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I. Introduction 

The study of the effective Lagrangian for low lying mesons has received much 

GAUGE INVARIANT BILOCAL EFFECTIVE attention in recently years not only for its power of studying low energy physics of 

LAGRANGIAN IN QCD-LIKE THEORIES1 hadrons (1)-[3) but also for its advantage of' providing a convenient tool of studying 

the physics at Te V scale such as precise tests of the electroweak theory including 
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gies, it is sufficient to consider o~ly the lightest pseudoscalar mesons which are
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ing and describe them by local fields. The general form of the effective Lagrangian 

ABSTRA.CT 
for these local pseudoscalar meson fields can be known from symmetry arguments 

Gauge invariant bilocal effective Lagrangian for mesons is formally derived from 
(1). To improve this description, it has been ~tried recently· to construct effective 

the first principles of QCD. The coefficie'nts of the bil6ca} 'meson fields in the effective 
Lagrang~~ in terms of bilocal fields (71-[91 which may be extended to higher energy 

L~gra.ngian are parametrized in terms of Green's functions of gluons. 
scales and re8.ect more detailed properties of QeD. Moreover, for higher energies, 

other light mesons like the vector and axial-vector mesons may also be relevant 

which are not directly related to chiral symmetry breaking. It seems that simple 

symmetry argument is not powerful enough for studying the form of such an ef

fective Lagrangian. Therefore understanding the relation between such an eff~ctive..-. 
Lagrangian and its underlying fundamental dynamics is of both theoretical and z~ a: :::> --. practical interest. 

t} 
In this paper, we study this relation in QeD-like gauge theories. We start from 

the fundamental Lagrangian of the QeD and formally integrate out the gluon and 

quark fields to obtain the general form of the effective Lagrangian for bilocal meson 

:lMailing addreu fields. To construct gauge invariant bifocal composite quark operators understood 
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as the mesons, we transform the quark and gluon fields by a non-integratable phase 

factor and the transformed quark field is related to. the constituent quark (10\. Due 

to the self-interactions of the gluons, the integration over gluon fields cannot be ex

plicitly carried out. We formally express this integration through the gluon Green's 

functions which are not explicitly know. A formal effective J;.agrangian for the 

transformed quark fields is then obtained. We then propose a method of introduc

ing gauge invariant ~ilocal auxiliary fields for the gauge invariant bilocal composite 

quark operators, and with this the quark fields can be integrated out to obtain the 

formal effective Lagrangian for the gauge i~variant bilocal auxiliary fields describ

ing various kinds of mesons. In this method the coefficients of the bilocal fields 

in the effective Lagrangian can be related to .the gluon Green's functions through 

a certain dynamical approach to the bilocal-field integration, which we take to be 

loop expansion in this paper. We shall show that the coefficients of the bilocal 

fields in the effective Lagrangian can all be expressed in terms of certain extented 

gluon Green's functions defined in Sec.II. The effective Lagrangian so obtained is 

only formal but its form is general in the sense that no approximation has been 

made so far as only the bilocal meson fields are considered. To realize this effective 

Lagrangian and make phenomenological predictions, one needs to develop proper 

approximations for evaluating the gluon Green's functions. H we simply truncate 

the effective Lagrangian for"quarks in such a way that all higher dimensional quark 

operators beyond the four-quark interactions are dropped, the effective Lagrangian 

for the bilocal meson fields reduces to the form considered in Ref.[9J. Therefore one 

can at least model the bilocal functions as what Holdom did (9) which may lead to 

successful phenomenological consequences. The present form of the effective La
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grangian admits a more general study of the problem. 

This paper is organized as follows. In Sec.II, we introduce the non-integratable 

phase factor to the quark and gluon fields, and formulate the generating functional 

which we need in the derivation of the gauge invariant bilocal effective Lagrangian. 

The physical meaning of the transformed quark field is also discussed. The inte

gration over t·he transformed gluon field is formally expressed in terms of the gluon 

Green's functions. In Sec.III, we develop a general method of introducing gauge 

invariant bilocal a~iliary fields which can be applied to theories with arbitrary 

multi-fermion interactions. With this method, the quark field can be easily inte

grated out and we obtained the effective Lagrangian for the gauge invariant bilocal 

auxiliary fields. The form of the effective Lagrangian is determined order by order 

in the standard loop expansion in which the coefficients in the effective Lagrangian 

are expressed in terms of the gluon Green's functions in the underlying theory. In 

Sec.IV, we calculate the effective action of the gauge invariant bilocal theory and 

study the vacuum stability condition in this theory from which we can see the re

lation between the present theory and the approach by Holdom et.at.l8)(9) Sec. V is 

a concluding remark, and some technical details are given in the Appendices. 

n. Gauge Invariant Bilocal Composite Quark Operators and the 

Generating Functional 

Consider a QeD-type gauge theory with SU(Nc) local gauge symmetry. Let 

. B; (a = 1,2" . " N 2 
- 1) be the gauge field, ,p~ be the fermion field with colour c 

index 0: (0: = 1,2,·· ',Nc) and flavour index i (i = 1,2,·· ·,N,). From now on, 

we simply call ""~ the" quark-field" and B; the" gluon-field" for convenience. The 
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Lagrangian is 

C = -41B:"B"IW 
-
t/J(i~ - gJ1Jt/J , (1) 

where A,,'s are Gell-Mann matrices,BI' == ~B:, and 

B:" == a"B; - allB; - gfGiI:B!B! 

in which fIJN is the SU(NI:) structure constant. 

,In order to construct the gauge invariant formalism, we introduce a non-integrable 

phase factor 

U(XllX2)==P e-ilf:~A,.Mdll" 	 (2) 

where P is a path-ordering operator, A", ~A: is an external field. In (2), the 

path and the external field A~ are not spec::ified yet. We then transform t/J and B", 

into new fields '11 and 8", as follows 

t/J(x) ~ w(x,:z:o) U(:z:o,x)t/J(x) , 

¢(;z:) ~ W(x,:z:o) ¢(x)U(x,xo) , (3) 

i a
B,,(x) ~ B,,(x,Xo) = U(Xo, x) B",(x)U (x, Xo) + -l-aU(Xo,x)]U(x,xo)

g xl-' 

We can parametrize the space-time points on the path by y'" (xo, x.,s) with y"(:z:o, x, 0) 

x" , Y"'(~o,x,l) =~. Then B,.(x.:z:o) can be expressed as (cf. Apppendix A) 

B,.(x,xo) U(:z:o,x)[B,,(x) A",(x)]U(x,:z:o) _ /lds ayll(xo,x,s) ayA(Xo,x,s) x 
o ax'" as 

xU(xo, y{:z:o, x, S))Al"(Y(XO' x1.,s»U(y(xo, x, s),x)U(x,Xo) , 

in which AllI(Y) is defined as 

AllI(Y) == alAII(Y) - aIlAl(Y) + ig[Al(Y)' (5) 
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We then introduce the external sources Js , Jp , J:, J~ for the composite quark 

operators -~W, i'f"Ysw, W"Y",w, and W"Y,,"YsW, respectively, and construct the gen

• erating functional for the Green's functions. 	 Since A" is an external field, the 

functional measure is unchanged after the transformation (3), i.e. Dt/JD¢DB", = 

DWD'iDBI£' So that 

eMIJ)Z[J] 

/ Dt/JD¢DB",expi/ trx{C(t/J,¢,B,,) + ¢(i~ - Js + iJp"Ys + Iv + 'A."Ys)t/J} 

/ DwD'iD8",expi/ trx{C(w, W, B,,) +W(i~ - Js + iJp"Ys + Iv + 'A"Ys)w} 

(6) 

The usual Fadeev-Popov gauge-fixing procedure should be further imposed in (6). 

Let the gauge-fixing condition be 

r(B",(x,Xo)) 0 	 (1) 

with the requirement 

~" F"(Y (xo) B",(x, xo)yf(xo» y(Zo); FIJ (8",(x, xo»yf(:z:o) (8) 

where Y (Zo) is a colour local gauge transformation matrix at the space-time point 

xo. (8) is crucial in the following discussions. With (4), the gauge-fixing condition 

(7) reads 

yll
F"{U(xo,x)[B",(x) A,.(x)]U(x,xo) /1ds a ':, x, s) ayl(~o,x,s) x 

o x" s 

xU(xO,y(xo,x,s»Al,,(y(Zo,x,s))U(y(xo,x,s),x)U(x,xo)} =0 . (9) 

We see that (9) restricts A,. to be a functio~ of BJl.I which depends on the choice of 

the pa.th from Xo to x. Furthermore,if we take the gauge transforma.tion of A,. to 
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be 

A,,(x)-+A~(:z;) =V(x)A,,(x)Vt(x) + ':[a"Y(x)}yt(x) , (10)
9 

it will leads to the consequence that (9) keeps the same form after making any gauge 

transformation Vex) as it shoud be, provided (8) is satisfied. This can be seen as 

follows. First we note that the gauge transformation of U(XlJ X2) is 

U(XbX2)-+U'(Xt,X2) = V(Xl)U{Xh X2)Vt(X2) ., (11) 

Then we can easily see that w,ith (10) the gauge transformation of BI'(x, xo) is 

BI'(x,xo)-+B~(x,xo) = V(xo)BI'(x,xo)yt(X{)) , (12) 

which looks like a global transformation and thus F(BI')(x, X{)) == ~FG(BI'(x, xo)) 

transforms as 

F(B,,(x, Xo))-+F'(B~(x, xo)) = V(xo}F(B,,(x, xo))yf(Xo) , (13) 

in which we have used the property (8). (13) means that the gauge-fixing condition 

(7) or (9) keeps unchanged under the transformation Vex). Eq.(10) has another 

advantage that the gauge transformations of w(x,xo} and W(x,xo) are 

W(x,Xo} -+ W'(x,xo} Y(xo}W(x,X{)) 1 

W(x, Xo) -+ \V(x,xo) W{x, xo}vt(xo) (14) 

So that bilocal composite quark operators of the form W(Xh xO)rW(X2, xo) (where r 

is a certain matrix characterizing the flavour, spin and parity) are gauge invariant. 

Now we do the Fadeev-Popov gau&e-fixing procedure. Define Ap(B) satisfying 

6. p (BjJ) IDV 6(F"(B! (x, xo)) = 1 (15) 
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where 

B!(x,xo)=V(x)B,,(x, Xo)vt(x) + ~la"V(x)JVt(x) (16)
9 

This 6.F (B) is evidently invariant under BI' -+ B:, i.e. 

6.p(B:) 6.p(BI') (17) 

Plugging (15) into (6), we get 

Z[J] e'W[JJ 

I DYDWDWDBI'6.p(BI')6(FG(B!n x 


expiId'x{l(w, W,B",} + W(iq - Js + iJp,s + 'v + 'A'S)W} 

11I DY DwV

- DWV
- DB:-

1
6.p(B:- 1)6(FG(BI')) x 


V
 1 

expiId'x{l(wv-X,w :" B:-') + WV
- (iii - Js + iJp,s + Iv + 'A,S)\lIV-l} 


IDYDwDWDB,,6.p(BI')6(FG(BI')) x 


expiId'x{l(w,W,BI') + W(iq - Js+ iJp,s + 'v + 'A'S)W} 


const. lim I DWDWDBI'6.p(BI') x

E-O 

1 GexpiId'x{l(w, W, B,,) 2e[F (BI'W + W(iq - Js+ iJp,s + 'v + 'A'S)'lI} 

(18) 

This is the well-defined generating functional for Green's functions that we need 

in the derivation Note that, in the gauge fixing procedure, we only insert 

(15) which is exactly unity into the integral. Although different gauge fixing 

functions Fa lead to different gauge compensations AF{B~), they give the same 

generating functional Z[ Jj. 
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So far the path between x and Xo and the gauging-fixi!:~ function FG are still 

not specified. We ~an make a suitable choice of them to simplify the calculations 

and the physical interpretation. We take the path to be a straight line connecting 

x and Xo, and the gauge-fixing function Fa(BI') to be the fix-point gauge [121 

Fa(B,,} = (x" - ~}B:(x, Xo) • (I9) 

The straight-line path can be parametrized by 

yI'(Xo,x,s} = x" + I(s}(~ x") , (20) 

where I(s) is an analytic function of s in the region O:$:s:$:1 with 1(0) = 0 and 

1(1) = 1. With this choice, (4) becomes 

1 dl
B,,(x,Xo) U(Xo,x)[B,,(x) - A,,(x)]U(x,Xo) - ods[I- I(s)lds (x~ - XV) x 

/ 

xU(Xo,Y(Xo,x,s))AII,,(y(:z:o,x,s))U(y(xQ,x,s),x),U(x,zo) " (21) 

Multiplying (21) by (xl' - ~), we see from (19) and (7) that the arbitrariness of Xo 

leads to 

A,,(x) = B,,(x) . (22) 

This makes the calculation very simple. Furthermore, in Ref.[IO}, when considering 

the static interaction between heavy quarks, the transformed quark field \II with a 

straight-line path in the spatial direction and the choice (22), can be interpretated 

as the constituent quark field. Now our straight-line path differs from the path in 

Ref.[IO] only by a Lorentz transformation. Therefore our \I! can be seen as a rel

ativistic generalization of the constituent quark field <!efined in Ref.[IO]. Thus the 

composite operator W(Xll xo) r\I! (X2, Xo) can be regarded as gauge invariant bilocal 
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meson fields in the naive constituent quaTk model. 

Having all these,we can go ahead to derive the gauge invariant effective La

grangian for quarks. Consider the int~gration over DBI' keeping D\I![)'fi uninte

grated. Then Q: =: 'fiJ:11'\I! can be regarded as an external source in the DB" 

integration. Since Z[J] is the generating functional for Green's functions, we have 

/ DBI't:Jd.z[J!qoD(B)+O~B:I = 

00 / 1"n.gn 
= ezp L d4Xl'" d"xn-I-G:~:::;;: (Xl,' •., Xn)Q~: (Xl! xo) ... Q:: (Xn! XO)

n=2 n. 

(23) 

where toeD(B) is the gluon kinetic energy term -~B;IIB4"1I ,and G:~:·.:~~ is the full 

n-point Green's function of the B: field with \II,W treated as external fields. The 

form of G:~:::::;. is not known yet, 80 that (23) is only a format expression. By means 

of the SU(Nc) algebra 

(As) (A4) .. 1 12 t/l/J 2.,6 = '20a60P'J - 2Nc OaPO,6 
C A6 CA4 A" . A A4 A 1 

[2''21= 1/0 6c 2 {2'"2} =da/l'2 +006 N ' (24) 
C 

A4 A" 1 
trc(2'2) = '2°46 , 

. we can diagonalize the colour indices of the operators and have 

. A . A 
C:~:::;: (Xh"" XnH~:ll (Xl)( ;1 )al/Jl11'1\I!~1 (Xl))' .. fW:Jxn)( ;" )a"P..1""\II~,.(xn)} 

_ / ~, ~, ?'Pl"".. ( , , );;0;0-1 ( ),T,Pl (' )- a-xl" 'a-xnup1""A xhXl'" ',x,,,xn '*'al xllXo ""'al X1,XO ... 

. . . ~: (xn , Xo)\II:,;Jx~,:z:o) (25) 

where q(p) is a short notation combining the flavour index i and the Lorents index 

Il, G;:::.;:(XhX~, . . " xn,zn) is a generalized Green's function containing 2n space
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time points. The specific forms of 0;:;:' and C;:;:;:are giveI.1..in Appendix B. Thus 

the generating functional (18) can be written as 

= f D'l!DWe%pi{ja'%W(i;; - Js + iJpli + Iv + IAIS)'l! + 
00 f ,., t'ngn 1"'\17" I I+ L d" X1'" a'Xnd"%1 ... d"xn-,0;1'''''' (%1'%1'" ',%n,Xn) X 

n=2 n. 

XW::(Xh%o)W~II(X~,XO)'" ~:(%n,XO)ll!~(%~,%o)} . (26) 

In (26),the bilocal composite quark operatOrs W:~ (X1!%o)ll!~ll (~,%o) ...W::(xn)C%o) 

'\lf~: (x'n,XO) are colour singlet and gauge invariant. The generating functional (26) is 

our basis of constructing the gauge invariant bilocal effective Lagrangian for mesons. 

TIL Gauge Invariant Bilocal Auxiliary Fields and the Effective 


Lagrangian for Mesons 


Usually auxiliary fields are introduced in the study of theories with quartic-field 

interactions. The advantage of introducing the auxiliary field is that it provide a 

convenient way of integrating out the fundamental field and leaving over the in

formation of the quadratic composite-field operator .Here we generalize this idea to 

theories with complicated interactions like (26). 

We introduce the bilocal auxiliary field x.,,, (x, x') satisfying the following relation 

f DXtl,e'{Klxl+f ,,<lltcr'lt',x.,(lt,lt')i!(c,co)i':(r:'.r:o)} 

. 00 f 4 " t'ngn I···.,..' Iexps{ L d xl' .. d"xnd"x1 ••• ti'xn-,-o;l""" (XlJ Xli' . " xn , xn ) x 
n=2 n. 

xW::(XllXo)W~JI(x~,%o) ... ~:(Xn,Xo)W~:(x~,xo)} , (27) 
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where K[x1 is a functional of X, which is not known yet. Our task is to develop a 

method to determine K[X]' Once this is done, we can simplify the expression (26) 

by using (27) and get 

e,WIJ)Z[J] 

f DxDWDWe%pi{K{X] +f d"xd"x'~(X,XO) x 

Xl(i;; - JS + iJpI6 + Iv + 'A16)tI,{/'(X - x') + 9Xu,,(X,X')]W:{X',XO)} 

(28) 

We see that the quark field appears quadratically in (28), so that it can be easily 

integrated out. Thus we have 

.= f Dxi{K[xl-iTrln(iQ-Js+iJl''l6+lv+IA'l6+IX)} (29) 

The effective Lagrangian for the x-field is then defined by 

j d"xd"x'.ccl/(X) = K[xJ- iTrln(i;; - Js + iJpI5 + Iv + IAli +9X) (30) 

We know that a change of the path between x and Xo will change the definition 

of the transformed quark and gluon fields, but the generating functional Z[J] and 

the Green's functions G are independent of the choice of the path. Therefore from 

(29) we see that the form of the effective Lagrangian .ccl/(x) defined in (30) is 

independent of the choice of the path. 

The transformation property of X.,,(x,x') can be seen as follows. If the theory is 

massless, it respect a chiral symmetry U(N,)LXU(N,)R. We can further choose the 

external sources to make the theory to respect local U(N,)LXU(N,)R symmetry. Let 

L(x) and R(x) be the transformation of U(N,)L and U(N,)R, respectively. The 
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transformations of the quark,gluon, and external sources are 

tP(x) -+ tP'(x) [R(x)Pn + L(X)PL]..p(X) , 

¢(x) -+ ~(x) =¢(x)[R(x)Pn + L(x)PL] , 

B:(x) -+ B;'(x) = B;(x) , 

-Js(x) + iJp(x) - L(x)[-Js(x) + iJp(x)]Rt(x) , (31) 

-Js(x) - iJp(x) -+ R(x)[-Js(x) - iJp(x)]Lt(x) 

J:(x) + J~(x) -+ R(x)[J:(x) + J~(x)]Rt(x) - i[o"R(x)]Rt(x) 

J:(x) - J~(x) -+ L(x)[J:(x) - J~(i)JLt(x) - i[8"L(x)]Lt(x) 

Since U(x,XO) is independent of L(x) and R(x),we have 

'l1(x) - 'l1'(x) = [R(x)Pn + L(x)PLI'l1(x) 

W(x) - W(x) = W(x)[R(x)Pn + L(x)PLI , (32) 

8;(x,xo) - 8;'(x,Xo) 8;(x,xo) , 

Then from (27) we see that 

x(x,x') - X'(x, x') = [R(x)PL + L(x)Pn]X(x,x')[Rt(x')Pn + Lt(x')PLJ 

(33) 

The form (30) is specially useful when we gauge an SU(2)LXU(1) subgroup of 

U(N,hxU(N,)n to incorporate the theory with electroweak interactions. We see 

from (31) that this can be done by simply identifying the SU(2)LxU(1) part of J: 
and J!:. in (30) with the eledroweak gauge fields. 

We can further expand X(x, r) in the i-matrices 


X(x,x') Xs(x,xt) + iXp(x,x');s + X~(XIX');", + 
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+X~(x,x');",1S + X~(x,x')q",,, (34) 

Substituting (34) into (33), we get 

Xs(x, x') + iXp(x, x') -+ L(x)[Xs(x, x') + iXp(x,x')]Rt(x') , 

xs(x, x') - iXp(x, x') -+ R(x)!xs(x, x') - iXp(x, x')] Lt(x') 

X~(x,x') + X~(x,x') - R(x)[X~(x,x') + X~(x,x')]Rt(x') , 

X~(x,x') - X~(x, x') -+ L(x)[XV(x,x') - X~(x,x')]Lt(x') , (35) 

i ~ i
Xt"(x, x') + ZE"" I!;XT ~I!;(x, x') - ~L(x)[Xt"(x, xl) + Zf""~I!;XT ~1!;(x,x')]Rt(X') 


i ~ i

Xt"(x, x') - 2"f"" I!;XT~I!;(X,x') -+ R(x)[X~"(x,x') - 2f"").I!;XT~I!;(X,x')]Lt(x') 

These Xs,XP,XV'X~, X~ is to be regarded as effective meson fields with various spin 

and parity. 

We Ca.:rl expand the functional K[xJ in powers series of the XA fields (A stands 

for S,P,V,A,T and the flavour index, i.e. 

00 1JK[X] E dX1· .·dX",KA1 ···A.. (Xh •• ',Xn)XA1(X1)··· XA,,(X,,) 
1'=1 n. 

(36) 

Here we use a short notation X for the bilocal variables (x, x'). What we are going 

to do is to determine the relation between the coefficients KA1 ...A.. (Xb •••, X,,) in the 

effective Lagrangian for XA and the extended gluon Green's functions C;~::::(XlI" 

., Xn) in the underlying theory. This can be done by comparing the two sides of (27) 

provided the functional integration on the left-hand-side (L.R.S.) of (27) is carried 

out. In this paper, we take the stand'ard loop expansion [lll to do the functional 

integration on the L.R.S. of (27), and determine KA1 ... A" (Xl." " X,,) order by order 
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in loop expansion. This is only for easily illustrating the formalism. Of course one 

can take other methods to do the integration. 

LetQA=[W(x,:co)\{I(x',xo)]A. (27) can be written as 

iW[Q! = / Di{K[x!+Jd4 zgQA(X)XA(X)}Z[Q] 

00 / i"gnexpi{E crxl · ..a'Xn-,GAI ...A.. (Xit ·• ·,Xn)QAI(Xl) . ..QA.. (Xn )} 
n=2 n. 

(37) 

We see that W[Q] is just the generating functional of the extended connected 

Green's functions of gluons GAI ...A.. (Xl,···, Xn). Next we define the classical field 

XA(X) 

6W[Q] i n - l '00 _ 

XA(X) =6QA(X) = ~ (n _I)!GAI ...A..-I(Xl· .. ,Xn_l)QAI(Xl) ...QA"-I(Xn_d· 

(38) 

Then the effective action f[X] is obtained by the Legendre transformation 

f[X] =W[Q]-/cr XQA(X)XA(X) , (39) 

in which W[Q] and XA(X) are all known (cf. (37) and (38)). According to the rule 

of loop expansion given in Ref.[I3], we have 

[_I i '( 62K[X]' --
K X + 2'Trln 6- (X )6- (X J +r2 = r[X] , (40) 

. XAI 1 XA2 2 

in which 1'2 is the sum of all one-particle- irreducible (IPI) multi-loop vacuum 

diagrams with the propagator (~2~(xl (X) and the vertices GV
XAI I XA2 1 

00 / 1Kint[X, X] ==.L a'X1·· .a'Xn,KAI..·A,,(Xit ·· .,XniX)XAI(X1)··· XA,.(Xn) , 
n=3 n. 

where KAI ..·A"(XlI···,XniX) is the' expansion coefficient of K[X+X]. On the L.H.S. 

of (40), the first term is the tree level contribution to f[X], the second term is the 
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one-loop contribution, and the third term is the higher loop contributions. We 

denote the loop expansio~ of K[xl by 

00 

K[X] = EK,[X] (41) 
/=0 

Substituting (41) into the L.R.S. of (40), we can determine K[X] order by order in 

loop expansion. 

At tree level, we get from (40) 

Ko[X] = f[X] , (42) 

or 

K~(X) = 0 

K oAI···A,,(Xit ...,n'X ) = -rAI '''A"(Xit ... ,nX ) n~2 (43) 
./ 

A, A
where f ... " (Xl, ..., Xn) is the n-point IPI vertex function generated from f[X). 

To one-loop level, (40) is 

2 
i 6 Ko[X] ) = f[X]

Ko[X] + Kdx] + 2'Trln(6XAI(Xl)8XA2(X2' 

This leads to 

. 8'Ko[x]) 
K1[X] = -~Trln(8XAI(Xl)8XA2(X2\ , (44) 

in which,from (42) and (43), 

, i ( 8
2
Ko[X] ) -AIAl( ) ~ / "v1 J'4,

-Trln 8- (X )8- (X.) = r Xl, X2 +~ d Al • ··aXn _ 2 X
2 XAI \ XA2 • n=3 

1 -AIA1A~"'A~_2( , X)- (') '_ (')X(n_2)!r Xtt X2,X1,"', n-2 XAI XI ···XA,,_2 Xn _ 2 (45) 
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Substituting (45) into (44) and expallding the logarithm in powers ofXA" we obtain 

A,( 11 ~ rl ~V"f_.AA.'A,1 vi rl)- I v1)K) X)= -2' a-)'laA 2f 1 ~(X,Al1X2 GA,~A,~(Xl,A:l , 

Kt1..i2(X},X:z) = - I a"Ai<fX~rA,1A,2A,IIA,~(XbX2,Xi,X~rGA,~A,;(~,~~)

-ila"Ai~x;crx~crx~rA,IA,~A,;(Xll Xi, xDrA,2A,~A,~(X2'~'~) x 

xGA,~A,~ (~, X;)GA,;A,~ (X~, X~) (46) 

This procedure can be carried on to determine Kf1"·A,.. (X1, "', Xn) for arbitrary 

t Substituting the determined K[xl into (3~), we get the expression for the effective 

Lagrangian CcJJ(X) in which all the coefficients of XA,l ... XA,.. are expressed in terms 

of I"s and G's. In Appendix C, we shall give more explicit expressions for KtlA,~ 

and Kt 1 A,2A,a in terms of the original Green's functions of gluons. 

·IV. The Effective Action 

Given the effective LagraDgian .e'J!(X) in (30), the calculation of various physical 

quantities concerns the calculation of the following generating functional 

IDxexpi{Klx]- iTrln(iQ Js + iJp"Y5 + Iv + ' A "Y5 + 9X) + 

+Icrx IA,(X)XA.(X)} , (47) 

where IA(X) is an external source coupling to the XA,(X) field. 

The generating functional Z[J] defined in (6) is related to Z[J,I] by Z[J,O] = 

Z[J]. Now we defin~ the classical,field 

c5W[J,I] . (48)XA,(X) ==. 6[A,(X) 
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and the partial Legendre transformation 

(49)II Ja"X 

It is easy to see that 

6I'P, xl _IA,(X) (50)
6XA,(X) 

Hence 

wp1 = W[J,O] I'!J,x]IJt-=o
• x.... 

Therefore what we need is to calcul~te fp, x1. When we turn off IA,(X), 

becomes 

c5I'p,X] = ° 
c5XA, , 

which reBects the stability of the physical vacuum. 

The standard loop expansion formula for I'!J,xl has been given in Re£.113], which 

is 

- iTrln(iQ- Js + iJp"Y5 + Iv + 'A,"Y5 + 9X) + 

+~Trln{c5" (X ~;.. (X \[K[X]- iTrln(iQ.,.. Js + iJp"Ys + 'v + 'A,15 + gi)]}-I
XA,l 1 XA,2 : 

+I': , (5~ 

where the first two terms come from the tree level contributions, the third term 

comes from the one-loop contribution, and f 2 represents higher loop contributions 

containing the sum over all higher loop IPI vacuum diagrams with the propaga

tor I (Xl):R.... (X2) [K[x1·- iTrln(iQ - Js+ iJp15 + Iv + 'A,15 + 9X)] and verticesM 

l 

.. T"O:iCr.. ,~ dK[X]- iTTln(iQ - Js + iJp15 + Iv + 'A,16 + 9X)) (n~3). 
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Let us first look at the tree level contributions, 

fop, xl = Ko!xJ- iTrln(iq Js+ iJpI5 + Iv + '.4016 + 9X) (54) 

Turni.r.g off lA(X), (52) now reads 

oKo[X] .. . 
OXA(X) - '[(,I! Js + :Jp15 + Iv + 'A"'I5 + gX)-I(X)]A = 0 • (55) 

or precisely 

00 " . 

'"'" ' jH ...c d4 ...c I """"rP"'IPI .. .qn-lPn-l( I , )I IL.J-(_ )f aXla-xl'" xn-laxn _ 1 X,X,XltxJt"',Xn-hxn_l X 
n=2 n 1" 

X XO'lPl (Xli x~) ... XO' .. _IP.. _1 (Xn -l, X~_I) + 


+[(il! Js + iJp"'l6 + Iv + IA"'I5 + 9X(I(X, =0 . (56) 


This is the general stability condition that the classical field X(fp(x, 21) should satisfy. 

Up to one loop, 

roP, X] + i\[J,x] Ko[xl + iTrln(il! - Js + iJp"'I5 + Iv + IA"'I5 +9X) + 
. 02 

+iTr1n{0" (X)o A (X) [Kolx] iTrln(il! - Js + iJp"'I5 + Iv + IA"'I5 + gx)]} + 
XAI 1 XA2 2 

= Ko[xl iTrln(il! - Js + iJpI5 + Iv + IA"'I5 + 9X) - ~Trln(o (~~:[~] IV" \) +A

XAI 1 X. 

iT I { 02Ko[X] .02Trln(il! - Js + iJp"'I5 + Iv + IA"'I5 + gx)}


+2 r nOXAl (X1)OXA2(X2) - 1 0XAI (X1)OXA2(X2) . 


(57) 

Substituting (57) into (52) we get the stability condition with I-loop correction to 

(56). 

Eq.(56) is rather complicated. Let us consider its solution in a simple approxi

mation. We truncate (56) by neglecting the n;?:3 Green's functions in (23). Then 
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(56) reduces to 

f
./...ca-x1d.( XI I A Xh XIl )I =<7rP" 1 PI ( X,X,Xh;LIJ ) +

X"'IPI 
( 

+!(il! - Js + iJpl6 +lv 1: 'Als + gxtl(X, =0 

We shall show that this is equivaJent to the commonly used Schwinger-Dyson 

equation in the improved ladder approximationl9J , or the so-called Hartree-Fock 

approximationiH1• This can be seen as follows. Let 

-(fPC.x,X')-= ,./a-H Xla-XH I1""""rPtfIPI ('x,x ,Xb X')l A Xt.Xl, ) (59)(X XO'IPI 

or 

.. ( = 1"j...ca-Xla-X1'-G (X,X I ,.xli XI X ') (60)XO'P .x,X') H O'fH1IPI ') -"'IP1 (XltXl 

Then (58) can be written as 

x;;(.x,.x') = (il! Js + iJp"'l5 + Iv + IA"'I5 + 9X)O'P(.x,x' ) (61) 

Here we have used the permutational symmetry in G(fIPI ...qnPn (Xl, r ll " . " xn,rn) 

which leads to xO'P(.x, 21) = XfH1(.x,21). Using (60),we can write (61) as 

(il! Js + iJp"'I5 + Iv +IA"'I5 - x-I)(fp(X,x' ) 

=-Ig. j...c .. '-GO'fH1IPI (' ')-(flPI( ')a-xla-.x1 X,X,Xl,Xl X Xli Xl 

·gG ( . ')( P) (II) -Plal(' )= t 2 plI.x, x "'I O'P1 "'I O'I/lX X ,x + 

+i2~l!jd'.xlGp",(X,.xl)("'I")qpb")O'IPIXO'IPI(Xl,.xl)O(X - x') (62) 

In the vacuum. state, -Js + iJp"'I5 = -m, J& = J~ = O. (62) becomes 

(il! - m X-1)O'P(.x,x') iiGplI(.x,x')bPx(x',xh"']ap + (63) 

+i2~e o(x - x') / trxIGflll(X,Xl)(lfl)"ptr[-yllX(xl,xdl 
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The trace in the last term on the R.H.S. vanishes in the ordinary formalism with 

translational invariance. This is just the Schwinger-Dyson equation in the improved 

ladder approximation considered in Ref.!9]. Based on the analysis of this equation 

Holdom et.aIJ81[9J proposed a model for the bilocal function which leads to success

ful phenomenological consequences. Our more general equation (55) or (56) admits 

further improvements. 

Our tree level results (54}-(56) may have another advantage. 

Let us rescale the bilocal field by 9X -- x. Then eq.(27) becomes 

In f [)xei {K[g-lxl+f 4':4'z'X.,,(:,z')-':;(:a:,zo)'1:'(z'.:a:o)} 

• 00 l'''ci'" ,f ",""gn,{ L d"Xl" . d"xnd"x1••• d"xn-'-,-a;l""" (Xb~" . " Xn, xn) x 
n~ ~ 

X~:(XhXO}\]!~~(~'xo)'" ~:(xn'Xo)\]!~:(x~,xo)} . (64) 

Consider the large-Nt! limit. We take the self-consistent limit that X and g2 Nt; keep 

finite as Nt! -- 00. It can be seen from the large-Nt! argument(lSl that the R.H.S. of 

(64) is proportional to Nt! in the Nt! -- 00 limit. On the L.R.S. of (64), the second 

term in the exponential is proportional to Nt!, so that the leading tem in K{g-lXI 

should ~lso be proportional to Nt! to make (64) consistent. Therefore the leading 

terms in the exponential function on the L.R.S. of (64) contain an overall factor Nu 

while other terms are smaller by powers of 1/Nt! .. This overall factor always goes with 

the Planck constant as N,:!n. Therefore in the loop expansion, loop contributions 

are sma.ller than the tree level contribution by at least a power of l/Ne• Thus in the 

Nc -+ 00 limit, the tree level results (54).(56) are exact, so that the large-Ne limit 

calcula.tion is grea.tly simplified. This is reminicent of the auxiliary field formula.tion 
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of the Gross-Neveu modell16J which makes the large-N'limit calculation very simple. 

V. Conclusions 

In this paper, we have developed a method of deriving the general form of the 

effective Lagrangian for gaug~ invariant bilocal auxiliary fields describing mesons 

with various spins by formally integrating out the quark and gluon fields in a QCD

like gauge theory. The integration over the gluon field is not carried out explicitly 

but is formally expressed in terms of the yet unknown n-point Green's functions 

of gluons. The integration over the quark field is achieved by developing a general 

method of introducing gauge invariant bilocal auxiliary fields X(x,x') (cf.(27)}. In 

~he approximation neglecting all the gluon Green's functions with n~3, X(x,x'} is 

just like the auxiliary field usually used in the bilocal four-fermion theories, and it 

represents the bilocal quark operator of the type 'f(x,xo)rw(x',Xo) (r is a spin and 

fiavour matrix) which is interpreted as the meson field in the naive constituent quark 

model. When more gluon Green's functions are taken into account, X(x, x') contains 

higher dimensional composite quark operators as well. This goes beyond the naive 

constituent quark model. The obtained effective Lagrangian for X is of the form 

(3~} with K[X] of the form (36) in which the coefficients KA1···A,,(X1 ,· ", Xn) are 

related, in principle, to the gluon Green's functions. The determination of the rela

tion between KA1,,·A,,(X.,· .. , Xn) and the gluon Green's functions requires carrying 

out the [)X integration in (21). In this paper, we take the standard loop expansion 

to carray out the [)X integration in which the coefficients KAl"'A~(Xb' . " Xn) are 

determined loop by loop expressed in terms of the gluon Green's functions shown 

in (43}li6)'etc. A more explicit expression is given in Appendix C. 
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Although the present formulation is only formal, it does give the general form 

and the physical interpretation of the gauge invariant bilocal effective Lagrangian 

including mesons with various spins. It also provides a possibility of really cakulat

ing the effective Lagrangian and making phenomenological predictions if a proper 

approximation for calculating the gluon Green's functions can be developed. As 

we have shown in Sec.IV that if we neglect aU the n~3 gluon Green's functions, 

the vacuum stability condition at tree level just reduces to the improved ladder 

approximation of the Schwinger-Dyson equation considered by Holdom in Ref.[9j. 

So that at least one can do the same modeling in this approximation as what was 

done by Holdom et.at.l8119] which can lead to rather successful phenomenological 

consequences. OUI general formula admits further improvements. One may either 

develop new approximations to calculate the gluon Green's functions and make pre

dictions, or express various physical observables in terms of the gluon Green's so 

that one can inversely study the properties of the gluon Green's functions from the 

data of the observables. We have also shown that taking a certain limit in Nt: -+ 00, 

our tree level formulae can be the exact formulae in the lage-Nc limit which greatly 

simplifies .the calculation. 
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Appendix A 

We derive here the relation (4) in the text. Let us parametrize the path between xl' and 

x~ by yp(xo, x,s) with yP(xo, x,O) = xl', yp(xo 1 x, 1) x~. The non-integratable factor 

U(XOI x) defined in (2) can then be written as 

U(xo,x) Pe-i,f:o 
dlljO""'''{II) 

= Pe-i,l fo' ib .,'.. fa:·..··) ""''''(11(2:0,2:,,)) (A.1) 

Thus 

a~u(zo,x) 
1 = -ig 10 cIsU(xO,y(xO,y(xo,x,s»){a;[aYV(~:XIS) AP(y(:co,x,s»}U(y(xo,x,s),x) 

. 101 
cIs ( ( (' »[a2Yv(xolx,s) "( ( »-'g Uxo,yxo,YXOlx,S a a A YXo,:c,S +° xl' S 

ay,,(xo,x,s) « »aylo/(xo, x, S)j « » ( )+ as A",w y Xo,X,s !Lu U Y Xo,x'S ,x , A.2 

where 

aAv(y)
Av,w(y) == ---ayw , 

Now 

i9 f' ds ay",~O' x, s) dd [U(xo, lI( XO, !I(:Co. x, s»AV(y(xo, x, s»U(y(:co, x, s), x)1Jo xl' s 

i9[ay",~O' x, s) U(xo, Y(Xo. y(xo, %, s»AV(y(xo, x, s»)U(y(xo,:c, S),
xl' 
2.11 J a yv(xo. X,") U( ( ( »)",( ( )'U( ( " -19 u..'9 a a I xo,y :l:o,lI ::0,X,8 A y xo,x,s) Y xo,x,s},o S xl' 
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. U( ) () . ,. 02 y,,(:r:o,:r:,a)= -&g :r:o,:r: A,,:r: Ig Jo da _ _ x 


XU(xo, y(:r:o, y(:r:o,:r:, a»A"(y(:r:o,:r:, a»U(y(xo, x, a),:r:) 


(AA) 

Therefore (A2) can be written as 

o:U(Xo,:r:)

. ( ). () .11 {Oy,,(:r:O,:r:,B).gU :r:o,:r: AI-'.:r: +Ig cIs 0 X 
o :r:" 

x !IU(:r:o,y(:r:o, y(:r:o, x, 8))A"(y(:r:o,:r:,s))U(y(xo, :r:,8),:r:)] 

oy,,(:r:o,:r:,s)oy"'(:r:o,:r:,8) ( ( ( » « » « »} _ _ U :r:o,y xO,y ZQ,:r:, 8 . Av,w y:r:O,:r:,8 U y Xo,:r:,S ,:r: 

_ . U( )A () • (I cIs oy"(xo, :r:,s) oyW(:r:o,:r:, 8) 
- 19 :r:o,:r: I-':r: + 19lo oxl-' OB x 


XU(:r:o, y(:r:o, y(:r:o,:r:, 8»){A..."v(y(:r:o :r:,8» -A",w(Y(:r:o,:r:, a» + 


+ig[A...,(y(:r:o,:r:, 8.», A,,(y(:r:o, x,s))J}U(y(xo, x, 8),:r:) 


. U( )A () . 11 dB oy"(:r:o, :r:,s) oylo/(:r:o,:r:, 8) 
= '9 :r:o,:r: ,,:r: + 19 0 o:r:" 08 X 


xU(:r:o. y(:r:o, y(:r:o, x, s»A...,v(y(:r:o, X,B))U(y(:r:o,:r:,s),:r:) . 


(A.5) 

With this we have 

. B,,(:r:, :r:o)=U(xo, x)B,,(:r:)U(x,:r:o) + ![io,,2:U(:r:o,:r:)JU(:r:,xO) 
9 

. = U(xo,:r:)[B,,(x) A,,(z)JU(z,:r:o) f:ds oy"(XO,:r:,8) oyl(xo,X,8) X 

xU(xo, y(xo, x, 8»A,)." (y(xo, :r:, 8»U(y(Xo, x, 8), x)U(x, XO) , (A.6) 

where 

A... ,,(y) == oW/A,,(y) - o"A...,(y) + ig[A..., (y) , A,,(y)] (A.1) 

(A.6) is just eq.(4} in the text. 
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Appendix B 

Here we calculate the 2-point and 3-point extended Green's functions G<71 P1<7,1'2 (:r:l' 

r,., :r:2'~)' G<7IPl<7lP,<7Sps(:r:t. r,., X2, x~, X3, x~). 

'From the colour symmetry, the 2-point Green's functions can be written as 

G:~~;(:r:l,:r:2) = 0<11 <1:1GI-'I'"(:r:l' X2) . (B.1) 

Then 

JG4 1 ,( )!W'I( )(A<11) "Ill'il( )JrW'( )(A42) "'ll"2()]4
1-'1"2 :r:l,:r:2 lY al Xl T al/117 111 :r:l Lya,l :r:2 T a,I1,7 112:r:2 

= ~G"I"2(:r:lJ X2)[W~\ (xlh"lll'~~ (Xl)][W:2(:r:2h"2qi~2(:r:2)J X 

1 
X(Oa 1112 Oa2111 - Nc Oallll Oa211,) 

I cr:r:~cr:r:~G"I"2(XlJ:r:%)[-~b"I)<71P'lb"2)<72PI5(:r:~ x2)8(x~ _.:r:t} 

- 2~ b"')<7IPlb"2)<72P20(X~ - :r:l)5(x~ - X2)] X 
c . 

X~~ (Xl, XO)ll'~~ (x~, xO)~!(X2' XO)q,~(x~,:r:O) , (B.2) 

where i is the Ilavour index, 0, fJ are colour indices, 0', p are combined Lorents and flavour 

indices. Hence the extended z.point Green's functions in (25) is 

a;::;(Xl. x~, X2'X~) = -~G"'I"2(Xl' x2){b'" )<7lp2b"2}0'2"15(x~ - :r:2)8(x~ - Xl} + 

+ ~c b"l )O'IPI b"l)<7lPl O(X'l xl)8(x~ - x2)1 
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For the 3-point function,we need the SU(lV ) relationse

14k -2i([~", ~J ~) = ~(A.)~p(ACI)p'Y(Ae)'Ya - ~(Ao)or.8(A6)P.,(Ac)'Ya 
A.} Ac I ) 1 ( 

date 2( { 2'Ao 2 2") = 4(A6 ap(Ao).8"(.~':)'Ya + 4 Ao)a.s(A.).8'Y(Ac).,a 

(BA) 

and 

106.: (AII)aIPI (A')P2(Ac)as.8s = 2i(oas.8A:l2.8AJ1.8s - Oor3iJl0aliJ,Oa12iJs) , 

dll&c{AII)aIPt ('\')iJ2(Ae)asps = 2{oasiJ,Oa2iJl0aliJs + oasBl oaliJ,oa,.8s 
2 2 2· 4 

-- N. Oal.81Sa2iJ3SasiJ2 - ![0a:liJ3Sa2iJ,:Sa3.81 - N"Sal.820a,PlSorsP3 + N20aliJI0a2iJ':OasiJ3) 
e e e e 

(B.S) 

From the colour symmetry, the 3-point Geen's Cunction can be written as 

G:~~;~~{XltX2,X3) = ICl1:2C1aG~olp2ps(xl,x2,x3) + ddla20sG~11)",ps(Xl,X':'%3) (B.6) 

Combine (B4) (BS) and (B6),we get 

o;:::::(Xl, X~, %2'~. X3, X~) 

= ~G~Olp2"s(%1,%2'%3)h::p2'::I's,::plo(xi - %3)0(:r'2 Xl)S(X~ - %2)

-'::P3':;Pl'::h O{xi %2)0(X~ - X3)0(%~ %1)] 


1

+4G~11p2pa(Xli X2, xs)h:;ps':~Pl'::Jl20(xi X2)S(X~ - %3)0(X~ %1) + 

+'::h':;P3'::Jll 0(xi - %s)o(x~ - Xl)O(%~ - X2) + 
2 


+ Nt; '::Jll':;Jl3':;P2o(xi - %dS(z; X3)0(X~ - X2) + 

2 

+Nc '::P3'~;Jl2'::rhol o(x~ X3)S(X~ - X2)S(x~ %1) + 
2 

+Ne '::"':;1'1 '::Jl36(x~ - X2)S(X~ - xdo(x~ X3) + 
4 

+ N2'::I'1'::;P2':;P3 O(xi - ;rl)O(x~ - X2)0( x~ - X3)] 
c 

(B.7) 
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Appendix C 

Now we give the explicit expressions {Of Ko"'IO"P' and Ko1J110'2P2a3PS in terms of the original 

gluon Green's functions. For convinience, we take the covariant gauge apsp O. Due to 

translational inva.riance an.d colour synunetry, the 2-point Green's Cunction can be written 

as 

G:!~;(Xl,X2) 01l102Gplp2(Xl - X2) (C.I) 

We define C;I1'10'2P2 and C;IPl a2P2 by 

Gp1P' ("7"X)(-ypl )all',(-yp:2)0'21',C;:rP20'3PS(%) -20a1 0'sOP1P3 I 

( ") + o{O) f " ) (I') lCa2P20'SJlS _ 1 () (") Ca2 P2asP3[() a21'1 ~ a-%,p 0'11'1' 0'2J12 2 - - Ne 'p. alP 1 , alP, 1'P O'lh' 

(C.2) 

Then elementary calculations show that 

f tfXltfx~c.l'X2d'x~KolJll0'2J1'(Xl' Xi,X2,X~)XO'I/'1 (Xt. Zi)Xa2P2(X2, X~) 

= f tfXld'X2[crll'la~p'(Xl X2)XO'IPl (Xl. X2)Xa,/,,(X2, XI) + 

+~IPla,p2 XO'I/' 1 (:::, h0'2P2(X2. X2)! , 

(C.3) 

f " ", '" "',,, ", r,-OVl a,J!20'3PS( I , ')a- z la-x1a -X2a -x2a-X3a-x3flo Xl, Xl> X2, z2, XS, X3 X 

XXalJ11 (Xl. x'1)Xu,..,,(X2, X~)XI73P3 (X3' X~) 

- f..c " ..c {[ i Cro) ( ) 1r.{I) ( )]- . a- x la-x::ll- x 3 2' ;'IP1;1'3 xltx:z,xs 2'-'''1}'2''3 X1> X2,x3 x 
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" 

X(-ylll )'163(-yI':I)'l61 (-y1"),,s6:PiIP1(ISI (Xl x2)Ci2P2'262(X2 - XS)cr3P3,,s63(X3 - Xl) X 

X XO'IPI (Xl. X2)X0'2P2(X2. X3)X0'3P3(XS, xd + 


+3!(~G~11l21'3 (Xh X2. ~s) - 4G~!1'21'3 (Xl. X2, XS»)(-11'1)'163(-y1'2)'261 ("'11'3 )'3S2 


_ 6(0) ler G(l) ( »( 1") (1'2) (",,1'3) }
2Nc !II 1'11'21'3 "l. X2,XS 1 (lSI 1 (2S3' (,,62 X 

XC1'P",Slcr:2P2C'2 S'(X2 XS)cr.sP3(.sSa(XS X2)XO'lPl (Xl, Xl)X0'2P2(X2,XS}X0'3PlI (XS. X2) + 

+[- 2~eGLl:1'21'1I(Xl,X2,X3)(3(-y1l1)'161 (-y1'2)'26,b"':I)'362 + 
2+ Ne (-ylll )'ISI (-y~2)'262(-yl''')'36,)crIPI'161 (0) 

3 (G(I) ( )( 1'1) ("'2) (1''') + 5(0)1 '" G(1) ( )- Ne 1'11'21'3 Xl,X2,XS 1 '162 1 '36, "'1 '36, Ne a-" 1'11'21', !I,X2,Xs X. 

. X (-yl'1 )'161 (-yl'2)'262 (-yl''')(,6,) X 

X C11Pl(161ICi2P2(262 (0)cr'~3(363 (0) XO' U'l (Xl, Xl)X0'2P2 (X2. X2)X0'3P3 (XS. xs)} (CA) 

where GLOI)I'21'II(XI,X2,X3) and G~!1'21'3(Xl,X2'XS) are defined in (B). 

In general, the Kg''.'''·O'''''' term must be of the form 

I d"x1d" xi . ..d"x'llerx:~KOLPl"·"'''P''(Xl' x'l'" " X'll , X~)X"'IPI (Xh xi) ••• X"'"P" (xn.x~)

Ierx1d" x2erx3 •• ·erXn-2erXn-lerX'll X 

C(:r1 ....:r..p,.(XlJ X2, X3," ·,Xn-2. Xn-l, xn)X"lPl(Xl, X2)X"2P2(X2, X3)XO'lIPlI(XS, x.) ••• 

• . 'XO',,-lPn-2(X'll_2, xn_l)X",,.-IP,,-I(x'll_1,X'll)XO'ftP,, (X'll' Xl) + 


+C(:t"'O'nP" (Xl, X2, X3,' • ',Xn-2, X'll-l, X,,)XO'lPl(XlJ Xl)X"2P2 (X2, X3)X0'3pa(X3, x.) ••• 


• • 'XO'n-2Pn-2(Xn_2, X,,_I)XO'n-lP,,-1 (Xn-l, Xn)X"'''P'' (xn•X2) + 


+ ...... 

C(~~l~i·O'nPn(Xh X2, X3,' • ','xn-2, Xn-1, Xn)X"IPl(X1, Xl)X0'2P2(~2' X2)X"'3P3 (X3, X3) .• ; 


· . ·X",.-2P..-2 (X,._::, Xn_2)XO'n-lP,,-1 (X n-l, Xn,)X"'"P,. (x", xn-d + 


c(~r···O .. p.. (Xl, X2, X3,' , ., Xn -2, !l!n-l, Xn)X"IPI (Xl. Xl)X"2P1 (X2' X2}X0'3P3(X3, X3) , .. 


· . ·XO..- 2P .. - 2(Xn-2, X"_2)XO' .. ~IP"-1 (::e,,-1, x"_ilxO'nP,, (x", xn)} 
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(C.5) 

in which C(~)I···0''''''(XltX2,X3,···, X'll-2, Xn-1Ix".) is some coefficients which only depend on 

the gluon Green '9 functions. 
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