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discussed. 

• Talk presented by O.Wang at the Workshop on Weak Interactions and CP 

Violation. Aug.1989, Inst. High Energy Phys., Acadella Slnlca, Beijing, 

China. This work Is supported by the Nat lonal Natural. Scl-ence FouRdat Ion .--=-, .. , -, 1-

of Ch I na 1 ~ ~ l , t i 

•• "ailing Address 

; 

_.1"W ........ <L_ ... - -~".. .- .. 

7urp-J'Q-t99 
I. I NTRODUCT I ON 

OuanlUI chrolodynamlcs (OCO) has been well studied at high energies where 

perturbation . calculatlon 15 applicable and has proved to be successful. 

However. there are a lot of physically Interesting lov energy hadronlc 

processes which are nonperturbatlve and remain unsolved In OCD. Usually low 

energy processes of mesons are studied by constructing effective lodel 

field theories from the consideration of symmetry requirements and 

phenolenologlcal constraints, such as the linear and nonlinear cr-Iodels. 

Although the$c models do reflect soae essentIal properties of OCD and can 

lead to sOle successful results,the situation Is stili not satisfactory 

since It Is not known how they are related to the first principle of OCD. 

In this talk,ve will give two different ways of deriving the lov energy 

effective action for lesons from the first principle of OCD. Our starting 

point Is the OeD generating functional 

. z· Y,B.:oo/~<P~W:UOj eXPISa4-X{ t, (B.w,W)+iji (~-Io-gs~)'f J (I) 

where ~ (~).B; and W (w) are the quark fleld,gluon field and the ghost 

fleld.respectlvely,~~(B.w.~) Is the part of the OCD Lagrangian Including the 

pure gluonlc terl.the gauge fixing terl and the gauge compensation terl. and 

10 Is the current quark lass latriX. In Sec.l[ we shal I give two different 

approxllatlons at low energies In which after Integrating out the gluon and 

ghost fields. the effective Interactions between quarks are four-fermion 

Interactions. As has been pointed out by several authors~l~lhe four-ferllon 
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Interactions will lead to the Q'-liodcl type erfer-tlve action for II1c~ons 

through the Introduct ion of auxiliary fields for the quark-ant I-quark 

composite operators and the auxiliary fields arc just the meson flelds.ln 

our effective actlon,there Is one lore free parallcter than the set of free 

paralleters In the fundalental theory of QCD due to the Ignorance of the 

complicated loop contributions and nonperturbatlve effects In the gluon 

sector. The forI of our effective action looks like that In the chlral cr-

lodel with vector and axial-vector lesons Included, but with fewer free 

paralcters. SOlie of Its qualltat Ive consequences are discussed In Sec. J[. 

JI . DERIVATION OF THE LOV ENERGY EFFECTIVE ACTION FOR MESONS 

1.l/gs Expansion. 

Ve are Interested In lov energy problems In which gs Is large. So we take 

Ilgs as an expansion paraleter to derive the low energy effective action. It 

Is well-known that I f we rescale the fields D~, wand w by 

o 0. 
B~~~/gs w ....,W/gs , w ~ WIgs, 

the generating functional (1) can be written as 

Z·SVB;m.vf£>W:OWexPIS cfXl
9s 

13 (B,w,w)+q;( 11-1I0-~Z4) I (2) 

l.et" be an energy scale below which gs Is large.ln prlnclple/\ Is related 
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to the QCf) scale p~ral1ctcr AMi throuGh tt,e rorBiula of the rllnnls of gs' 

UllfortunatelY,the running of gs at lOll energies Is not knolln explicit ly.So 

wpo simply take" as the free parameter Instead of A hiS without considering 

the explicit relat Ion between thell Ole expect that Ai45 Is not sensitive to 

tile variation of" since at lOll energies Ss runs fast.). Ve knOll that 

physics at low energlcs should not be Influenced much by the physics well 

above ~.Thus, as the first approxllatlon, we take Into account only the 

contributions at energies below A.ln this case we can Illplement 118s 

expansion In (2) and to lowest order 

Z ::: ~~B:z>t~exp I ~d4x (lj ( ~ -I. - -rr)o/ (3) 

Here we have Ignored the ~~t., terl. One lay think that this Is quest lonable 

since the terl - ~,G~G~lnCIUdes Important physlcs.Actually the physics of 
4 J, 

-~G~G~~ Is not lost In (3) because after Integrating over the quark fields 

In (3) we get 

Z-explTr In( I~-II.-t~) 
, 0.,.JI,Ml I r:2 ... • ~ L._A -expJ(-"4loG)llllJ -2"0#,B)4 B)l -lTr In( 1-v-lo -'2-";) (.0 

Where 

I ;& -21 eft trl ({--rn~)PZ+ m! 
• j(2rr)4 (p'-m~)4 I 

(Sa) 

OJ.l~. -I (lL trl -{? t m: 
) (2104 l p'-m!)l 

(5b) 
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-ITr'ln( I~ -Jo-r~) leans the part In -ITrln(Hr-mo-t~) having lower powers 

or ~ .and tr In (5) leans the trace over the rlavour degree or rreedom.We 

, - .~" see that an errectlve -~loG~vr. ter~ e~erges In (~). so that our 

approxllDat Ion Is Just 10+ IIgs ~ I.. There Is a gluon lass terl! 

-~&~~ B:B·~ In (~) which Is not gauge Invarlant.Thls Is not surprising 

since the Introduction or a cut-orr parameter A does not preserve gauge 

Invariance and we have not I~posed the requlrlent or gauge Invarlance In our 

calculation. To lake the final result consistent with gauge Invarlance. we 
. ,u 

should add a counter terl t ~J(1 8: Bap In (3) .Here Op.2 Is In general 

not equal to the tp.? given In (Sb) since tolB)I~ B¥ Is the counter terl 

required by the complete theory Including gluon loop contributions and 

nonperturbat Ive errects.At present we cannot deterlline 0)4' theoret Ically so 

that we take It as an extra free ~aralDeter In our approach. Thus eq.(3) 

should be vrlttten as 

z ~)2) B .flq,2)~eXPIJ~X{ 1~-lIo-r.B') +t~R! 8·"1 (6) 

The gluon rleld Integration can be carried out and we obtain 

z~~£)~eXPI)d4X{ip (I~-I.)~ -bip(Jlf~)(q.;(..",¥)J (7) 

We can apply Flerz reordering to the rour-rermlon Interaction terl to lake 

the bll Iner orcrators colour slnglet.Let tR (IKI.··· .Nf ) be the generator or 

the flavour group normalized as 

tr-( It t f)· &,., (8) 
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Arter Flerz reordering. eq. (7) reads 

Z ~'/1)~~xPI 5 d4
x{ ijj (~-Io) 1J14~~(~",)1 +ij(iJ) iTSIJI)2 -(~(-k)(qil"~)1 

-$t(~r~1~)1 +(qib"'? +(~ir'tl~1-1(q;r"fl~)' -t(iji1sl~tlq, )2) 1 

(9) 

The colour singlet Quark-ant I-quark bilinear operators ~~ • ~l'~, etc 

have the quantul numbers or lesons. 

I 0.0 10 J o. ntroduce auxiliary rlelds S ,5 ,P .p ,Vp .v~ .A~ ,A~ which are 

scalars.pseudoscalars.vectors and 8xlal-vectors.respectlvely.The following 

Gaussian Integral 

(t)S°f)S'ZJP'7JrlDv;.nV~A~AJ.exPlrrfX(-~}l'2(SO_~~ _ ~i(S'- ~~~ )2_ 
J J '} Jilt 6,u' 2 gJl 

~Prpo- qii1scll )t_~Jl(pr_ ijiiT5t,~ )1.+ &.u' ('vo+(W-m) 'Ji~l+ 
'l JH! 6P.' 2 b.,.2 I _ I lNt }A 2 &,u' 

Vf'tNc 
2~Jl(V.t+ ifl ... t.~ . )2+ 2 0)1 (Ao+ Q;l'sf",1JI )'2+ 2S)i(A'+ iiilsl,cat" )'2 

}A 4- 6}l1 ')A 4 JNjO.u2 'P 4 &JP 

( ]0) 

can be Inserted Into (9) to elilinate the four-rerllon Interactions and so 

the Integration over ~ and ~ can be carried out.We then obtain 

z· t)S°.Ds'.Dp'.op~ v;,~vt1Jt;.~~ exp II 1f (] ]) 

Where 
( 

I IS·' p. t • • 0 , - ~ --1- 0 'V: 0 , 0 vII 0 'ff ,S,.P .V,ca.V,ca.A~.Al'l = -ITrln( Iv -I.+.@j. (S +1 usP +l v,.+ l'u A}I)+ 

tr(S'+ I YsP'+ ¥Pv~+ lsl'A!) J- 6/5d4x ( (1)' +(5')2 +(pof +(pl)1 -

_ I V 0 vOjA ,')1 ,.,1 'I 
..!.. _ -.Nt,ca -2A)A A -2V p. V -2A~ A ~ I 
2 Nt 

(]2) 
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Hie auxiliary fields 5°,S· ,po,p',V;,V!,A!,A! are just the effective lor.~1 

fields for scalar, pseudoscalar, ver.tor and aXial-vector lesons and I ~j Is 

the low energy effective action for the meson fields. 

The functional Integration over v; In (10) needs special conslderatlon.The 

~ Integral Is Gaussian (convergent) In Euclidean space-tile provlded:r= ][ >0, 
~-~ 

I.e. N, >2Nt which Is not real Istlc.Thus for the Isospln singlet vector 

leson sector,the present lowest order approxllatlon works only In an 

unrealistic case Nc>2Nf) and one should go beyond the lowest order to 

study the v: sector In the real world.Thls problem does not happen to other 

lesons. 

In the chlral 1IIIt 1.-+0,the QeD Lagrangian respects a chlral symmetry 

SU(Nj )L tSU(Nj )R (An extra UA(I) sycmetry Is broken by the axial-vector 

current anOIalyl3JwhiCh Is not considered here.).A direct consequence of the 

effective action (12) Is that SU(NfttSU(Nj)l Is spontaneously broken Into a 

diagonal SUeNt).Thls can be seen as follows.Slnce vector and axial-vector 

leson fields cannot develop a nonvanlshlng vacuuI expectation value (VEV) 

due to Lorentz Invarlance,the effective potential can be seen as 8 function 

of sO,s·,po and P·.Take Nt-2 as an example.The effective potential obtained 

frol (12) Is 

Vejjes, P)- ~).l'(S' +pl )- 3~~'2 ~~qlqlln{ I (q2 +m!-12l1oso+t(S'+p1»' -e(9jk S; pt:.+SoSf 

+po pt -J1loSt)7. 1*1 (q".l +I! -12l oso + t (S'+p'l d- e -El)~ S; pk+SoS' +po pt - J2lo SQ ? I 

(13) 

Where 1-1,2,3 and Sl+p' stands for (So)2+(S')' +(po)'l+(Pg)'2. The stability of 
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v ~ff leads to 

,,' ,2 t.Jc M': 0 ( d 2 .. 0 ~}I?<So>+ '~Jrl e~2I11o-<S » Jo q "ti{'ffmo~)l 
<po>_<pf>_<SJ>_0 1"1,2,3. 

When ~-+0, el~a) reads 

We (1 t' 1-0 
<SO>{ E}il - 161(' J dq g'1 +r<sor 

Which has two solutions 

<So>-0 

II' r.l_liL ~ dql 
QJ.l 161['Jo 

-0 

eUa) 

( 14h) 

e 15) 

elba) 

( Ibb) 

It Is easy to check that the <So>-0 solution (16b) gives the true .Initul 

of Vf~f and hence SU(2)LtSU(2)R Is spontaneously broken Into the diagonal 

SU(2) and the pseudosr.alar lesons are Goldstone bosons. 

Shifting the S· field by Its VEV <So> In eq.(12), we obtain the final fori 

of I elf 

'ejJ "-ITrln{~-Il+~SO+lrSpO+J'''';+lsl.uA)d+tfeS·+lr~P'+lJlyt + rS'rjlA~) 1-

_6}l1)d4XI I(SO)1+eSr)2+epO)1+(p~)2_i_1£v~v! -2AlA~-2V~ vr-2Al A11. 

(17) 

Where 

<~) 
.~Io- .rns e 18) 

Is the const Ituent quark lass.Eq.(17) Is slillar to the effective action In 
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Ref.121 but with fewer free paraleters. 

To see the relation between our errectlve action (17) and the convent lonal 

cr-Ilodel. we expand the logarlthll In (17) In powers of the lIeson rlelds anr1 

their derlvat Ives Ul (2] .For sllpllclly.we keep. In the coerrlclents.only the 

terllls containing In 1\2 and positive powers or/\ .Uslng the lIethod or 

Rer.IAI. we obtain. up to dllenslon-rour operators. 

I eft .. )lfx{ I. tr( I a .. -I ~V': +tJ V~) ... ~s' +tl Sl +Il10 -11- + ~~+tl A~ .~po+ tt ~ It ;1 
I ( I A. , vol I ,,0 J ~ 0 I I' , I. )1 + e tr '1"-I(m.).I+tlV ..... ).r.rt' +tJP L-I ~+ttA}I,r.r.S +t.1S +11 0 -11'1" -

.... r .,"'t Nt·Nt 
- tl, (F,!.FO~+F.! F'~G;,G'~+GkGIJa")-( ~l-212)( (SO+~lo-lld + (S' f -

_( ~-212 +Ar. 21 0 ) ((pO f + (Pp )~+ (~-ll-1I1 10 )V! V'j.a+ (2 o}l-Il-I' 10 )V~ ViJ£ + 
2 N, 

+ (2 ~l- h. +3a1 l 10 )( A;A OJA+A~A tp)+ I (I~So+tl S' +110-1 .#o+tlpl ~-

_( ~So+tl S' +10-1 f _111 +~po +tl p' r -A( ~SO+ t~ S' +10 -1)1 -I')(V +t.. P' i~) t+ 

+...... (19) 

Where IQ Is given In (Sa). 

Nc. ~ 2_g1-:-
12 :; IE, If J.dQ r Till' 

0_ O'lle • 0::io. 0 
F JU':' ~p. V .. - ()IN". GPo' E ~)l AV - wAI' 

e I'll i ;~·k 1- t I ... j~ 
F)IV:' 3;J.Vv - wV)A +Crj~( V}' V .. -A).Av) • G;.~=bp A;,-~v A)A.+c"j" (A;' V~rV)< Ay) 

In which c~~ Is the structure constant or the rlavour group. 

Arter rescaling the meson rlelds by 

So-.ff So. sP-tJ-f S'. P'~J To pO. pI~Jf pl. 

o IT ,,0 J rI , 0 IT. 19 fIT.., 
V ~ ,oJ 4f. ' . V)l ~ ..J4j; \).. Ap-7..J 4f; A)'. Aj. -. A IT. A)O. 
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(20) 

(21) 

(22) 

the sralar and pseudosr.11lar Dlesons In (19) behave Illw ttle rlelds In thp. 

linear C)-sodel and the vector and aXial-vector lesons In (19) like lassive 

gauge rtelds.· 

Since A should not be very large. the terms omitted In the coerrlclents In 

(19) (terlls Independent or A and teras containing negatIve powers or A 

lay not be completely negligible. Thererore (19) can show the qualitative 

reature or I~f but lay not be surrlclent ror laking quantitative predictions. 

2. lIN Expansion. 

The errectlve action (19) can also be derived rroll a dlrrerent 

approxillabt lons---l/N expanslon.To do thls.ve rlrst state here a theorell 

about runctlonal Integrations which Is proved In Rer.151. 

Let ~ (x) be an arbitrary rleld.where x stands for a set or Indices 

Including the space-t lie coordinates and Internal sYlmetry Indices. andcr(x) 

be an operator which can be~(x) or a compOSite operator COli posed or 

4>(x)'Consider now a vertex or the type V(x)O'(x).where Vex) Is an arbitrary 

runctlon of x Indepedent of •• Let us cut the vertex In the t vo 

cr{x)'s are separated as Is shown In Flg.l. 

A vertex valin a vacuuI diagram Is said 

to be reducible (R) Ir. by cutting this 

vertex. the vacuuI diagram Is divided Into 

two disconnected parts. Ir a vertex vcr1 In 

a vacuum diagram Is not reducible. It Is 

said to be Irreducible (I). V~lvertlces In 

10 

Flg.l Cutting the vertex V 
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Flg.2 The vertex 

(} V()CUllBl diagrall can be either rcr1l1clble or 

Irreducible. As an example, we take ~ (x) to 

be a rerilion field o/G-wlth an Internal Index 

a, cr(x) be the composite operator 'liQ.t.¥o. ,and 

V(X) cr(x) - g2(~~) (~bo/.) • The vertex Is 

depicted In Flg.2 with 8 bar Indicating the 

pairing or the Indices.The cut or the vertex Vcf~g2 (~~,) (~~) 

should be lade along the bar. An exalple of a vacuul diagram having 

reducible and Irreducible vertices Is shown In Flg.3 and the reducible and 

irreduc'ble vertices are labled by Rand I ,respectively. 

Flg.3. A vacuuI diagram In which reducible and Irreducible 

vertices are labled by Rand I ,respectively. 

The theorel proved In Ref.IS) states that 

expl{ 1(~)+~dX ' V(X)'(fl2(X)-2~(x)(nx» 

explf J(~)+~dX V(X) : cr'(X)\,,' 
expi{ 1(~)+SdX ( V(X)Ol(X)-V(X)c1(X)/t) 

(23a) 

(23b) 

Where I(~) Is an arbitrary action of the 4> field, II (x) Is the VEV of th{ 

]] 

operator CY(x),V(x) cr2 (X)lR and V(x)d(x)II arc reducible and Irrcr1uclble 

vertlces,respectlvely.Ve shall express the equivalence or the vertex 

cCtfltrlhutlons In (23) by the shortened notation 

~dX V(x) ( Il (x) -211 (x) cr (x) )Z ~ dx V(X) O'l(X)JR 

~dX ( V (x) 0'( x) - V (x) 0'( x) 11 ) 

(2~a) 

(24b) 

Now we apply (2~) to OeD.Let us consider a fixed gluon field configuration 

B;(X) and take 0"6 (x) - -8
s 
B;~t'~o/ . Taking V(X) __ I- in (24a), \lie 

I. 2~~) 

have 

- p..., .. ).,t. ,_ "~.' • .lI.L II -~. -JIlL I -gs \f l(1)&"fo/ ~- 268 (~gs l'~p 2 1" R + 2 ~8=-V)IP (B)('f'1' 2 o/)('t''-2''')+2~8 (2S) 

The erfectlve gluon-fleld dependent vertex v~ (B) defined In (25) can 

always be written In the form rSl 

V':(B)- V(B) ~ g)U'+ v,~ (B) (26) 

Vhere V(B) is gauge Invarlant.Then using (24b) we have 

V.:f,1 B) Icf1t4') (ift'f'o/)il ~ V (B) (ipi'~tV) -V(B) (~ttqdll +V ~ (B) (o/f~) (\jJffcp)ll 

(27) 

and our generating functional (]) can be written as 

z- ~B .f)t2>q:,~Zlwexp I ~d4Xf i3( B,w,W)+ 4p ( 1~-IIo)o/ -V(B)(q;J~)\ 

+V(B)(~(fo'frh -V~ (B)(q;l"~qHif!iflf)ll +k' (28) 

The integrations over the gluon and ghost fields are difficult to carry 
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Ollt, so that we have to lIake approxillatlons. As has been arguer1 by \litten rbJ 

that when we calculate the VEV of a gauge Invariant operator composed of 

gluon fields In the Nt~Do 1llIlt,the gluonlc functional Integration can be 

represented by the contribution of an effective classical configuration of 

the gluon field B;tI .We apply this Idea to (28).Of course,when Nt Is 

finlte,thls Is a lean field approximation. The term fa+ 2~8 In (28) Is 

independet of the quark field and is thus Irrelevant In the derivation of 

the effective action for lesons. In the terlls -V(S) ( iPYp1'/J)l and 

V(B)(iJil.A1~~fh ,the effective vertex V(B) Is gauge Invariant and thus the 

above Idea can be applled.l.e. V(B) Is taken to be V(Bel) without doing the 

gl uon Ic Integration. The ter. -V'': (8)( ~ra';o/)('f(~'I') Ill. Is comp IIcated since 

v'l~ (S) Is not gauge Invariant. However the steps (25)-(26) for treating 

~ the gauge dependent vertex gsS~ can now be applied to this terl.After the 

steps (2S)-(26),ve obtain three terls containing operators with eight 

ferlion fields (dllenslon-12 operators) two of which are gauge Invariant and 

the other one Is gauge dependent.Thls process can be carried on further to 

the remaining gauge dependent terll and we get operators of even higher 

dilenslons.Assu.lng colour conflnement,we conclude that eventually only the 

gauge Invariant terls with colour singlet operators will contribute to the 

effective actlon.For these terls.we can apply the above Idea and take only 

the contribution of B!d Instead of doing the gluonlc Integratlon.We can also 

Introduce auxiliary fields for the higher dillensional operators and they 

correspond to higher-quark lIeson states. Since these higher-quark mesons are 
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not Go I c1!" tone hosons In t tlr. rid ra I I i III t 11 0- 0 , the t yp I ra I IlaSS t1 of these 

mesons lust hc characterized lalnly by the cUl-off parameter A which Is 

larger than the lasses of the low lying lesons.The gauge Invariant effective 

vertex of a dllenslon-6n operator lust be proport lonal to (M)~-'n • Frol 

dimensional analysis, for a low energy lIeson process characterized by an 

clJergy scale,[5< M,the heavy lIesons contribute only through Internal lines 

and thus their contributions IIUSt be suppressed by positive powers oflS 1M. 

As an approxllatlon, we neglect these contributions. I.e. we drop the 

-V'':(B)(iF't+)(~J1~>lR terls In (28).Then (28) Is approxllately 

z· J.vtm; exp I ~d4)(( ~ ( I~-l.)~ -V(B,I) (4"'-h)1 +V( 8.:,) (~1A.f'f'tII (29) 

It Is easy to see that the vacuum diagrams containing on\y Irreducible 

vertices are at least slaller than the diagrams containing only reducible 

vertices by a factor of I/NS • Thus from (24b) • to lowest order of IINI 

expansion. the ter. V(Bd)(cli'f..f""nI In (29) does not contribute and so (29) 

reduces to 

z· ~'I'~exPI ~+x( ~(~-lJo)'f -~\~~-rcp)l (30) 

where 

1 

&fA' .. 1 V (SuI. 
(31) 

Eq. (30) Is exact Iy of the fori of (7) except that the leaning of 0,,1 

(cf. (31» Is now dlfferent.Lacklng of the knowledge about S':'I ,we also take 

~}J.'1 as a free paralcter here. The fori (30) (or (7» leadldlrectly to the 

1.4 



effective action (17) through the steps (9)-(17).Thus,to lowest order,the 

two different approxllatlons lead to the same effective action (11),but 

their higher order corrections are dlfforent. 

DISCUSSIONS 

Finally we discuss sOle of the consequences of thc effect Ive act Ion (17). 

1. As has been pointed out by Volkov and Ebert f21 that after gauging the 

effective action like (17) to Incorporate the lesons with photon,hoth quark-

loop ef fect and vector-dollnance are contained In the effective action 

which are both successful In describing low energy hadronlc processes.Slnce 

they are derived frol a single fundalental theorY,there Is no double 

counting In this kind of effective actlon l2]. 

2. A specially Interesting quark-loop effect Is the axial-vector current 

anollaly.Volkov and Ebert calculated the amplitude of ~--'2 t frol their 

effective action and the result Is the sale as the one obtained frol the 

triangle anomaly calculatlon l2] .The situation of our effective action (19) 

is exactly the same. On the other hand,ln the nonlinear <r-Iodel,the effect 

of the triangle anolaly resides In the \less-Zullno terlr11,The \less-Zulino 

term has also other effects. For Instance, It gives rise to the reaction 

t - J. • - 11] I( 1(-tI\.Tt'X .To see the relation betlleen the nonlinear (f-Iodel and our linear 

(I-lode I type effective action (11), we can search for the Interaction 

which gives rise to K~ K-~1r°1("1t- In our effective actlon.\lo keep 

calculating the unwritten dllenslon-S operators In (19), and find that there 

lfi 

Is indeed a terll causes I(tl(-~~rt+rr·15].Therefore the effects of the \less

lUlilno terl In the nonllnear(J-llodel are equivalently contained In the 

InGar Ithl term In our effect Ive act Ion (17), 

3. As a rough est Ilate,we derive the relat Ion between the leson lasses frol 

the ex~llcltly written terls In (19).From (19) and (22) we see that ,except 

for v:, there Is a slaple lass relation for the lesons SO,S~,po,p2,V~ ,A!and 

A~,nalely 

2 1 l( 1 1) 
IA - Iv - 4 liS -lip (32) 

To cOlpare this relat Ion with experllents, we Identify the Isospln triplet 

pseudoscalar leson pQ wIth the plon,the Isospln triplet vector leson v! with 

the p -Ieson, the Isospln singlet scalar leson S· with fo (91S),the Isospln 

triplet scalar leson s2 with a,(980), the Isospln singlet axial-vector 

leson A; with h, (1110) , and the Isospln triplet aXial-vector leson A! with 

bl(123S).ln (19) and (22), the lasses of the Isospln singlet and Isospln 

triplet states are degenerate In the scalar and aXial-vector leson 

sectors. Thus I~ and IZ In (32) should be taken as the averaged values 

1 I 1 1 0 
l.s -4" ( 1 10 + 311G, ) - .96 Gev 

IA -i( Ihl + 311:, ) - 1.48Gev 

Co~parlng the experimental data with the relation (32), we find that the 

derivation Is only 20~,. The result Is not bad. A systellatlc study of the 

quantitative prodlctlons of the effective action (11) will be given 

elsewherc. 
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