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Abstract: Quantum integrability and classical integrability are compared by

studying their commuting objects, the constants of motion. In particular ve
discuss the problem of constructing a quantum integrable system when a
classically integrable system is given.

1 INTRODUCTION o

Integrable dynamical systems have been studied quite actively 'in recents
years, most often from the classical point of view. Here we will discuss
the differences of classical and quantum integrability, especially the
existence of classically or quantally commuting operators. We will only
consider systems with a finite number of degrees of freedom. (The material
in Sections 1 to 4 have been discussed in more detail in Ref. [1])

In the literature there are many definitions for integrability so let us
start with the definition that will be used here:

Definition A Hamiltonian system of N degrees of freedom is called
integrable if there a N globally defined, independent functions I [I.=
H], i.e. mappings from the phase space to the reals, which commute
with each other with respect to the Poisson bracket:

AHw,.,H..,_ _wmnc. i,j=1,...,N,

The Hu...u of the above definition are called constants of motion.

The above definition was for classical mechanics. What about quantum
mechanics? Of course classical and quantum mechanics differ in many ways
and some concepts cannot be used in both. In the algebraic sense they are
quite close to each other and we can transport the above definition to
quantum mechanics:

Definition: A quantum mechanical Hamiltonian system is called quantum
integrable if there are N independent, globally defined operators 1
:_.I H], commuting with each other i.e.

mHm.Hu 1=0, m.ulh\.. - oN

In the above definitions we used the term "independent” whose meaning we
still have to discuss. In classical mechanics the vague idea ofi functional
indepeandency, which was meant above, is defined by the more rigorous concept
of linear independency of the one-forms un [2]. How should independency be
defined in quantum mechanics? There does not seem to exist an equally
convenient definition. In the following we will encounter only differentiai
or integral operators for which the definition is not so problematic, and
anaiogues to classical mechanics can be used. Nevertheless, this term needs
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a rigorous study.

Suppose n_au:\n?nn we are given a classically integrable system, i.e. a s
of functions'I. whose Poisson brackets vanish. If we next make the usu
operator substitutions for the momenta we get operators I, (we could ha
ordering ambiguities!). Do we now have [H,I]=0 7 Not -.—tmv.u. although th
has peen claimed. In the following we shall discuss the various probles
that we are faced with when we try to construct a quantum integrable syst
from a classically integrable one.

2 QUANTUM MECHANICS WITH C-NUMBERS

In the following we will mostly be doing quantum mechanics with ¢-numbe
functions rather than with operators. There are two reasons for doing 1
here: 1) Since we are comparing classical and quantum mechanics it is usefy
to have similar objects in both, 2) for computer algebra systems, where mar
of the necessary computations were done, it is more convenient to hav
commuting objects.

For the present purposes we need only replacements for the object
(operators) and for the only algebraic operation between them (commutator)
There are many isomorphisms that could be used, but we will only conside
linear correspondence rules. They are cracterized by a function F(x,y) (se
hutw with F given we translate c-number function A(p,q) into an operato
A(P,q) using the (formal) integral ’

B = [0 ad"xd"y (208) 28 (x,y)A (P @)exp (1 [x(F-p)+y(§-q) 1/8}. (

We require the transformation properties f(p) - £(3), 8(q) = g(d), whi
imply F(0,y) = F(x,0) = 1. In the Weyl rule F(x,y)=l hau nmon nwomumh&”

ordering rule (3's to the right) F(x,y)=exp(-ixy/(28)].In the £ i
will only use the Weyl-Wigner rule. ollowing w

The major reason for using the Weyl rule is that then the replacement fo
ow.mmoﬂ—.,.ummmmnwm« nmm«mwav«wnrn Moyal bracket which is quite convenient. Th

2 i 3 Y
(A,Bhg = A(p,a) £ ﬁuTAMn.uu - .uv.wa u B(p,q). (2

vhere the arrows indicate the direction to which the i

Note that (2) reduces to the Poisson bracket when Jamwunmnuowﬂﬁm
of considerable importance is that both brackets respect time reversa)
parity (p - -p). If the Hamiltonian is even in momenta this parity
conservation implies that both the classical and quantum c-number invariant:

H _x- assumed to have a definite parity. i.e. they will be either even or
in p.

3 AUTOMATIC EXTENSION FROM CM TO QM

The Moyal and Poisson brackets give different results only if the
order terms in (2) contribute. If the Hamiltonian is of the Nwwn igher

H= Amum..d,qw:m + V(x,v). 3)

then S nwm higher order terms all q-derivatives must operate omn V and the
p-derivatives on I. In particular if the invariant is at most second order
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in momenta the higher order terms in the Moyal bracket do not contribute at
all, and in that case classical integrability does imply quantum
integrability. N

The classical {nvariant can be used as the c-number quantum invariant also
in some other cases. For example in systems whose classical integrability

follows from the existence of a Lax pair it turns out that often the .

commuting invariants can be chosen so that the variables appear in
combinations which also yield quantum {ntegrability. For further details
and many examples see (4]. . :

For many systems it is therefore true that classical integrability implies
quantum integrability without any problems. However,.this is not always the
case. ) -

4 QUANTUM CORRECTIONS TO THE SECOND INVARIANT

When the invariant is sufficiently complicated the higher order terms in the
Moyal bracket do no:mu»gno. In such cases the natural first thing to try
is an expansion in A" for the invariant. As the zetoth order term we take
the classical invariant I 1 the higher order terms are taken as unknowns.
The nouc.—nwanwonﬁbnwouu tha€ follow ' from {H,I } =0 are then solved order
by order in &°. If this equation has a uow:nuomc it can be regarded as a
“deformation” of the classical invariant I, ;T is.  the c-number
representative of a quantum operator which Commutés with the quantum
Hamiltonian. In many cases just one additional term is enough. Several
examples of this procedure are given in [1]. - )

Although the quantum operator remains unchanged it is possible to change the
appearance of the c-number representative by changing the mn&onwnw rule
(i.e. the function F in (1)]. If in some ordering rule the #" deformations
vanish one can say that that order gives a method for an integrability
preserving quantigation of the system. In [1] it was shown how in some
specific cases such an ordering rule can be found. Unfortunately 'there is
no one ordering rule or deformation that works for all classically
integrable models.

5 DEFORMATIONS IN THE HAMILTONIAN

Even these corrections to the second invariant are not always sufficieant to
make a classically integrable system quantum integrablé. As the by now
standard example let us take the Holt Hamiltonian .

R R R e ke )

which is classically integrable with the second wEiuwh..n. —M_\

3 4 -2/3
el " Py 1343572 V.N:.u. + ou:usr. (s)
If we nov try a second invariant I  with the same leading part as in Hn.._. it
turns out that the new system of om&nnwonh has no solution.
2

However, nov we can solve the equations if we allow an A" correction term in
both the invariant and the Hamiltonian. We have found that

I + u\N_.%NN + [-9/2x

B =8 - 5782, md (6)

qu 1

- - N-N E
Hac Hnw u\ugx vw S
indeed have & vanishing Moyal bracket. Calculations similar to the abovs
can be carfied out with the other integrable Holt potentials whase
invariants are of order 4 and 6 in p (6]. Also in these cases o-wh.qo foun
that the correction term to the Hamiltonian is the same, -5/72h“x “.

Another example of this type is the uow-u-ruwon.r.nnos potential

- (n 200 2 -4/3 ,

. B, = (p, oy N2 + (xy) 7, . (8

which is classically integrable (7]. For quantum integrability the
Hamiltonian must be deformed to [8]

By, =M - sitmlix 2y, (9

and then the second invariant is

-2/3 2, -2 - |
ne._ = vxn«?vv..v.vuv + 2(xy) Anvu.svv.v - 5/368°[xy P YX {. (10
It is quite surprising that the deformations (6) and (9) are of the sam
type, including numerical factors. Also the correction seems to be
associated with the variable that appears with a fractional power in the
rest of the potential. Note also that the correction term cannot be
eliminated by a canonical point transformation [1], or a change in ths
ordering rule. ([Of coures one can define an ad hoc correspondence rule by
stating that mnH tranforms to the operator whose c-number representative i:
H , but such '@ rule does not satisfy the requirements of a lineaj
nmmnovo..uo:no nﬂponwunﬁu&wnmon.ﬁ

Recantly we have been able to solve this intriguing question by applying -
canonical transformation together with a change in the time variable [9]. We
have found that starting with a Henon-Heiles type potential

vV = 2/3(mx>/3 + xy?] - 3n/2 =
there is a sequence of transformations which turn this potential into Holf
type o

W o= 3/emx®3 4 3232 L gx723, (12
mmnw_uvos:nwu“u are integrable for m =1, 6, 16. The step that produces the
h™q © type correction terms is the point nnnummou!unwoa q = £(Q) followed by
multiplication of the Hamiltonian by f'(Q)°. The correction that must b«

made in the quantum versjog is in general given by a “Schwarzian derivative'
(9], which for £f(Q) = cQ reduces. to.

av = -s/1a%Q’%. (13

There is another sequence of transformations that takes one from the radial
quartic potential

v = h(xyD)P2s (k

into the Fokas-Lagerstrom potential

-2/3

W= -2xy) 233, (s



In addition to other changes of variables one must here make the above
mentioned transfromation in both x and y variables, hence a correction in
both variablas (9]. <

6 NONPOLYNOMIAL INVARIANTS

It also possible to have invariants that are not pelynomials in the
momenta. For example in [10] the Hamiltonian

2, 2
- - . 16
H=(p, Py )2 u\wv% (16)
was shown to be (super)integrable and to have the ‘invariants
I, = Auvwnﬁ.udl\vw. I;=p, + Favu\wv. (17

t:onn:otAHu.H vm l_..ﬁ.;u._.onnn»ngwa Hu Egowgna@_&.
considering mnvauw.u '

How can we construct a corresponding quantum systam? We have found that the
quantem Hamiltonian operator [we have put 4i=1]

fi= -@ 2R 12 - xay! . (18)
commutes with the operators .
A : 4 LY -1
1, =x- 3.&:@.%.. I, = exp@)dy (19)
and ve also have gmfm.m’uu = .\mu.

Therefore also for systems with nonpolynomial invariants it is sometimes
possible to find a related quantum mechanical system that is also
integrable. However, we do not believe that it is always possible, and in
any case there is no general procedure.

A
To conclude we note that the operator I, can be used to solve the

Schrodinger equation of the above system. We start with the eigenvalue
equations

By - &Y, (20a)
¥ - =¥, (200)
and after operating with wu\-w on equation (20b) it yields
GO ENCEES TX _ (1)
This equation has the solution
P = ye X 1 P5(r), vhere r = ((x-m)%yD)1/2, (22)

and when Y} is substituted into (20a) we get the Bessel equation for f:
26" + of! + [(2B+1)e? - (at1)?if = 0. (23)

7 CONCLUSIONS v

We have herd seen that quantum integrability is by no means a trivial
consequence of classical integrability. Sometimes the classical invariant
can be taken as the c-number representative of the nﬁbm.l invariant, but
more ofted the classical invariant must be modified by A" terms. Sometimas
also 'the Hamiltonian must be deformed. We would like to emphasize that
there _is no _unique ordering rule which could explain the quantum
deformations of all systess.
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