].

Axial-Vector Current Correlation Function

The axial-vector current correlation function is of relevance to properties of the pion
and their PCAC relations. The correlation function for axial currents is

HA., )=i/d‘ze-‘p-x(Q[T (72(2)I5(0)) I€2) )
i = %@l =1

Following familiar procedures, a momentum-space expression for Hf,, is obtained. Since the
axial current is not conserved, the correlation function contains a longitudinal component

12, (p) = pup 12 (0%) + (pupv — PPg) IA(P?)

F(k) (44)

=2 [ d% i .
[T = m) o (= m) ] e

The longitudinal part 114 of the correlation function is obtained by contracting (44) with

pHp¥, evaluating traces, and imposing the on-shell condition as before:

_Fk)
pPpTI4 = — ik —24 [ d*kp- .
I Vi 48m?p /d 2. T op ktic /d kp-kF(k) (45)

Recalling the results of the integrals in (31) and (40) then finds the longitudinal part of
I, to be

2m(qq) [ 4m?
map?) = 252 |1 - f1- —| . 4
1) m2p? v P (46)
The transverse component is found by contracting (44) with g,
I (p) = pPIL(v°) ~ 3p°Ilr (p°) (47a)
T ') -2 f
K 3 4 .o
48/d T FiE ( m? + p 24 [ dk F(k) (47b)

Evaluating the integrals and solving for Il leads to the final result for 114 i

o= m{ag) {1 — 41— 4p—"212} Puby

m2p2
(48)
_ 3/2
m(gg) 6m? 4m?
+—§m_4|:1—7_ 1__172— (pupu—pQQ;w)
12

confirming earlier results [10,13] obtained through use of conventional coordinate-space a
plane-wave techniques. (The relevant equation in [13] has an easily-identified typographi
error.)

4. Equivalence of OPE Techniques for the Gluon Condensate

The equivalence of plane-wave, coordinate-space, and moment methods for the O}
coefficient of the gluon condensate ({a, G?)) appears a priori unlikely because of the fixe
point gauge employed for the non-local two-gluon vev in coordinate-space methods. T
issue is further complicated by the possibility of operator mixing in the OPE, as illustrat
by the ST identities for the gluon propagator [19]. Nevertheless, for the evaluation of t
product of gauge invariant currents as in QCD sum-rule applications, then the restrict
class of (gauge invariant) operators appearing in the OPE allows a demonstration of t
equivalence between the three methods.

To demonstrate this equivalence, we first review plane-wave, coordinate space, a
moment methods as applied to the gluon condensate. Consider the OPE of the prodt
of two (gauge invariant) scalar currents:

¢ / diz €77 T (j(2)§(0)) = Z(p?) + C?) : G265, :

+ D) pp” |: EnY € ~1 g GG (

+ operators not leading to (a;G?)

A non-trivial complication in (49) occurs when the (light) quark mass is taken
be non-zero in order to deal with infrared problems. In this case, the mm = § Limit dc
not agree with the direct calculation with massless quarks because of an operator mixi
between the quark and gluon condensates (at lowest order) when m # 0 [13]. Tke resolut;
of this problem is closely related to the heavy quark expansion (the heavy quark expansi
will be discussed in Section 5). For now, we will assume that all calculations of the glu
condenszte effects involve massless quarks.

The correlation function II(p?) is formed by taking a vev using the non-perturbat
vacuum ). Consequently, the gluonic condensate contributions to II(p?) are given by

06 =i [ &P =QIT (@)50) )
(&
1
- CONGY + DO (0 GiaG, - 19) = 10°7(6%)]
where (G?) = (Q] : G’j‘wG“ : |©2). The process of vacuum averaging annihilazes the te:
proportional to D(p?)
AY a 1
(@ G2aGa 1) = 702067 (
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so that t=e gluon condensate contribution to II(p?) is given entirely by C(p?)

I(p?) =C(p%) (G*) + terms not leading to (G?) . (52)

The >lane-wave method is designed to cxtract the gluon condensate by forming a
(connecteX} matrix element of the OPE with one-gluon states e, k):

/ @ 572 e RIT ((2)5(0)) e, B) = 40(52) [ER2 = (- )] +
; (53)
+4D(") (K- ) —p-kp- ke~ 207 (€K ~ (e k)?)

At this roint, the origin of the operator mixing is clearly evident in the plane-wave ap-

proach, si=ce when m # 0 the matrix element (e, k| : 11 : |, k) is non-trivial, leading to
the misic=ntification of gluon condensate effects as discussed in [13].

As wih the quark condensate, the behaviour of the vacuum is simulated by averaging
over the Zirections of the external momentum p

) 1
/ dp paps = szgaﬁ , (54)

in which :zse the term proportional to D(p?) is once again annihilated:
[ @ [ dtzer= (@ HTGEIO) IR =166 (38 - (07 . (@)

The invariant amplitude for the LHS of (55) is constrained by gauge invariance
(€a — €a — ko) to be transverse to the momentum k, resulting in two possible terms:

Tos(p k) = [ d'2e?*(a, HT G 0) 18, 4
=TW(p, k) [k?gap — kaks]

(56
+T® (p, k) [k2pap/3 ~ k- pkaps — k- Pkgpa + (k- D)’ gap )
1 2 2
- Ep (k GaoB — kakﬁ)

The terre proportional to T2 is zero after averaging over p, leaving dependence only on
(),

1C(F) [R — (e k)] = % / B Top(p, k) = T, 0) (Rgap — kaks) . (57)
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Thus in the plane-wave method, the OPE coefficient of the gluon condensate (G?) 's given
by one of the components of the invariant amplitude evaluated at zero external gluon
mormenta,

c6?) = 7TV0,0) (59)

As with the quark condensate, coordinate-space techiniques for the gluon condensate
involve a non-local vev originating in the Wick expansion of the time-ordered product of
currents. The only non-local vev that can contribute to the gluon condensate contains two
gluon fields (0 : Af‘(z)Afﬁ(y) : |Q) [14]. Since this quantity is gauge dependent, it must
be demonstrated that such gauge dependernce does not affect the gluon condensate con-
tributions to gauge invariant correlation functions. Furtnermore, the equivalence between
coordinate-space and plane-wave methods must be established.

First consider a covariant gauge representation of the two-gluon non-local vev [20]

5ab
. AQ b . = : 2
(Q: An(x) A (v) - 1) = o1 [Clz - yulz —v)o +~ E(z — y)’gu] (59)
+ terms leading to higher dimension condensates
The coefficients C and E are related to the dimension-four gluonic condensates.
C-2E= % G?) (60a)
5C +2E = —ZCQ\ (0 A)? Q) {80b)
The momentum space representation of (59} is
f 0 o 0
a a 4 —ik-(z—y) 4
€ AL () A0 () : /d ke [ okE 3k +Eg‘“'8k 8k*] §4(k) . (61)

As with the quark condensate, the normal-ordered term can be identified with a Feynman
rule as illustrated in Figure 3. Thus the contribution of this non-local vev from the Wick
expansion of II(p?) is related to the invariant amplitude

8 0 o 0

2 4

NG = - [ @80 [0 o + B | 3Tosp) - (62
The symmetry factor of 1/2 originates in the double-counting when joining the external

gluon lines in the amplitude. Using the expression (56) for T,g(p, k) and performing the
delta function integration leads to the following contribution to II(p®):

: 8 0 a 0
2y _ 47 o(4 = 2
op®) = "‘/d k6 )(k) (C(?k“ kB + EgaﬁakA Bk,\) [T(I)(p1 k) (k a8 — kakﬁ)

AT, ) (Kpupa—k - phapa—k - phapa-+(E- 2008~ 57 (Ras—baks) )|

=6(C - 2E)TM(p,0)
(63)
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Recalling the relations (60) between C, E and the gluon condensates leads to a coordinate-
space determination of the gluon condensate component of the scalar current correlation
function.
() = £(¢) TV,
: (64)
c6?) = 37(,0)

This result is identical to (58), demonstrating the equivalence of plane-wave and coordinate-
space approaches for covariant gauge representations of the non-local two-gluon vev.

A similar procedure exists for fixed-point gauges. In this case the non-local vev vio-
lates translation invariance, and the connection with plane-wave methods requires distinct
momenta for the external gluon lines. This requirement is similar to the modified non-zero
momentum (NZI) plane-wave method [19]. The modified NZI plane-wave approach has
proved to be useful in resolving questions of operator mixing and in analyzing the infrared
finiteness of OPE coefficients.

In the fixed-point gauge, the gluon condensate component of the non-local two-gluon
vev is
a b 1 p.T 6ab ~2 =
€ : AL(y)Ap(2) : ) = sV P\ o1 [9p79a5 — 9pp9ar] (G) . (65)
+Te
Since this vev is not translation invariant, its momentum-space version depends on two
momenta:

s A5 4502 1) = G [t [areemserems

89 8 8 @
A A WY
(g"aakxaa 81:382“)6 (k)6(0)

(66)

The invariant amplitude is also modified by the presence of different momenta for the
external gluon lines.

Tas(pik,0) = / d*z e (0T (j(2)§(0)) lo. k: 6, )
=T (p,k, ) [~k gap + kpla)

1
+ T (. k.0) [—k 0app + - Klaps + P bhspa — 5 (—k Lgas + kafa)]

(67)
Gauge invariance is again satisfied by this amplitude since it is transverse with respect to
k=, ¢8. In the limit £ = —k, the above expression must reduce to (56), implying that
n5(p1 kv _k) = Taﬂ(p’ k)
TU)(?L ka _k) = T(])(p, k) : (68)

T(?) (p: kv _k) = T(Z)(ps k)
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Using the above results, the contribution of the fixed-point gauge non-local vev to 1
correlation function TI(p?) is then given by

2 .
(p%) = —(—i‘s—)/d"k/d“(é(")(k)é(“)([)

{
280 o 8]1 (
[gaﬂ:a?m - Wﬁ] greslmiig
Using the expression (67) for the amplitude 7,5 and recalling (68) provides the final res
for the gluon condensate component of II(p?),

(?) = %(GQ)T“)(p. 0,0) = i-(c’):r“’(p, 0) . ¢

Comparison of (58), (64) and (70) reveals that coordinate-space and plane-wave me
ods are equivalent for determining the gluon condcnsate OPE coefficient in correlat:
functions of gauge invariant currents. Furthermore, the coordinate-space techniques
independent of the gauge chosen for evaluating the non-local two-gluon vev. This lat
point is obviously a concern when combining the non-local vev with perturbative covaria
gauge gluon propagators .

As with the quark condensate, moment techniques for the gluon condezsate ident
integrals of the non-perturbative gluon propagator with the gluon condensate:

kuk, ] =
DIEP(8) = Do (k) = D) = [ = 225%] D)

[ d% s o (G
s [ G kD0 = !

Thus the relevant (gluon condensate) contribution to II(p?) is related to <he invariz
amplitude
9 _ . [ dk NP ;
6% =i [ 74D N Toal ) (
(2m)
where the factor of 4 comes from a colour trace and a s;mmetry factor to prevent dou
counting. Substituting for DC’!VBP(k) from (71), recalling that T, is transverse to
momentum k, and using the explicit form (56) for the invariant amplitude leads to 1
expression

ne) =i

4] -
—i [ 4D [u—?rm(p, B+ (—3pK 2 k)?) T® gk }

The angular integration annihilates the term containing 7°%, and the the relation (7
between the moments and (G?) gives a final result

) = § (€T (0,0) (
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l(‘it?lﬂ:( 3. 10 the previous methods. This completes our demonstration of the equivalence of
the piuze-wave, coordinare-space and moment methods for cvaluating the OPE coefficient
of the Zluon condensate. As mentioned earlier, it has been assumed that massless quarks
have been used in all calculations for the gluon condensate (see [13] for details on dealing
with the case when m # Q).

5. Aspects of Gauge Dependence: The Quark Propagator

Ar Important element of the analysis of Section 4 is the nature of the OPE. For
produ(-.ts of gauge invariant currents, the OPE can only obtain gauge invariant, equation
of motion, or BRS variation operators. To lowest order in the gluon condensate only
the gatze invariant operators contribute to the correlation functions, in which case the
probler=s associated with operator mixing and renormalization of composite operators do
not occur. However, for gauge dependent correlation functions there is no restriction on the
operaters appearing in the OPE and hence the various approaches to evaluating the gluon
condensate contribution will differ. An example of such gauge dependence is provided by
the quask propagator.

An unresolved issue in the literature is the gluon condensate contributions to the
quark propagator, where the results of plane-wave [11] and fixed-point coordinate space
techriques [5.11,14] disagree. It is essential that such dependence disappear from calcu-
lations <7 (gauge invariant) physical quantities. We show below that when the different
expressions for the quark propagator are used in the heavy quark expansion for the quark
condznsa:e, all remnants of gauge dependence cancel, and standard results [2,21] are ob-
tained.

Firs consider the plane-wave and fixed-point results for the {@,G?) portion of the
heavy quark self-energy E(p):
Tmp(p —
n(p) = A~ )
3(p? —m?)
7 [(p? — 3m?)p+ 4m3
2(p) = T LARL
9 (p? — m?)
The parameter m is the heavy quark mass, and the self-energy is related to the quark
propaga:or AS(p) in the usual fashion:

457 = [ atzer=QiT ()70) ) = b+ M+ M)z . (76)

(asG?)  (fixed — point) ; (75a)

(@sG?)  (plane — wave) . (758)

We will Ulustrate the gluonic condensate contributions to the quark propagator in the
covariar: gauge. The term from the Wick expansion that contains the non-local gluon vev

1S
85(p) =~ [atzeir [t [ a2 O (wepw) 100730 : 432 45 : 0

(OIT (£()¥(2)) [0}y X (OIT (()%(0)) |0}
(77)
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as illustrated in Figure 4 (the Feynman rule for the normal-ordered product is shown in
(61) and Figure 3). The covariant gauge expression (59) for the non-local gluon vev leads,
upon converting to momentum space, to the self-energy

g 8 8 8 81 p+m .
S0 =5 o ay T By oy, | e

Evaluating the derivatives, and recalling the definitions of C, E from (60) leads to the
covariant gauge result for the gluonic condensate portion of the heavy-quark self-energy

_ o 2. oy, TP = 3m?)p + 3m*]

The explicit appearance of the (8- A)? operator is a consequence of the OPE for a gauge
dependent current.

N

3
”’_”mz (@G? . (79)

Clearly the gluon condensate component of the quark self-energy is gauge dependent.
However, when calculating a gauge invariant quantity such as the heavy-quark condensate,
such gauge dependence must cancel. The connection with the heavy quark expansion for
the quark condensate (i1/) is made through the gluonic contributions to the self-energy:

) = / ﬁ%ﬁ EASG) (80)

Substituting the different versions of the self-energy leads to plane-wave (pw), fixed-point
(fp), and covariant gauge (cg) expressions for the heavy quark condensate:

d'p dm>(p? +m?)+2mp?(p* —3m?)

@t =it [ 22 o (s10)
— (W) = i47rm(asGQ)/ (g:r:;“ ﬁ (81b)
— (F)eg = idma,m (@ : (- A (534 (;22_+_;f)5
" i%rm(asG2) (;1:‘1)14 2p* ?5721:2;;3% -
All the momentum integrals are finite, and can be calculated using the integral [4]
(g:)c'* (kf’fi;)a — ety R R (52

The final (standard [2,21]) result for the heavy quark expansion contains only gauge in-
variant operators (i.e. the coefficient of (Q] : (B-A)2 : |Q) is zero), and as expected, is
independent of the gauge used to evaluate the quark self-energy:

T (asG:’)

—mu) = St ' (83)
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This is an explicit illustration of the equivalence of plane-wave and coordinate space meth-
ods when a gauge dependent correlation function is used as an intermediate stage in the
calculation of a gauge-invariant quantity.

Another example of an apparent discrepancy between plane-wave and coordinate-
space methods is the (light) quark condensate contribution to the quark self-energy. The
difference between these methods occurs for physical momenta where the plane-wave (pw)
technique observes a “freeze-out™ below p? = m? [11] that is inaccessible in the explicit
m?/p? coordinate-space (cs) series.

Dlp)es = @0 [@+0)-a72] (34a)
B0 = 2500 [(3+0) - 2|0 7 — )
g 3 2 _ .2

+§?(§Q>[(3+a)—aa]0(m ) (845)

The coordinate space series approach, leading to a series in powers of m?/p?, is insensitive
to the non-analytic freeze-out. We show below, however, that the improved technique
for the coordinate-space approach developed in Section 3 yields the same freeze-out as
observed via plane-wave methods.

The relevant term in the Wick expansion of the quark propagator containing the
two-quark vev is

2
i85() = & [ d'zatydtzer= (O (()T0)) 101021 BB : [7)y"
(OIT (45()44() 10) (OIT ((:3B(©)) 10},

as illustrated in Figure 5. Converting (85) to momentum space (via (28) or through use
of the Feynman rules) yields the following quark self-energy

(85)

4 F(k) , (p— k) (p—- k)")
S(p) = =¢° 4 T\ o —g* gy M N 6
0 =30 [k +mi, (—a 4 0 - 9 P2 (56)
The self-energy is now expressed in terms of its distinct Dirac structures
=(p) = A@)P+ BE") (87a)
Tr (S(p)) = 4B(p°) (87b)
Tr (55(p)) = 49° A(P®) . (87c)
The functions A(p?) and B(p?) are found from (86) to be
4 F(k)
B(p?) = 7;(3+a.)mg2 /d"k oK) (88a)
p-k
) 4
/d kF(k oy
F (k)
2670 4 2 2\ ok — 252m2)
+3p2(1 a)/dk[(p +m®)p-k me](pik)4 (88h)
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The integral determining B(p?) is cvaluated by exponentiating the denorinator an
utilizing (29b) in the integrand of (88a). After evaluating the k integral

F(k)
= ) el L SR
/ddk k)g /d P —2p-k+m?

1@ [T dn (P +miic) /—.-)
e = 7 J 2mr
12m2\/p2 Jo 1 : < W,

the remaining integral is tabulated [18] (see (33b)). Carefully taking the e — 9% limit i
the tabulated integral leads to a result containing a freeze-out for physical mcmenta,

/d" = L)Q - _1557‘11;2 0(p2—m2) 1(2QQ> ( m2 __pz) . (90

Using (90), the result for B(p?) in the physical momentum region is

(89a

2
B = G5+ a0 [ 56 67 - ) 4 0 (7 - 7)] o1

Now consider evaluating the integrals determining A(p?). The first intecral in (88k
is simple to evaluate using (90) and (31):

%k
/d4k.7-"(k AL P /d4kf(k 24 +m2p : /d"k.’F(k) |
1 5 ;
= ——gz {1 - (p* +m?) [179 (r* - m?) + _nlﬂg (m* - _:2)] }
(92

The second integral of (88b) can be expressed as a linear combination ¢7 (90) and
new integral:

/d“kf(k b + e - — B
(P2 +m? - 2p- k)’
_ L., 2 F(k) 1. 5 2 F 2
-0 +m)/d4k___@_k)2+2(p2 ) /d“k(p_f)

2+ 1 1
_P m? (9 L} 0(p —-m )+m0(m?_p2)j}

(9:

24m
1 m2 4
+5 \ /d

( - ’»)4
The final integral ir (93) is evaluated by exponentiating the denominator, using :he on-che
constraint, and then performing the & integral:

F(k) o ivi(p? m2 ;
47 - _ 4 1 +m*—2p-k+ie A
/d k(P2+m2_2p'k)2 /d k/ dnne”C 7 (®)

(94¢

. d m(p +m -—15) y
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The remaining integral is tabulated [18],

(V=7 -a)

and after carefully evaluating the € — 0% limit a freeze-out is again observed:

/ dre % J,(3z) = Rev > —1; Re(a£if) >0 ,  (94b)
o}

; F(k) (@q) [ P +m?
':4k . 1— 9 2 2
/ @ +m2—2p-k)  24m3p? p?—m? (= m) 95
P +m? 2_ 2 &5)
e~ p )J
Substizuting (92), (93) and (95) back into (88b) leads to
Alp?) = 92 - 1 2 2 1 2 2
_p)——gam(qq) Fe(p —m)+m—49(m - (96)
in whica case, the quark condensate component of the light-quark self-energy,
g . mp 2 2
() = g2 | B+a) —eg 8 (p* —m®)
; (97)

+orm [ ra-al] o -

is fourd to be in agreement with the plane-wave result [11].

Tzus the improved method developed in section 3 for the coordinate-space approach
is iderzical to the plane-wave result, leading to a freeze-out in the quark self-energy at the

physical momentum point p? = m2.
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Conclusions

The equivalence of plane-wave, coordinate space and moment methods has been
demonstrated for the determination of the {gg) and (@,G?) coefficients in the OPE of
gauge invariant currents. An important conciusion of this analysis is that the fixed point
gauge commonly employed in coordinate space applications to the gluon condensate does
not affect the result of the OPE for gauge invariant currents.

Sources of disagreement exist between the various OPE techniques only when gauge
dependent quantities are considered. In section 5, however. such gauge dependence is
shown not to affect the calculation of a gauge invariant quantity such as the heavy quark
expansion relating the heavy-quark and gluon condensates.

A new approach for evaluating quark condensate effects to all orders in the quark
mass has been developed in section 3 and applied to products of gauge invariant currents
of physical significance. It is hoped that this new technique will be of use in future
calculations. ’
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Figure Captions

Figure 1: The momentum-space Feynman rule for the vacuum expectatizn value
normal-ordered quark fields, as in the integrand of equation (28b).

Figure 2: The Feynman diagram for (lowest-order) quark condensate cont=*butions
two-current correlation functions.

Figure 3: The momentum-space Feynman rule for the vacuum expectatin value
normal-ordered gluon fields. corresponding to the integrand of equation (61) in the lim
y—z— 0.

Figure 4: The Feynman diagram for the (lowest-order) gluon condensate ccatributio:
to the quark propagator.

Figixre 5: The Feynman diagram for (lowest-order) quark condensate con:=ibutions
the quark propagator.
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ABSTRACT

We study the production of the charged Higgs boson (H™) at the future ep collider
LEP-LHC, through the reactions of photoproduction (y+ b — H~ +t) and W-
mediated (e~ + b — v + H™ + b), and compare with the production of H~ through
the decay f — H~+b. We find that the mechanism of photoproduction dominates for
the mass range mys > my — my, whereas for my+ < my —my the decay t — H* +b

is the main source of charged Higgs bosons.
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The study of the Higgs sector remmains a crucial issue in order to test the stan-
dard model (SM) [1]. The SM predicts only one neutral Higgs boson, however, in
several extensions, like the two-Higgs doublet model (including the SUSY case) or in
technicolour theories (TC), the scalar spectrum contains also a charged Higgs (H¥),

whose detection would be a clear signal of new physics.

Current data at LEPI excludes charged Higgs masses up to about 45 GeV [2],
whereas LEPII will extend the limits to about 90 GeV. On the other hand, at the
future hadron colliders it will be possible to search for a charged Higgs with a mass
within the kinematical reach of t — bH*  namely my > mgs + my, where the decay
H* — 1v is usefull [3]. However, no mechanism is known to detect heavier H* at
the future hadron colliders. The main difficulty arises because of the lack of a clear
signature, since the one coming from the dominant Higgs decay into the heaviest
available quark doublet, is well bellow the QCD backgrounds, although in ref. [3] it
is claimed that a good b/t separation could help in order to allow detection of H*.
On the other hand, the signature from the decay H* — W= + h® could be usefull

too, provided that the decay branching ratio is reasonable large.

Another possibility for producing charged Higgses is at the proposed LEPI,LEPII-
LHC ep collider, where its detection could be more feasible if one considers that the
backgrounds are easier to handle. Thus, it is important to find out if some mechanism

could produce a significan number of charged Higgs bosons at LEP-LHC.

The decay t — b+ H*, which is usefull at Hadron colliders should allow the
detection of H¥ at ep colliders too. According to ref. [4]. the cross-section to produce
a single-top at LEPI-LHC is about 2 pb for m; = 200 GeV" (which is the largest top
mass allowed by radiative corrections); and this gives about 2000 top quarks with
the planned integrated luminosity of 10% pb~!. Then, it is possible to produce 10
events with H¥ even for BR(t — b+ H*) = 0.005, which is obtained for mg= up to
192 GeV and with tanf = 1. Thus, it seems possible to exclude H~ with a mass
very close to the threshold of the decay t — b+ H*. However, a detailed simulation
will be required in order to know the largest mass that can be searched with this

. . \
mechanism, for a given value of m;.

* We shall use the formulae for decay widths involving the charged Higgs boson summarized in
ref (3], which we have verified in [5].



Now, we turn our atention to the productio of H= in the mass range mgs >
my — my. In this letter we shall study the production of a charged higgs boson

through the following reactions,

\

e+p—o>X+y+boH +t+ X, (1)

e+p—oX+e +bov+H +b+X. (2)

We shall treat the photon and the b-quark as partons within the colliding electron
and proton, respectively. The production of H™~ via photoproduction was studied at
HERA in ref. [6] using the reaction of photon-gluon fusion, which is more complicated
than 1) to evaluate. However, both methods give similar results. On the other hand,
the reaction e + b — v + H~ + b+ X has been studied before [7]. However, both of
these previous studies were done only for light charged Higgs and top, whereas we

are irterested in the case of a heavy H*.

The Feynman graphs for reactions (1) and (2), at the parton level, are shown in
Fig. i-a and 1-b, respectively. The amplitude for these reactions can be written using
the relevant Feynman rules summarized in ref. [3]. We shall not present the explicit
expression for the amplitude since its form is not particularly illuminating. The cross-
section for ep is obtained by convoluting the result for the partonic cross-section with
the photon and b-quark distribution. We shall use the Wizacker-Williams aproxima-
tion for the photon distribution, whereas for the b-quark distribution, we shall use
the kadronic structure functions of EHLQ [9].

Our results for the cross section corresponding to reaction (1) at LEPI-LHC are
shown in figs. 2, as a function of mys+, and for my = 120,130 GeV and tanf = 1.
Whereas the results corresponding to LEPII-LHC are shown in fig. 3. On the other
hand. the results corresponding to reaction (2) for LEPII-LHC are shown in fig. 4.
The results for LEPI-LHC are even smaller and will not be displayed here. We can

see that the photoproduction mechanism dominates the W-mediated reaction.

Now, in order to know if these cross-sections could be usefull, one must include the
decays of H*. For the mass range considered here, the dominat decay is H+ — t +3,
with BR ~ 1. Then, for my = 120 GeV, tanf = 1 and myz = 150 GeV, we find a
cross-section of 8 - 10~3 pb from the mechanism of photoproduction at LEPI-LHC,
whereas the W-mediated reaction gives a cross-section of about 103 pb, at LEPI-

LHC too. Thus, the total number of charged Higgs that can be produced is about 9,

3

which seems to lay on the verge of being detectable. For larger charged Higgs masses,
the total cross-section decreasses even more; for instance we find that the number of

events is less than 2 for mg+ > 225 GeV.

On the other hand, if we consider the High energy option of LEPII-LHC, we find
that the cross-section is almost one order of magnitud larger, which could allow the
detection of a charged Higgs with larger masses. For example, if we take m; = 150,
tanf = 1 and mys: = 200, the cross-section is 0.01 pb. Unfortunately, since the
planned yearly integrated luminosity is of 100 pb~!, it will require several years of
running in order to get a sufficient number of events to find or exclude the elusive
charged Higgs bosons. Thus, the chances to detect a heavy H* at LEPII-LHC are
not much better than at LEPI-LHC.

On the other hand, although the decay modes of H* does not seems to be an
insanourtable obstacle at ep-colliders, we mention that other type of signatures could
arise from the rare decays of H*. However, in models with elementary scalars the
most interesting rare decays, like H* — W% 4 4/Z, are found to have very small
branching ratios, whereas in TC models the BR for the rare decays are predicted to

have larger values (8], but not at the level of being detectable.

In summary, we find that the mechanisms to produce H* studied here, give small
cross-sections for mgz > my + my, which could be used to detect charged Higgs only
for an small window in such mass range, namely up to about 160 GeV for m, = 150
GeV. However, this range could be extended up to about 250 GeV if the high-energy
option LEPII-LHC were provided with a luminosity of 10° pb~!.
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FIGURE CAPTIONS

. Feynman graphs for the production of a Charged Higgs boson at ep colliders.
1-a: Mechanism of photoproduction, 1-b: W-mediated reaction.

. Cross- section for the photo-production of H* at LEPI-LHC (solid: m, = 120
GeV, dashes: m; = 150 GeV).

. Cross- section for the photo-production of H* AT LEPII-LHC (solid: m; = 120
GeV, dashes: m; = 150 GeV, dots: my = 200 GeV.)
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. Cross- section for the production of H* A

tion (solid: my = 150 GeV, dashes: m; = 200 GeV).
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