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Abstract

The new linear colliders (CLIC, NLC, JLC, TESLA) can be constructed to produce e~ e~
collisions in the c.m. energy range of 1 —2 TeV. In the present work, the production of a same-signed
W-boson pair along with a neutral Z-boson in electron-electron collisions has been investigated in
the framework of the classic left-right symmetric electroweak model in this energy region. These
production channels arise on one hand due to the Majorana neutrinos and the doubly charged
Higgs boson of the model and on the other hand due to the mixing of the gauge bosons W and
Wg.

The cross sections are proportional to (mK)?, where m refers to the mass of the heavy neutrino,
and the parameter K is given by K = cos? ¢ for the heavy W-pair, K = sin ¢ cos ¢ for the light and
heavy pair, K = sin?( for the light pair, and ¢ is the W mixing angle. If ¢ obeys its upper limit
estimate (around 0.001) found in the literature and the particles have their masses in the region
considered by us, only the production of a heavy W pair with a Z-boson may play some role in
experiments.

According to our numerical calculations the total cross section in the case of a light Z is of the
order of 2 fbarn at 2 TeV and about nine times greater at 4 TeV, when the W mass is 0.5 TeV and
the heavy neutrino mass 1 TeV. The cross sections can be greatly enhanced if the doubly charged
Higgs lies at the neighbourhood of these energies. On the other hand we expect the increase of the
W mass would decrease the cross section in the ratio (0.57eV/Mw )*.
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Chapter 1

Introduction

Many attempts have been made to extend the standard electroweak model to a theory possessing
a left-right symmetry. Among the schemes considered most attractive is perhaps the classic model
of Pati, Salam and Mohapatra [13], which is based on the gauge group SU(2)L x SU(2)r x
U(l)p—r . In this model left- and righ-handed fermion fields accommodate doublets of SU(2)L
and SU(2)gr symmetry, respectively. The breaking of the gauge symmetry, following the chain
SU2)L x SU(2)r x U(l)p-r — SU(2)r x U(1)y — U(1)em, can be arranged by introducing to
the theory a bidoublet Higgs field ® transforming as & = (2,2,0) and a ”right-handed” triplet field
AR transforming as Ar = (1,3,2). The triplet Higgs having both SU(2)r and U(1)p- charge
takes care of the first step of the symmetry breaking. Its vacuum expectation value sets the mass
scale of the ”right-handed” gauge bosons, which is according to experiments most probably above
0.5 TeV. One could in the left-right symmetric model (LRM) use instead of the triplet also a field
transforming as a doublet under SU(2)g and having a non-vanishing B — L. The triplet field has,
however, an extra benefit which makes it a more natural choice. It couples to |AL| = 2 lepton
currents through the Yukawa coupling ihg¥ECrAR¥ R giving rise to Majorana mass terms for
right-handed neutrinos. This leads to the see-saw mechanism of neutrino masses according to which
there are in each fermion family two Majorana neutrinos, one very light and another very heavy.
Apart of the lepton number violation, a central prediction of the left-right symmetric model is the
existense of a extra heavy Majorana neutrino, which is a superposition of the ordinary isodoublet
left-handed neutrino and a isosinglet right-handed neutrino.

So far there are no direct experimental evidences of the left-right symmetric model; no right-
handed interactions have been discovered and experimental data does not make difference between
Dirac and Majorana neutrinos. It will be one of the challenges of the next generation accelerators to
look for evidences of the left-right symmetry in various high-energy processes. Especially the new
linear colliders, such as CLIC, JLC, NLC and TESLA, which are planned to start operating in the
beginning of the 21th century at 0.5-2 TeV energy, can be made, besides the et e~ mode, capable to
produce high-energy e~ e~ collisions. These high-energy electron-electron collisions would provide
a new and an important method to investigate various extensions of the Standard Model of the
electroweak interactions. The phenomenological implications of the AL = 2 interactions and the
see-saw mechanism in e~ ¢~ collisions have been recently investigated [16],[14], [8],[9],[6],[3].

In our previous papers [12],[14],[15] we considered the pair production of the charged gauge
bosons from ete™ and e"e™ collisions in the framework of the classic left-right symmetric model
(LRM). Our main motivation was to find out if the measurement of the W-production cross sections
could allow for estimating the order of the magnitude of the mass of the heavy neutrino. This
would cast light on the fundamental question of whether neutrinos are Dirac or Majorana particles.

Our conclusions, however, were in this respect not very encouraging, because the heavy neutrino
turned out to have a negligible effect on production of the light W pair in the et e~ annihilation and
even the production rate of the light-heavy pair was negligible both in the annihilation channel and
in the e e~ collisions due to their dependence on the small mixing of W, and Wg. In addition, the



Chapter 2

Formulas

2.1 Calculation of vertices

The matter of the LRM contains one left-handed and one right-handed doublet of the gauge group
SU(2)r, x SU(2)r x U(1)p—r for the electron family,

vy = ( Ve ) =(2,0,-1), \IIR:< Ve ) =(0,2,-1), (2.1)
¢ Jr ¢ /r
and similarly for other families. In order to generate masses for fermions one needs at least one
Higgs bidoublet
o 1) _ (220
¢ = 2 =(2,2,0), 2.2
(&%) ) (2
whose vacuum expectation value (VEV) is given by
1 (K 0
<®>= 7 ( 0 Ko ) . (2.3)

Here Ky and K are in general complex, but if we assume that the explicit CP violation is small
we can take them real [2]. In order to break the symmetry to the electromagnetic group additional
Higgs multiplets with B — L # 0 are needed. To introduce at the same time Majorana mass terms
for the neutrinos we add to the theory the triplets

< (& vt
= T = g = (3

AL (SL ( \/-2-5?1 —62‘ ( 71:2))
R st asEt (2.4)

Ap = R~T—<\/§1}% —6% ):(1,3,2)

with the VEV’s given by
1 0 0

< AL’R >= 75 ( ‘ULYR O ) . (25)

There are all together seven vector bosons: Wi, = 715((/[11‘3 iiVLZ,R), VE,R, and B. We define
the physical states of the bosons by the equations

( WLI > _ ( C?SC —sin( ) < Wi )) (2.6)
Wg sin( cos( 4%

V3 7,
Vg = (Ryj) Z> (t=L,R, B). (2.7)
B Z3 =



the kinetic energy of the Higgs doublet

L3, = Te{(D,®) (D" @)} (2.16)
where )
7 L= Lo~
D”(I) :6U(I)—_ -2-(gLT~ VL#(I)—gR(I)T~VR#) (217)
giving as its relevant part
- gLQgR cos ({Rp Wy [Ky(8F)! — Ko®5 ]+ RuWi [K1®7 — Ko@)} 20+ . (2.18)

In these equations we have used the Cartesian components of the vector bosons and of the triplet
Higgses. For the various coupling constants appearing in the formulas we have the following
expressions

Lol =75 I+
T =Gl —5— + Giv —5—, (2.19)
GL _ 9L cos 1 ¢cos ¢ sin 7 cos ¢
7 /2 \ —cosysin¢  —sinpsin¢ /)’ (2.20)
rR_ YR { —sinnpsin{ cosmysin( .
b /2 \ —sinncos( cospcos(¢ )’
(COSC)szRLw + (Sin()zganu, 1=0=1
— e = (SinC)szRL{// =+ (COS C)ZgRRR(H, 1= =2 (2 21)
sin ¢ cos((gRRmu —grRom), L£T,
1 9L cos® nRrr — grsin® nRe — ¢'(cos?n —sin* n)Rai], j=j =1
GHvjvpZ)) =< ;9 Roi+ grRri — ¢’ Rail cosm - sin g, Ve
2 lgrsin® nRei — grcos® nRei + g'(cos?n —sin® n)Rat], j=j =2,
(2.22)
and . . .
GY(eeZ;) = (=29LRei — s9rRR1 — 19’ Ra))
(2.23)
GA(eeZi) = (—39LRui + 39rRr1)
We will also need the right-handed coupling constant
R 1% A 1 ’
G (eeZ) =G (eeZ)) — G (eeZ;) = —§(g3 Rri+4¢ Ral). (2.24)

The above equations are given for a general case. Neglecting the Wy — Wx mixing and the
vy, — vgr mixing and setting n = 0 = (, and using for the coupling constants the approximation
gr =~ gr &~ g we obtain in the most important case (v; = vo, Wi = Wi = W3) the following more
simple expressions:

Iy, = ﬁ;’Y“(l +75) = Genw Y (1 +7s)
2Ty = _%(Q Rri— ¢ Rat) v v° = Gnnz 7" 7°

(2.25)
€1 = —gr Rpi = — Gwwz

G?Q = % =2 GenW~



) 1 2 3 4 5 6
A1AaAz H1p2 43 Hap3y H3H1 2 Hop1 43 H1p3 0 H3p2
Iy I¢(evWy) [C(ev, W) I'¢(eeZ) I¢(evWs) I'C(ev, Wh) I'¢(ee2)
S Sy(ky—p2)  Su(ka—p2)  SE(p2—ks) Su(ka—p2)  Su(ki—p2)  SE(p2— ks)
Ty LlevWs)  T(niveZ)+T¢  TCevW)) L(evW;)  T(naZ) +TC¢ TS (evWs,)
Sy Se(pr —ka)  Su(pr—k1)  SS(ka—p1) Se(pr—ks)  Su(pr—k2)  SE(ki—p1)
I3 ['(eeZ) ['(ev; W) [(evWs) ['(eeZ) [(evi Ws) ['(evWy)
0 ki — p2 ky — p2 k3 — p2 ko — p2 ki — p2 ks — p2
72 p1 — k3 p1— ki p1— k2 p1 — k3 p1— k2 p1— ki
my m, m,, m, m, my, me
msa Me my, my Mme my, my

Table 2.1: The expressions for the various quantities apprearing in the amplitudes corresponding
to the diagrams a)-b) of Fig 2.1.

In table 2.1 we summarize the expressions for the quantities I' and S for the six amplitudes
corresponding to the diagrams of Fig 2.2 and their variations.
The numerator of the every term T*1*2%3 has the decomposition

(GY +Gys) 1™ (f1+m1) (GY + GEys) v (h2 +ma) (G + G5vs) v™

= (Vs+ As7s) T;My\a (q1,92) + mimg (V3 + Asvys) T;?IM)‘S

+ ma (Var + Aq17s) T,{\,’ll\“s(m) +my (Va2 + Ag27s) QA,IQMAG((IZ) (2.33)
where we have used the notations
Vo = GYGYGY + GYGAGE + GY GG + GYGAGS =V (+,+,4)
As = GIG1GS + GGG + GGV G + G§GYGY = V(= -, )
5 =M iyt fart
(2.34)

T3 = M1my [V(+’ _’A) + A(+7 ] _) 75} 7/\17)\27)\3

Ta2(q2) = my [V(+, = +) + A(+, —, +) 7] Y72 421

ma1(q) = ma [V(+ 4, =) + A+, +, =) ys] 7™ oy

From the graphs ¢), d), e) and f) of Fig 2.2 we obtain the amplitude



which is equal to

°9(2) F;"IC Sj(p1 — k2) F;"f; u(1). (2.40)
The other terms of (2.35) have been obtained in the similar way. We note that the s-channel
graphs e) and f) balance the t-channel graphs ¢) and d), respectively. If we take off in the graphs
¢) and e) the part where the W decays into the Z and W bosons the remains give the amplitude
for the process e"e™ — W~ W~. In the graphs d) and f) we see at the lower level the process
e"e” > AT Z.

The graph g) with its alternatives produce our last amplitude

THib2ps [F;“ZC Sj(kg - pg) Fj_k + Fj_kC Sjc(kg - pl) F;‘IZ] . DQ:(kl + kg) FI;:II:‘;;
+ [Mf¢ Sjlky—p2) Ty + Tiic Siclky —p1) TH]- D*x (ka + k3) F,‘:f:(;; (2.41)

This amplitude is, however, negligible compared with the other amplitudes.

Deshpande et al [2] have recently pointed out that the phenomenology of the Higgs sector
depends crucially on the order of the three coupling constants 3; in the general Higgs potential. If
we want to have neutrinos as Majorana particles and preserve the see-saw mechanism and at the
same time keep the extra Higgs particles and gauge bosons light enough to be accesible for the near
future accelerators, this will demand in the case of the non-vanishing couplings f; a fine-tuning of
these parameters at least to the order of 10~7. But if we constrain 8’s to vanish by some symmetry
beyond the classic LRM, the mass scales vy and vg are disconnected and there remains a remnant
see-saw relation, which is most naturally satisfied by the condition vy = 0.

Deshpande et al [2] have given the mass matrices of the Higgses in the case f; = vy, = 0. In these
scenarios the linear combination K, ¢; — K> (<¢)f’)Y and another combination, which predominatly
1s 85, are Goldstone fields and they will be eaten by the negatively charged W bosons. So, only the
combination Ky ¢5; — K; (¢7)! of the bidoublet Higgses will mediate in our process. Gunion et al
[5] have presented a simple model, which can be retrieved from the models treated by Deshpande
et al by constraining further the potential couplings and putting Ko = 0. Such a model is still
phenomenologically acceptable. The conditon K9 = 0,however, would mean that the right-handed
and the left-handed vector bosons do not mix. If we neglect the left-handed triplet, too, we are
left with only one positively charged Higgs h*, which is mainly ¢}, and is now a mass eigen state.
We have given the couplings of ¢}, which can be read in the formulas (2.14) and (2.18), in the
Fig. 2. According to these rules the amplitude of the graph g) is proportional to the masses m,
and mp, and thus negligibel. Here we have utilized the fact that in the LRM the electron mass

has been given by

me = f—Ki\%gﬂ (2.42)

and that the neutrino has the Dirac mass given by

K1+ 9Ky

The smallnes of the mp mass can be seen by expressing it in terms of the mass eigenvalues m;
and of the mixing angle n of the neutrinos:

(2.43)

mp

mp = =(my + m2)sin 2. (2.44)

NG

We note that here and anywhere in this paper the masses m; refer to the eigenvalues of the
neutrinos’ mass matrix and the real mass of the v -neutrino is m,, = —m; 1in this model. We also
- note that, because the é5; has not totally been eaten by a W-boson we would actually have instead
of the graph g) two new graphs: one with A~ in the place of the ¢~ in the graph g) and another
in the s-channel with A~ in one of the virtual A™~ in the graph f) and Z interchanged with one

10



where
m29122
4
Similarly in the formula (2.35), the only important terms are those proportinal to the heavy
neutrino mass. For example, from the first and second term (arising from the graph c)) we get

c=—2my G% = — (2.46)

H2 H H H2
I-‘jlgCI—‘jl I-‘jICFjlg

| 5 5 1- DY) (ky + ks)FP178s (ky ky — ks, k3),  (2.47)
(ka —p2)" —m} (ka2 —p1)” —m}
where j = 2. By using here the identity y#y#? = 2 g##3 — v#24# we obtain from a g##? -part a
term which can be related to the similar expression of the diagram ¢). Further, we give the terms
corresponding the exchange of the W-bosons as separate amplitudes. The diagram d) also gives
a rise to two amplitudes corresponding to the different substitutions of the delta Higgs into the
vertices. This arrangement gives the following amplitudes

1 1
T = —c¢ Gwwz [tg—m% “m —m%]
D2 (ky + ka) PR (ky by — ka, ka)(1 + vs )72y, (2.48)
1 1
Te = —c- _
s ¢ Gwwz [uz——m% tl—m%]
D2 (ko + ka)F#2Y3 (ko ko — k3, ka)(1+ 7s)v* 7*, (2.49)
[ 1 2
= _9%.
Ty c-Gwwz _ul—m§+s—Mg]
D (ky + ka)FP s (ky by — ka3, ka)(1 4 v5)9447, (2.50)
1 2
T = —2c-
10 c-Gwwz _tl—m%+s~Mg]
DY (ko + k) F#24> (ky, ko — ks, k3)(1 + 75)g"*", (2.51)
gty (b2 ks)
Ty, = 4cGE 1 2.52
11 c Gy — s (14 7s), ( )
g (e pay
Ty, = 4cGE 1 2.53
12 CGeeZ 53 — Mﬁ tus ( +75)? ( )
R 9" (pL4pa)
= 1 . 2.54
Tis 16c G,z - MI s_MI (1+47s) (2.54)

The symbols sy, s», t1, t2 are identical to the ones defined by E. Byckling and K. Kajantie [1], if
we replace their momenta p,, ps, p1, p2, p3 with our momenta p;, p2, k1, k3, k2, respectively. They

12
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Figure 2.1: The lowest-order Feynman graphs for the process ee — WW Z
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Chapter 3

Cross sections

The squared spin summed amplitude is of the form

k#xkl/1 k#zkuz
M = (= T (¢ = SR (0 = )
2 7 7 e

spins

I'r {Tl‘ll‘Zl‘J 1)170(TV1U2U3)T70 1)2} (31)

The total cross section of the production of the unpolarized final state WWZ in a collision of
unpolarized electrons and positrons is then given by the formula

1 ST, $56%(p1 + pa — X ka)(ZIM]2)

73 = @n)s 2s (3.2)
with .
®IMP) =2 > M (3.3)
spins

We notice that the expression (3.2) must be divided by two, if there are two identical bosons in
the final state.

The total amplitude T" is a sum of the partial amplitudes 7;;, where ¢ refers to a diagram with
the final particles in the fixed positions and j stands for the other indices related to the virtual
particles in the diagram. Our computation is based on the following expansion

T 0 vivavsyt L0 M1V kll“k;,l Havs k.f;:ikga
Tr (T 17" (T2)0 o} (90 = =g ) oo (900 = S

=> > > Cn(z'ljl,mz)/ f(i1dy) - f(iage) etr(n,iriz)

t1,22 J1,J2 P phase space

(3.4)

Here n separates, when necessary, the different parts of a given trace tr(iyj,,1252). The symbol
ctr in (3.4) is the trace contracted by the polarization factors. The coefficients f(ij) contain
the denominators coming from the propagators. They are, of course, functions of the integration
variables. For example, in a good approximation we can take the two neutrinos in the graph a)
identical (j; = j2) and then use in the both graphs a) and b) our amplitude index j to refer to the
virtual neutrino. These then yield 12 partial amplitudes 7;;, where 7 runs as the permutations of
the pypops and j takes the values 1 and 2. Every partial amplitude 1s of the form G15,1'3521'3
and has the expansion (2.33). We now use the relation
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0 s Mlz—tl to +8 — 51

16-A _ K} 0 ti + s — s9 M22—t2
e ME—t, t;+s5—s 2M} 5— 51— 8o+ M2
t2+8—81 M;—tg 8—81—82+M32 2M22
(3.9)
= At?4+2Ct1ty+ B2 +24't, +2B't,+ D
(3.10)
= B(t2—t])(l2—t;), (3.11)
where coefficients A, B, - - -, D are functions of the other integration variables. The inner integration

over t, and ¢t has to be carried out over the region bounded by the condition A4 = 0, which in our
case defines an ellipse. The integration were performed by using three different methods. In the
simplest method we in order to get rid of the singularities at the end points of the t5 -integration
removed A4 by replacing the integration variable ¢, by the variable u defined by

- + -
Rz LE b

2= =g 3 - sin u, (3.12)
in terms of which the integration becomes
1+ w/2
2 f(tl)tz) 4
[; V=44 VB J_x/2 (ht2(w)) ( )

After this we applied the Monte Carlo program MONTE [7] to compute the 4-fold integral.
For checking we used two other programs were the ¢, integration or both the 2 and t; integrations
were first made analytically and the MONTE was used for the rest.

The program of the third stage consisted of setting in the explicit expressions for the vertices
and the numerical results for the integrals, and of summing the different contributions to get the
total cross section.

We used the following symmetry relations for checking:

0,']' = (T_’;,j (3,14)

and
Tij = Oicje (3.15)

Here the oy; 1s the cross section contribution coming from the cross term of the amplitudes i and
J, and i, refers to the amplitude obtained from the amplitude of the index i by charge conjugation:

ﬂc(PQyPJ,):CT,vT(phpz) Cct (3.16)

From Table 2.1 we see that 1, = 6 and 3, = 4, which gives e.g. the relations o3 = 046 and
014 = 036. The derivation of relation (3.15) is based on the equation:

Tr{Tic(p2,p1) brT2c(p2,p1) b2} = Tr{T1(p1,p2) PiT2(p1,p2) b2}, .., (3.17)
which follows from the definations

C 7;1 C—l — 77;1’1"

YOty = ()
3.18
cl=ct=cT=-C )

T =40+ 40
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011,11 = 012,12 = 011,12 = 012,11 X 5/4(M1M2M3)2
011,13 = 012,13 = 013,11 = 013,12 < —5/3(M; My M3)? (3.20)
0’13’13 o S/2(M1M2M3)2.

Here we have dropped an overall factor and we have used the notation Mz = M3 again. The result
immediably reveals that the contributions from the diagrams d) and f) do not cancel each other
at high energies although the contributions from the corresponding subdiagrams do. The compen-
sation needed should come from the amplitudes 1 - 6 and interference terms of the amplitudes 11
- 13 with other amplitudes. We notice that the diagram f) and the corresponding amplitude 13
differ from all standard model counterparts, because it contains a vertex where a virtual scalar
decays into another virtual scalar and a massive vector boson. From the equations (3.20) one can
see that the amplitudes 11 and 12 would achieve a good high-energy behaviour also without the
amplitude 13 if they would differ in their signs. We, however, were unable to find an error in our
vertex calculation and so we keep the diagram f) and the signs as they are.
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Further, three different methods were applied for the integration. In the first one the integrals
of the partial 92 cross sections oy (7,7 = 1,...,13; i < j) were carried separately and the results
were multiplied by the coefficients of the amplitudes. In most cases this gave enough accurate
results, but for some numerical reason it radically overestimated especially the contribution from
the part 749, when the energy approached 10 TeV.

In the second method the amplitudes were grouped into the sets 1+3+4+6, 2+5, 7+9, 8+10,
11412413, which corresponds to our subdiagram idea. The squares of the sets and the cross terms
of the different sets were integrated separately with amplitudes multiplied by their respective
coeflicients before integration. This method allowed a faster computation and the result were
expected to be more accurate than in the first method. For the part 114+12+13 we also had a special
routine based on the single numerical integration by the MATHEMATICA. It run accurately also
at very high energies (1000 TeV) and provided a valuable checking for our analytical results and
for our other programs. The contributions arising from our partition behaved at high energies in
the expected way. We liked this method best, because it was both illuminating and accurate.

The last method was based on a single 4-fold integration where the multiplication of the am-
plitudes with their coefficients as well as the summation of all the 92 terms were done under
integration. The information concerning various separate contributions to the cross section was
lost in this method, but using a high precision in the computation this should give the most accu-
rate result. We have used this method only at the energy of 2 TeV and the result coincides with
the results of the two first methods.

In Fig 4.1 we present the contributions from the amplitude sets to the total cross section in
the energy region of 1 - 5 TeV. Here the sets 749 and 8410 have been summed into a single
contribution. The characteristic feature is the form of a fan where the absolute values of the
contributions increase with the energy but some of them are positive and the other are negative.
The contribution from 2+5 is not presented, because it is negligible due to the smallness of the
coupling between the light Z-boson and the heavy neutrinos.

Figure 4.2 gives the total cross section, which is amazingly small. The cancellation of various
contributions is very effective, which have also been the main reason for the numerical problems
we met in our computations. A tiny irregularity in the smooth curve in the region of 1 - 1.5 TeV is
propably caused by the masses which are near to this region. The stile rise of the curve just below
5 TeV could be a first mark of the singularity at 10 TeV. These irregularities have not studied
closer in this work where the main purpose was to get a reliable estimation for the magnitude of
the cross section in the region of 1 - 2 TeV. The details will be cleared later by letting the mass
parameters vary.

There is also another disturbing feature in Fig 4.2, namely, that the curve rises in the whole
region. We would expect a stile rise from the threshold to the maximum and then a more or less
slow decrease to zero with a peak at the mass of A~~. The decrease before the pole can, however,
be hindered by the pole, if the mass of A~ 1s sufficiently close to the threshold energy. We think
this the case in Fig 4.2, but we have to leave the checking of this for a further study, where we will
use a faster computer.

In Figures 4.3 - 4.4 we present the same entities as in Figures 4.1 - 4.2 but now in the energy
region of 2 - 100 TeV. In these high-energy pictures the mass of the A~ is taken to be 0.8 TeV. So
we are free of singularities and are able to see whether the cancellation of the various contributions
really happen. The Fig 4.3 is very similar to Fig 4.1 but some contributions have changed their
signs, because we are now above the pole of the A=~. The Fig 4.4 shows the sum of all the
partial cross sections and the cancellation is convincing below 20 TeV. Above this energy the cross
section begins to vary accidentally due to a too low numerical accuracy. The first three digits of
the partial cross sections cancel and the result now strongly hints that there is a clear maximum
in the cross section. There is, however, already inner cancellations in the partial cross sections of
our sets. In Fig 4.5 we show an example where the contributions cancel in several digits. Here
as usually in our Figures and Tables the contribution o;; includes o;; if ¢ # j. The partial cross
sections coming from our sets of amplitudes are remains from inner cancellations in the sets and
they cancel further when we sum the partial cross sections. Therefore we have to wait for results
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Figi‘;res of Chapter 4
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