
Topological defects in field theories and cosmology have been the subject of intense 

investigation for the last two decades. These defects are solutions to the classical field 

equations and topological reasons guarantee the existence and stability of the solutions. In 

the early universe, the defects would form during a phase transition in which the symmetry 

of the universe breaks down to a smaller symmetry. A wide variety of defects is now known 

and the properties of some of them are very well documented [1 J. 

The topological defects generally considered occur in field theoretic models in which 

the Lagrangian is invariant under the transformations of a gauged symmetry group but 

in which no global symmetry is present. This gives rise to local (gauged) defects. The 

simplest example of this kind of model is the Abelian-Higgs model originally studied by 

Nielsen and Olesen [2J. Global defects - arising from the breaking of a global symmetry 

have received less attention in the literature. The primary reason for this is that Grand 

Unified Theories are based on gauged symmetries and global symmetries usually have to 

be included by hand without any compelling motivation for their inclusion. This, however , 

does not preclude the existence of global symmetries in the universe and such symmetries 

may well playa role in the Grand Unification scheme. 

In this paper, we will study the formation of defects and in particular the form a tion of 

cosmic strings, when there are both global and local symmetries present in the Lagrangian. 

We find the result that some of these field theories admit stable string solutions with finite 

energy per unit length even when the vacuum manifold is simply connected . In other 

words, strings can form even if the hypersurface given by the minimum of the potential, 

V, is simply connected. Alternatively, if the symmetry group, G, of the Lagrangian breaks 

down to H, there can be string solutions even if the first homotopy group, 7rj (G/ H) is 

trivial. The string solutions we find are very similar to the ordinary U(l) local strings but 
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they have additional novel features that have some resemblance to global defects. For this 

reason, we have decided to call these strings "semi-local". 

In some ways, semi-local strings are similar to the "frustrated" cosmic strings discussed 

by Hill, Kagan and Widrow [3]. A frustrated string may be thought of as consisting of two 

distinct strings laid on top of one another. In Ref. 3 it is argued that, even though the 

(composi te) string solution is a stable solution to the field theoretic equations , the string 

will not be able to form in a cosmological scenario and will be "frustrated" . This frustration 

will come about because one of the two distinct strings first forms in one location and then 

the other forms in some other location but the stable string solution is only the one with 

both strings forming at the same location. In this way, even if the field theory admits 

string solutions, the formation of these strings in the early universe is "fru strated". 

A similarity between the semi-local and the frustrated string is in the ingredients that 

go in the Lagrangian. Both kinds of strings - at least in the simplest models - involve 

two complex scalar fields and only one gauge field. But it should be pointed out that the 

existence of string frustration depends crucially on the smallness of some of the coupling 

constants in the Lagrangian. No such assumption is required in the case of semi-local 

strings and the form of the potential is fully protected by the symmetries . The fru strated 

string exists because the vacuum manifold is not simply connected and for this reason 

these strings cannot terminate whereas the existence of the semi-local string is not purely 

topological and it can terminate in a "cloud of energy". 

vVe expect the cosmological role of semi-local strings to be similar to the role of 

frustrated strings. Even though the field theory admits strings, a string network of the 

type found by numerical simulations [4] would probably not form during a phase transition 

in the early universe. Semi-local strings can end in a cloud of energy and the region between 
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distant strings will be filled with gradient energy. This makes the evolution of semi-local 

strings much more complicated than that of local U(l) strings. 

In Section 2 we explicitly demonstrate a model in which semi-local strings form and 

prove their existence. We also discuss some of the properties of these solutions and consider 

their cosmological role. In Section 3 we show that the semi-local property can hold for 

strings but not for magnetic monopoles. We conclude in Section 4. 

2. Semi-local Strings: 

The model we consider is a direct generalization of the Abelian Higgs model. The only 

difference is that the complex scalar field is replaced by an 5 U (2) doublet <1> = (¢, 1jJ ). 

Then the action is 

This action is invariant under G = SU(2)g x U(l)1 transfonnations, where, the subscripts 9 

and I stand for "global" and "local". Under SU(2)g, we have <1> ---+ exp( iet a T(L)<1> where 0:(1 

are constants and under U(l)l, <1> ---+ exp(if3(x)I)<1> where I is the 2x2 identity matrix. Once 

<1> acquires a vacuum expectation value (vev), the symmetry breaks down to H = U(l)g 

exactly as in the \iVeinberg- Salam model for the electroweak interactions . And as in the 

electroweak model, here too 7rl (G / H) = 1. However, if we were to only consider the gauge 

symmetries, we would need to look at 7rl(U(l)t) which is non-trivial , and indicates the 

presence of gauge strings. 

It is useful to study the shape of the potential in eqn. (2.1). The potential is minimum 

when <1> t <1> = T)2. Since <1> is a complex doublet, the minimum of the potential is a three 

sphere and is simply connected. This is in contrast to the situation in the Abelian-Higgs 

model where the potential minimum is a circle and the string solution corresponds to a 

3 




solution which winds around the circle. In our case, there is no such circle if we only look 

at the minimum of the potential. The crucial observation, however, is that one must also 

consider the gradient energy in order to find a minimum energy solution. Then, if we pick n 

point on the three sphere, the U(1) I transformation generates a circle on the three sphere. 

For every point on the three sphere there is a corresponding circle. Since the points on the 

circle are connected by local symmetry transformations, there is no energy cost - neither 

potential nor kinetic - in moving along the circle. However, it costs gradient energy to go 

off the circle because the only "vay we can transform to a poin t off the circle is to use the 

global SU(2) transformation. So it may be better to think of the three sphere as being 

composed of an infinite set of circles and that there is a string corresponding to a winding 

around each of those circles. CVve prove the existence of these string solutions below.) The 

string solution around anyone of these circles is a minimum of the energy for non-trivial 

(winding) boundary conditions. String solutions that involve transitions from one circle to 

the other, however, are not minimum energy solutions and can eit.her unwind or relax to 

a minimum energy string that winds around a single circle. 

While the above arguments suggest the presence of string solutions in the model in 

eqn. (2.1), they do not constitute a proof. The reason is that the vacuum manifold is 

simply connected and so a field configuration that winds at infinity may unwind without 

ever leaving the vacuum manifold. In other words, we know that the field vanishes at tIle 

center of the Nielsen-Olesen vortex, but there is no guarantee tha.t it will vanish in our 

case. To check this, we must actually construct the string solution. 

We now show that the model in eqn. (2.1) has stable string solutions by a simple 

generalization of Bogomol'nyi's proof for the Abelian-Higgs model [5]. For this, we consider 

the energy per unit length of a sta.tic, stringlike configuration along the z-axis in Minkowski 
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space, 

where cPa and 7/Ja, a = 1,2 are the real and imaginary parts of cP andlp respectiyely, 

\lmcPa + eEabAmcPb (m = 1,2) is the U(1 ) covariant derivative (similarly for 7/Ja), 

and E12 = -E21 = 1. We start by rescaling the charge and vev of the Higgs doublet to 

unity: 

r; hm 111
Am = r.::.Vm, X = - y , (2.3)

v2 e17 

The energy per uni t length becomes 

where fJ = 2).../ e2 and fmn = omvn - onvm. This is easily shown to equal 

E 

1 2+ 2(Emn D nQa + EabDmQb) + 

fJ - 1 2
+ -2-(QaQa + RaRa - 1) 

+ [~fmnEmn(1 - QaQa - RaRa) - EmnEabDnQaDmQb - EmnEabDnRaDmRbJ} 

(2 .5 ) 

The terms in square brackets in the last line are the divergence of the vector 

(2.6 ) 

and therefore the energy has a contribution from the boundary: 
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where C= is the circle at infinity. Assuming the boundary condi tions 

(2.8) 

we find that the boundary term is proportional to the circulation of the gauge field , which 

in turn has to be an integer multiple of 21T in order for <P to be single-valued on C CX) , 

21Tn 	 (2.9) 

(The integer n is called the winding nwnber of the string.) Thus, 

(2.10) 

Let us concentrate on the case f3 = 1: the energy is minimized when 

(2.11 ) 

The ansatz 

(2.12) 

is compatible with the above conditions provided that, as r ----+ CXJ, (((j)2 + (((2)2 = 1 and 

the phases BI and B2 differ by a constant, c. The correlation of the phases is due to their 

coupling to the U( 1) gauge field, V m , since the condition that Dm Qa goes to zero at the 

boundary implies 

o 	 (2.13) 
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and this, in turn, means that 

o 

so e2 = e1 + c as r --. 00. Introducing 

n 
and vq, = -v(r) , vr = 0 (:2.15) 

r 

the Bogomol 'nyi equations become 

da n - = -(1-v)a
dr r (2.16)
dv r ? - = -(1 - a-)
dr n 

with the boundary conditions a --. 1, v --. 1 as r --. 00. 

These equations were analysed in Ref. 5 where it was found that the solutions are 

stable for any value of n. Notice that they are identical to the Nielsen-Olesen vortex 

equations, and therefore the field <I> must vanish at the centre of the string. Furthermore, 

the string solutions can be labelled by the continuous parameters al(T --. (0) (or a2(r--. 

(0)) and c. In this sense, the model contains an infinite number of strings corresponding 

to the infinite number of U(1) circles on the three sphere. 

The case with f3 "I- 1 can be analysed in an identical manner. \Nith the ansatz in 

eqn. (2.12), the equations are identical to the equations found by Bogomol'nyi for the 

Nielsen-Olesen string and hence we simply state his results: the strings with unit winding 

number are stable for all values of f3 and for Inl ;:::: 2 the strings are unstable if f3 > 1. 

These results apply to the semi-local string also. 

This completes the proof of the existence and stability of string solutions in the model 

(2.1 ). 

In the early um verse, semi-local strings would form if a suitable phase transition 

took place. During the phase transition <I> would get a vev that was uncorrelated at long 
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distances. This corresponds to a random selection of points on the three sphere at every 

point in space. In traversing some large contour in space, it is possible that we will wind 

around a U(l)/ circle on the three sphere. This means that there will be a semi-local string 

passing through the large contour. In general, it will also happen that in two distant regions 

of space, we will get two "different" semi-local strings (that is, with different values of a] 

and c). The different strings are not connected by any gauge transformation and so there 

is energy expense in the gradients of the parameters al and c. This means that the region 

between the two different strings will be filled with gradient energy. The evolution of the 

string network will depend on the string tension and on the dynamics of this gradient 

energy. The gradient energy may also be thought of as providing a long range interRction 

between different strings. 

Next consider a straight isolated semi-local string. vVe have already seen that the 

vacuum manifold is simply connected and so the winding of the field configuration may 

disappear. This means that the semi-local string can end. However, the field configuration 

can only unwind by using the global transformations and we know that global transforma

tions are costly in terms of gradient energy. Hence, when the string ends, it must end in 

a cloud of gradient energy. This energy expense is infinite for a single isolated string but 

may be finite when one has a whole network of strings. 

We expect that the evolution of the semi-local string network will be quite different 

from the evolution of the Nielsen-Olesen string network. However, a definitive word on 

this matter can only be given after more extensive studies, some of which may have to 

involve numerical simulations. 
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3. Semi-local Magnetic Monopoles - a Negative Result: 

In this section we will show that it is not possible to have semi-local monopoles within the 

context of Grand Unified Theories. 

In a general phase transition we can write the initial symmetry group G as G, x G g 

and the final symmetry group as H, x H g . Let us denote the generators of G, by T n, and 

the generato rs of G 9 by Ti . Vie will assume minimal coupling and so the kinetic term of 

the scalar field depends on the covariant derivative, Dp.ifJ == (8p. - iHl:Ta)ifJ. Here, ltV: 

are the gauge fields corresponding to the local transformations generated by Ta. Then, 

the action is invariant under G9 only if 

(3. 1 ) 

Magnetic monopoles exist in the field theory if 7r2(G1/H!) is non-trivial. However , we have 

(3.2) 

provided that 7r2(Gd = 7rl(Gd = l.(It is generally believed that the Grand Unified group 

should satisfy these conditions). For 7rl (Ht) to be non-trivial , H, must necessarily be non

trivial and con tain at least one generator that annihilates the vev of ifJ (= ifJ o) at a given 

point in space-time. Without any loss of generality we can call this generator Tl: 

o. (3.3) 

The magnetic monopole will be semi-local if: 

(i) given any constant field ifJ and any constant local transformation e,Ba TO, there is a 

. k k 

corresponding global transformation etc\' r whi ch has the same effect on ifJ: 

(3.4 ) 
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The ok will depend on the choice of cI> and (3a. 

(ii) 	 the vacuum manifold, that is, the hypersurface V = 0, lies on an orbit of G g ; in other 

words, given any cI>o in V = 0, any other point cI> in V = 0 can be written as 

(3.5 ) 

for some choice of c/ . 

and, finally, 

(iii) gIven 	any local symmetry transformation, there is at least one cI> ID V = 0 which is 

not invariant under it. 

The first condition is crucial because it will permit any magnetic monopole configu

ration to be unwound using global transformations. As seen in the semi-local string case, 

this is the key feature of semi-local defects. A direct outcome of this condition is that 

the global symmetry must be larger than the local symmetry. The second condi tion is 

reasonable because any accidental degeneracy of the potential would tend to be lifted by 

quantum corrections, so we expect V = 0 to lie on an orbit of the full symmetry group, but 

then condition (i) implies that Gg will be enough to cover it completely. The third condi

tion means that the local symmetry transformations are not trivial on the entire vacuum 

manifold. 

Now, 	from eqn. (3.1), it is clear that 

o 	 for all i. (3.6) 

But this means that every cI> in V = 0 is annihilated by Tl which is contrary to condition 

(iii). So HI is trivial and semi-local monopoles cannot exist. 

As a corollary, this proof shows that the only topological defects that can have the 

semi-local property are those for which the relevant local symmetry breaks completely. 
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4. Conclusions: 

We have shown that the formation of U(l) gauge strings can be complicated by the presence 

of global symmetries. It may be possible to have strings even if the vacuum manifold is 

simply connected, that is, 7rl (G / H) = 1. For this reason we propose that it is better 

to consider the homotopy group 7rl(Gt/Ht) where the subscript I refers to only the local 

(gauged) parts of the initial and final symmetries of the Lagrangian . If this group is non 

trivial, then gauge strings will form. If, in addition, we find that. 7rl (G / H) is trivial , then 

we may conclude that the strings in the theory are not genuine local strings but are of the 

semi-local variety. 

In Section 2, we described a model with SU(2)g x U(l)t symmetry - essentially the 

Weinberg-Salam model for the electroweak interactions with the SU(2) charge and gauge 

fields set equal to zero. For this model, we used Bogomol'nyi's method to expli citly prove 

the existence and stability of the semi-local string solution. The model can easily be 

generalized by using larger global symmetry groups. 

The cosmology of semi-local strings is very different from that of ordinary U(l) gauge 

strings. A peculiar feature of semi-local strings is that they can end in a cloud of energy 

and the space between strings may be filled with energy. For an isolated string , the energy 

expense in terminating a string is infinite. In the cosmological context, we do not have 

an isolated string and the energy expense is large but finite. The network of strings will 

evolve under the tension in the strings as well as the gradient energy in the global field. 

Finally, we have considered the possibility of semi-local magnetic monopoles. Had 

this possibility been realized we may have had a natural solution to the monopole over

abundance problem since there would be energy filling the region between monopoles and 

this could enhance the annihilation rate (as happens in the global monopole case [6]) . 

11 




However, under some reasonable conditions, we proved the negative result that semi-local 

monopoles cannot be formed. 
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