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The study of the effective Lagrangian for low lying mesons has received much

GAUGE INVARIANT BILOCAL EFFECTIVE attention in recently years not only for its power of studying low energy »éhysics of
LAGRANGIAN IN QCD-LIKE THEORIES! \ ‘ hadrons (-8 but also for its advantage ol;providing a convenient tool of studying

. ' the physics at TeV scale such as precise tests of the electroweak theory including
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and Institate of Theoretical Physics, Academia Sinica, Beijing 100080, China - regarded as pseudo-Goldstone-bosons due to spontaneous chiral symimetry break-

ing and describe them by local fields. The general form of the effective Lagrangian
ABSTRACT :

) for these local pseudoscalar meson fields can be known from symmetry arguments
Gauge invariant bilocal effective Lagrangian for mesons is formally derived from

) , W, To improve this description, it has been ‘tried recently to construct effective

the first principles of QCD. The coefficients of the bilocal meson fields in the effective V
: _ Lagrangians in terms of bilocal fields - which may be extended to higher energy
Lagrangian are parametrized in terms of Green’s functions of gluons. _
’ ' . scales and reflect more detailed properties of QCD. Moreover, for higher energies,
other light mesons like the vector and axial-vector mesons may also be relevant
which are not directly related to chiral symmetry breaking. It seems that simple
symmetry argument is not powerful enough for studying the form of such an ef-

fective Lagrangian. Therefore understanding the relation between such an effective

La.grangla.n and its underlying fundamental dynamcs is of both theoretical and
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practical mterest
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In this paper, we study this relation in QCD-like gauge theories. We start from

the fundamental Lagrangian of the QCD and formally integrate out the gluon and

1Work supported by the National Natural Science Foundation of China. quark fields to obtain the general form of the effective Lagrangian for bilocal meson

?Mailing address fields. To construct gauge invariant bilocal composite quark operators understood
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as the mesons, we transform the quark and gluon fields by a non-integratable phase

factor and the transformed quark field is related to the constituent quark {10, Dye -

to the self-interactions of the gluons, the integration over gluon fields cannt;t be ex-
plicitly carried out. We formally express this integrétion through the gluon Green'’s
functions which are not explicitly know. A formal effective Lagrangian for the
transformed quark fields is then obtained. We then propose a method of introduc-
ing gauge invariant bjloca] auxiliary fields for the gauge invariant bilocal composite
quark operators, and with this the quark fields can be integrated out to obtain the
formal effective Lagrangian for the gauge invariant bilocal auxiliary fields describ-
ing various kinds of mesons. In this method th(; coefficients of the bilocal fields
in the effective Lagrangian can be related to the gluon Green’s functions through
a certain dynamical approach to the bilocal-field integration, which we take to be
loop expansion in this paper. We shall shc;w that the coefficients of the bilocal
fields in the effective Lagrangian can all be expressed in terms of certain extented
gluon Green’s functions defined in Sec.Il. The effective Lagrangian so obtained is
only formal but its form is general in the sense that no approximation has been
made so far as only the bilocal meson fields are considered. To realize this effective
Lagrangian and make phenomenological predictions, one needs to develop proper
approximations for evaluating the gluon Green’s functions. If_ we simply truncate
the effective Lagrangian for‘quarks in such a way that all higher dimensional quark
operators beyond the four-quark interactions are dropped; the effective Lagrangian
for the bilocal meson fields reduces to the form considered in Ref.[9]. Therefore one
can at least model the bilocal functions as what Holdom did ! which may lead to

successful phenomenolbgical consequences. The present form of the effective La-

grangian admits a more general study of the problem.

This paper is organized as follows. In Sec.II, we introduce the non-integratable
phase factor to the quark and gluon fields, and formulate the generating functional
which we need in the derivation of the gauge invariant bilocal effective Lagrangian.
Thé physical meaning of the transformed quark field is also discussed. The inte-
gration over the transformed gluon field is formally expressed in terms of the gluon
Green’s functions. In Sec.lII, we develop a general method of introducing gauge
invariant bilocal auxiliary fields which can be applied to theories with arbitrary
multi-fermion interactions. With this method, the qu&k field can be easily inte-
grated out and we obtained the effective Lagrangian for the gauge invariant bilocal
auxiliary fields. The form of the effective Lagrangian is determined order by order
in the standard loop expansion in which the coefficients in the effective Lagrangian
are expresSed in terms of the gluon Green’s functions in the underlying theory. In
Sec.IV, we calculate the effective action of the gauge invariant bilocal theory and
study the vacuum stability condition in this theory from which we can see the re-
lation between the present theory and the approach by Holdom et.al.lBl®] Sec.V is

a concluding remark, and some technical details are given in the Appendices.

II. Gauge Invariant Bilocal Composite Quark Operators and the
Generating Functional

Consider a QCD-type gauge theory with SU(N.) local gauge symmetry. Let

"B; (a=1,2,--+, N} — 1) be the gauge field, ¥/ be the fermion field with colour

index « (a=1,2,---,N,) and flavour index ¢ (i = 1,2,--,N;). From now on,

we simply call ¢! the ”quark-field” and Bj the "gluon-field” for convenience. The
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Lagrangian is
L= -gBLE™ - -gBY (1

where },’s are Gell-Mann matrices,B, = % B2, and
B, = 8,B; —a8,B; — gf,,“B:Bf, ,
in which fu. is the SU(N.) structure constant.

.In order to construct the gauge invariant formalism, we introduce a noh—integrable
phase factor
U kzl,zz)EP c—i,f AR ’ (2)
where P is a path-ordering operator, 4, = %‘A}‘, is an external field. In (2), the
path and the external field A}, are not specified yet. We then transform ¢ and B,

into new fields ¥ and B, as follows

¥(z) — ¥(z,%)=U(z,2)¥(z) ,
¥(z) = ¥(z,%) = P(2)U(z, ) , (3)

Bula) = Bulemn) = Ul ) Bu@)U (o) + S50 Ulan )l m)

We can pafamettize the space-time points on the path by y*(zo, z, s) with y*(zo, z,0) =

¢ y"(io, z,1) = z4. Then B,(z.z¢) can be expressed as (cf. Apppendix A)

Bu(z) = Ulzo,2)Bulz) — AU (5 20) - [ s 0 G0 d)
x U (zo, y(To, %, 3)) Axru (y(zo, :c,_.s))U(y(zo, z,s),z)U(z,20) , (4)
in which A,,(y) is defined as

An(v) = B4,() - 3, Ax(y) + iglAr (1), A (W) - )

5

We then introduce the external sources Js,Jp, I, J4 for the composite quark

operators — UV, iWys ¥, U, ¥, and U~,75¥, respectively, and construct the gen-

’

erating functional for the Green’s functions. Since A, is an external field, the
functional measure is unchanged after the transformation (3), i.e. DyDY¥DB, =
DUDUDB,. So that

ZJ] = &MU

[ 06DTDB expi [ 46,5, B.) + B0 ~ Is +iJpws + fy + Fi1)¥)
/ DYDTDB, expi / d*z{L(Y,F,8,) + V(id — Js +idpys + Jy + %)%}

The usual Fadeev-Popov gauge-fixing procedure should be further imposed in (6).
Let the gauge-fixing condition be

g F%(B,(z,20)) =0 (7
with the requirement

A a H k" bt t

5 F(V (20) Bu(=, z0) V(o)) = V (20) 5-F*(Bu(z, 20))V(20) -, (8)

where V (z,) is a colour local gauge transformation matrix at the space-time point
zo. (8) is crucial in the following discussions. With (4), the gauge-fixing condition

(7) reads

F{U (a0, 2B, (2) - A (@)U (z,20) - [[as2 Eum ) W onmis)

xU (2o, y(%o, Z,5)) Ax (y(2o, 2, $)) U (¥(Z0, 7, 8), 2) Uz, 7o)} = O . (9)

We see that (9) restricts 4, to be a function of By, which depends on the choice of

the path from z, to z. Furthermore,if we take the gauge transformation of A, to

L 6

y
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be

AL AED = V@AY E RV EVE . )

it will leads to the consequence that (9) keeps the same form after making any gauge
transformation V (z) as it shoud be, provided (8) is satisfied. This can be seen as

follows. First we note that the gauge transformation of U (z1,23) is
Ulen, 2~ (a1,20) = V(@) Ulan, 2V (22) (1)
Then we can easily see that with (10) the gauge transformation of 8,(z, zo) is
Bulz, z0)=B)(m70) = V(o) Bu(m,m)V N (=) , - (12)

which looks like a global transformation and. thus F(B,)(z, o) = %F*(8,(z, z0))

transforms as

F(Bu(z,20)) =~ F'(B, (2, 70)) = V (20) F(By(z, 20))V '(20) , (13)

in which we have used the property (8). (13) means that the gauge-fixing condition

(7) or (9) keeps unchanged under the transformation V(z). Eq.(10) has another

advantage that the gauge transformations of ¥(z, zo) and ¥(z, z,) are

Y(z,z0) — U(z,30) = V(z)¥(z,20)

Y(z,20) — ¥(z,70) = ¥(z,z0)V(20) . (14)

So that bilocal composite quark operators of the form ¥{z;, zo)['¥(z;, o) (where '
is a certain matrix characterizing the flavour, spin and parity) are gauge invariant.

Now we do the Fadeev-Popov gauge-fixing procedure. Define Ap(B) satisfying
Ar(8,) [ OV 6(F(8Y (z,m)) =1 (15)

N

where
BY (z,70) =V (2)Bu(z, 20) V' (z) + 3[8“V(z)]V‘\(z) : (16)
This Ap(B) is evidently invariant under B, — 8}, i.e.
Ar(8) = 8s(3,) - (a7)
Plugging (15) into (6), we get

zlJ] = %P

. j DVDYDEDB,Ap(B,)6(F(8Y)) x

ezpi / d2{L(,T,B,) + T(J — Js + iJpvs + Jy, + J,%5) ¥}
= [ PVDY ' DT DBY " Ap(8Y)8(F(B,)) x

eapi [ L@ T B 4T 6 — T e+, + Son) V)
= [ DV DUDTDB, Ap(B,)6(F*(8,)) x

ezpi [ d*z{L(%,T,8,) + T(id — Js + iJpys + f, + £,7%5) ¥}

= const. i [ pe0%08,8.(8,) x
ezpi [a*{£(¥,T,8,) - %{F‘-(B,,)]* F UG — Ts+iTp% + fy + L015) ¥}

(18)

This is the weil-defined generating functional for Green’s functions that we need
in the derivation [M, >Note that, in the gauge fixing procedure, we only insert
(15) which is exactly unity into the path integral. Although different gauge fixing
functions F° lead to different gauge compensations Ap{8,), they give the same

generating functional Z[J}.



So far the path between z and z, and the gauging-fixing function F* are still
not specified. We can make a suitable choice of them to simplify the calculations
and the physical interpretation. We take the path to be a straight line connecting

,

z and zo, and the gauge-fixing function F°(8,) to be the fix-point gauge 13l
F*(B,) = (z* - =) Bi(z, 7o) . (19)
The straight-line path can be parametrized by

¥*(20,2,8) = z* + f(s)(z5 — =*) , (20)

where f(s) is an analytic function of s in the region 0<s<1 with f(0) = 0 and

f(1) = 1. With this choice, (4) becomes

Bulz,2) = Uloo,2)Bulz) ~ Au(aU 2, 20) — [ dolt = (o) (a5 — =) x

X U(-’Eo» y(:Bo, z, s))Aw‘(y(%a z, 5))U(y(zﬁy z, '3) ) 3),(](’:, -To) ' (21)

Multiplying (21) by (z* — z§), we see from (19) and (7) that the arbitrariness of z,
leads to - )
4,(z) = Bu(2) (22)
This makes the calculation very simple. Furthermore, in Ref.[10}, when considering
the static interaction between heavy quarks, the transformed quark field ¥ with a
straight-line path in the spatial direction and the choice (22), can be interpretated
as the constituent quark field. Now our straight-line path differs from the path in
Ref.[10] only by a Lorentz transformation. Therefore our ¥ can be seen as a rel-
ativistic generalization of the constituent quark field defined in Ref.[10]. Thus the

composite operator ¥(zy,zo)I'¥(z3, Zo) can be regarded as gauge invariant bilocal

[T

meson fields in the naive constituent quark model.

Having all these,we can go ahead to derive the gauge invariant effective La-
grangian for quarks. Consider the integration over DB, keeping D¥ DV uninte-
grated. Then Q¥ = 53-;1"\1' can be regarded as an externzl source in the DB,

integration. Singe Z[J] is the generating functional for Green's functions, we have
/ DB, eJ #*slLaon(6)+Q18}] —

= ezp E / diz, - - d‘z,‘

n=2

Gdl u.. (xh ° ,Zn)Q:; (zhzo) "‘ ' Q:: (zm -’l?o) 1

(23)
where Lgcp(B) is the gluon kinetic energy term —}Bg,8°* , and Goin is the full

n-point Green’s function of the B: field with ¥,V treated as external fields. The k

form of G174 is not known yet, so that (23) is only a formal expression. By means

of the SU(N,) algebra

)‘a Aa : 1 1
(7)#(‘2_)15 = "5a655-, - W&,,&,;

e b x° Ae A’ 1

[ 2 2 l ”fcbc 9 { } dabc ‘+' 5@6N ] (24)

"we can diagonalize the colour indices of the opera.tors and have

Gc; pn.(zh "y Zp) [—\F:, (z;)( )a;ﬁ: i \I'm 21 (—L" (za)( —")a..ﬁ.”/ ‘I’ﬂ. ("‘n)]
= [d‘xl -d'z, a:: ::(zhxl” : "zmzn)\po,(’:h o) U2} (24, o) - - -
’ 'W:‘ (Zns Zo) Wi (23, 7o) (25)
where o(p) is a short notation combining the flavour index i and the Lorents index

On . . . ..
#y Gy ot (21,20, + + Tny Z,) is a generalized Green’s function containing 2n space-

10



time points. The specific forms of G0% and G207 are given in Appendix B. Thus

[414] P1P3P3

~ the generating functional (18) can be written as

il

Z[J} ) ciwp)

[ pwDTezpi [ BLE(F ~ Ts +iTp7 + Jy + )T +

Prbe

OO ‘.
43 [dn e diradte) T (1,2 ) X

n=2

X T, (21, 20) W24 (2, 20) - -+ T (2, 20) U2 (20, 20)} (26)

In (26) ,sthe bilocal composite quark operators W:’l(xl,zg)ill:“ (=}, o) f:: (@nyzo)
W (2], 2o) are colour singlet and gauge invariant. The generating functional (26) is

our basis of constructing the gauge invariant bilocal effective Lagrangian for mesons.

1I1. Gauge Invariant Bilocal Auxiliary Fields and the Effective

- Lagrangian for Mesons

Usually auxiliary fields are introduced in the study of theories with quartic-field
interactions. The advantage of ifxtroducing the auxiliary field is that it provide a
convenient way of integrating out the fundamental field and leaving over the in-
formation of the quadratic composite-field operator.Here we generalize this idea to
theories with complicated interactions like (26).

We introduce the bilocal auxiliary field x,,{z, z') satisfying the following relation

[ Dx"e-’{K[xH!i‘:“t‘yx. ,(:.:‘)T:(:.:ﬂw: (=',z0)}
L 7] ' (179" —o10n ] '
= expi{) [d'z;--- d'zad's) - d‘z,,—n'—@’ (z1, 2}, Zn, 2h) ¥

Py Pn
n=2

X W, (21, 20) W2, (21, 20) - Vo (2n, Z0) W25, (2 Z0)} (27)

11

where K(x] is a functional of x, which is not known yet. Our task is to develop a

* - method to determine K [x]. Once this is done, we can sinﬁplify the expression (26)

by using (27) and get

WiJ]

zZlJ) = ¢

i

[DxD\I!DTcxm{K{x] +/d‘zd“:c"\7:(z, Zg) X
X[(39 = Js +ips + Jy + J406)es6% (2 — &) + 9o (2, 2) | W4 (2", xé\)}

(28)

We see that the quark field appears quadratically in (28), so that it can be easily

integrated out. Thus we have

Z{J] ‘=/Dxe"{K[XI—"T"“(""—Js+i1r“ls+lv+/4'u+!x)) s (29)

The effective Lagrangian for the x-field is then defined by -

[ () = Kix| - Trn = Je + e+ fy + F 40 - (60)

We know that a change of the path between z and z, will change the definition

of the transformed quark and gluon fields, but the generating functional Z [J] and
the Green’s functions G are independent of the choice of the path. Therefore from
(29) we see that the form of the effective Lagrangian L.;;(x) defined in (30) is

independent of the choice of the path.

,’ The transformation property of x,,(z,2') can be seen as follows. If the theory is
massless, it respect a chiral symmetry U(Ny). xU{(Ny)r. We can further choose the
external sources to make the theory to respect local U(N;) xU(Ny)r symmetry.Let

L(z) and R(z) be the transformation of U(N,); and U(Ny)g, respectively. The

12



transformations of the quark,gluon, and external sources are
¥(z) — ¢'(z) = R(z)Pr + L(z) Pel¥(2) ,
¥(z) — ¥(z) =9(z)|R(z)Pa + L(z) Pu] ,
Bj(z) — Bj(z) =Bj(z) ,
~Js(z) +iJp(z) — L(z)[~Js(z) +iJp(z)|R(z) , (31)
~Js(@) - ilp(e) > R@)-Js(@) ~ip(@IL'(z) o
Wi (z) +Ji(z) — R(2)[J¥(z) + TL(2)|R"(z) — i[0*R()|RY(2) ,
T (2) = Ji(z) — L(2)[F(2) - JA(Z)L! (=) - i{o“L(2)|L(=) ,
Since U(z,zo) is independent of L(z) and R(z),we have
¥(z) — ¥(z)=[R(z)Pr+ L(z)PL]¥(z) ,
¥(z) - ¥(z)=¥(2)[R(z)Pr+Lz)Pi] . (32)
Bi(z,20) — BJ'(z,%0) = Bi(z,70) ,
Then from (27) we see that
x(z,2') = x'(z, #) = [R(2) Py + L(z) Palx(z, 2')[R"(') Pa + L'(2) Pu] .
| (33)
The form (30) is specially useful when we gauge an SU(2).xU(1) subgroup of
U(N/)LxU(N/) to incorporate the theory with electroweak interactions. We see

from (31) that this can be done by simply identifying the s U(2)xU(1) part of J¢

and J¥ in (30) with the electroweak gauge fields.

We can further expand x(z,z’) in the y-matrices
x(z,2) = xs(z,2) +ixp(z,z) % + xv(z, 2)n +

13

+x (2,2 )1 + X1 (2, 2) o (34)
Substituting (34) into (33), we get

xs(z:7) +ixp(z,7) — L@)xs(z?) +ixe(z,2)|RNZ) ,
xs(2.2) —ixp(z.2) — R(@)|xs(z,7) —ixe(z,2)|LHz) ,
xv(z,2) + X4(z,2) - R(@)xp(z,2) +x4(z 2)RY(=)
Xp(z,7) = xi(z. @) = L@ (z7) - x4z 2))L() (35)
X (2) + S ?) = LR (2) + 5= AIRE)

] ]
X8 (2,2) = s xran(z,2) — REE(2,7) - 3¢ xral(m D))

These x3,xp.X¥ X% X7 18 to be regarded as effective meson fields with various spin

and parity.

We cari expand the functional K[x] in powers series of the x4 fields (A stands
for §,P,V,A,T and the flavour index, i.e.

n=1

L
1
Kixl = Y, [dXi - wdXa— Kayead(Xa, s Xa)xa (30) - Xn(X0)

(36)

Here we use a short notation X for the bilocal variables (z,z’). What we are going
to do is to determine the relation between the coefficients Ky, .4, (X3, -+, X,,) in the
effective Lagrangian for x 4 and the extended gluon Green’s functions E";: j.'::(Xl, -
+ X} in the underlying theory. This can be done by comparing the two sides of (27)
provided the functional integration on the left-hand-side (L.H.S.) of (27) is carried
out. In this paper, we take the standard loop expansion [ to do the functional

integration on the L.H.S. of (27), and determine Ka,..a,{X1, ", Xa) order by order
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in loop expansion. This is only for easily illustrating the formalism. Of course one

can take other methods to do the integration.

Let QA=[¥(x, 20) ¥ (2, zo)]*. (27) can be written as

Z(Q IRl — / D eiKIxl+ 144,?04(X)x4(x)}

-'-IP*{Z ['i‘Xl d*Xa %éA.---A.(Xl:‘ < Xa) QA (X) QA (Xa)}

n=2
(37)
We see that W[Q] is just the generating functional of the extended connected
Green'’s functions of gluons Gy, ..., (X1, - -, X»). Next we define the classical field
Xa(X)

YA(X) = 56QWA[(QX]) i nn——;.)'u"l AN—I(XI N "iX"-l)QAl (Xl) : "QA”—‘(X '1)’

n=2
(38)
Then the effective action I'[X] is obtained by the Legendre transformation
T(xl = W(Ql - [#XQA(X)xA(X) (39)

in which W[Q] and X,(X) are all known (cf. (37) and (38)). According to the rule
of loop expansion given in Ref.[13], we have

FK[x] N
EMEAL MEA) +T, =T[x] , (40)

in which T is the sum of all one-particle- irreducible (IPI) maulti-loop vacuum
diagrams with the propagator m;—:’f‘%—(ﬂ and the vertices

KinoX] = 3o 4% X KA (X, X R (50 -+ X (X

‘n=3

K[x] + %Trln(

where KAr~A~(X, .-+, X,;X) is the expansion coefficient of K[x+¥]. On the L.H.S.

of (40), the first term is the tree level contribution to T[], the second term is the

-

15

one-loop contribution, and the third term is the higher loop contributions. We

denote the loop expansion of K [x] by

lel=§m[x1. | @

Substituting (41) into the L.H.S. of (40), we can determine K[x| order by order in

loop expansion.

At tree level, we get from (40)

Ko[x] =Tlx] . (42)

or

K} X)=0

KA An( Xy, X)) =T (X, X)) . n>2 . (43)

"

where TAY 4" (X1,+ -+, X,) is the n-point 1PI vertex function generated from T[x].

To one-loop level, (40) is

52 Ko[x]

Kol + Halx] + 5 T o)) =

This leads to

) 82 Ky[x]
= -——T l —_—
Hilx 2 ’ n(‘sYA.(Xl)afA,(Xi) (44)
in which,from (42) and (43),
i 52 Kolx] wA1Az
F T i ey =06 %) + E/d‘x' X
1 TA1AA A2
X X X Xl (X)X (i) (49

16



Substituting (45) into (44) and expanding the logarithm in powers of X, we obtzin

1 A At AT -
KA (X) = _-z-fm’;d*x;r““"‘=(x,x;,x;)cm.,(xg,X;) ,
K{42 (X, X,) = —/d‘X;d‘X;TAMM"A;( O, Xz, X5, X3) Gagay (X3, X3) —
1 — ¥ ) p— [ 'L
-3 [ X X X XA 06, X, X T (0, X5, X0)
X—GA;A;(XL XQ}EA;A;(X;, X (486)
This procedure can be carried on to determine K3t 4» (X1, X,) for arbitrary

1, Substituting the determined K{x] inté (30), we get the expression for the effective
Lagrangian L.;s(x) in which all the coefficients of x4, -+ X4, are expressed in terms

of I’s and G’s. In Appendix C, we shall give more explicit expressions for K42

and K§'4*4* in terms of the original Green’s functions of gluons.

‘IV. The Effective Action

Given the effective Lagrangian £,;;(x) in (30), the calculation of various physical

quantities concerns the calculation of the following generating functional

CZ[J I =P < [ Dxezpi{K|x] — iTrin(id = Js + iJpys + Jy + L4 + 0x) +

+[atx M) W)

where J4(X) is an external source coupling to the x4(X) feld. ’

The generating functional Z{J] defined in (6) is related to Z|J,I] by Z[J,0] =
Z|J]. Now we define the classical field

_WIJ, 1)
=EIAX)

Xa(X) (48)

17 .

and the partial Legendre transformation

B = W1 - [ex M%) (49)
It is easy to see that
' TR _ 4
I x) . (50)

Hence

W[J] = W[J,0] = T|J, %] | et

m:o

(51)
Therefore what we need is to calculate I[J,2]. When we turn off I4(X), (50)

becomes

= 52
Tl =0 (52)

which reflects the stability of the physical vacuum.

The standard loop expahsion formula for I'[J, £ has been given in Ref.[13], which

LI, 8] = K[R] — iTrin(ig — Js + iJpvs + Jy + J, ¥ + 9%) +
62

8R4, (X1)6%4,(X2)

+T, (5:

+-;-Trzn{ [K[R] = iTrin(id — Js + iJpvs + Ay + L% + 90)]} -

where the first two terms come from the tree level contributions, the third term
comes from the one-loop contribution, and T, represénts higher loop contributions
containing the sum over all higher loop 1PI vacuum diagrams with the propaga-
tor m’;iﬁ(x—ﬂ[f([)‘(]— iTrin(id — Js + iJpys + Jy + J,v5 + g%)] and vertices
m[fqﬁ —iTrin(ig — Js +iJpys + 4y + L% + g%)] (n2>3).
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Let us first look at the tree level contributions,
Fold, ] = Ko[f] — iTrin(i§ ~ Js + iJpvs + fy + Levs +9%) - (54)

Turnirg off I4(X), (52) now reads

§Ko[x]

Sralx) ~dstidin+h 4 At e XA =0, (59)

or precisely

o4

e TOPOLP1 Ot P
5 g e a2, T e, ) X
o ' - ‘
XXo1 (zl,zl) * Xopeypney (3,‘-1, zn—l) +

+H(EF = Js +iJpvs + 4y + £ +9%) 7z, )P =0 . (56)

This is the general stability condition that the classical field %.,(z,z’) should satisfy.

Up to one loop,

Told, 8] + T1[J, %] = Kol] + KulR] — iTrin(id — Js + iJpvs + fy + J,% + 9%) +
52 -
6% 4, (X1)6%4,(X3)

) . . i
= Ko[®] — iTrin(id — Js + iJpvs + Jy + § 4776 + 9%) — -2‘Trln(

+%Trln{ (Kol] — iTrin(id — Js + iJpvs + Ay + Jvs + 92|} +

6’Ko[)2]
6XAA1 (Xl)é*\Az(X'-’)
521{0[2} _ _62Tfln(i'a —Js+ iJP"lS + IV + ,’A‘Ys + g)?)}
%A, (X1)0%as (X7) 6%, (X1)8% 43 (X2)

)+

+%Trln{
(57)

SuEstituting (57) into (52) we get the stability condition with 1-loop correction to

(56).

Eq.(56) is rather complicated. Let us consider its solution in a simple approxi-

mation. We truncate (56) by neglecting the n>3 Green’s functions in (23). Then

19

(56) reduces to
i/d‘z,d‘z’lf””m(z, T2y, 7)) Ko (21, 2Y) +
H(i@ = Js + iTpvs + Ay + £ +0%) 7z )P =0 . (58)

We shall show that this is equivalent to the commonly used Schwinger-Dyson
equation in the improved ladder approximationl®], or the so-called Hartree-Fock

approximation'l. This can be seen as follows. Let
20(z, )= i [dnd 4T (2,2, 20,2 R (20,21) - (59)
or
" Xoo(z,2) = i/d‘xld‘z;_@_,,,,“(z, ', 23, 23) X7 (21, 71) - (60)
Then (58) can be written as
%70 (z,2") = (1§ = Js + idpys + By + L% + 9%)op(z,2) - (61)
Here we have used the permutational symmetry in G, 0.0, (21,24, " - ',n:,.,z‘;,)
which leads to X°*(z,2') = ¥**(z, z'). Using (60),we can write (61) as
(1§ = Js +iJeys + Fy + f415 — ihl)n(z’z')
= —ig/d‘zld‘zll.c-dﬂm (1:, 7', zy, 1'1)520‘“ (.’81, z’l)
.g : - )
= "2‘6'"”(3, ) (1) o0 (1 )0rs X" (2, 2) +

+‘.'2_gﬁ;/d‘xlcnv(zazl)("l“)ﬂp('Yv)vxh)zol“ (z1,21)8(z — ') . (62)

In the vacuum state, —Js + iJpys = —m, J = J§ = 0. (62) becomes

(i =m =5 e(m7) = i%G“"("' Z)rx(=s2)7 e, + (63)
+i2fv‘6(x - ?')[d‘zlc““(x’xl)(’Yﬂ)optTh"i(x,,xl)] .
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The trace in the last term on the R.H.S. vanishes in the ordinary formalism with

translational invariance. This is just the Schwinger-Dyson equation in the improved

ladder approximation considered in Ref.[9]. Based on the analysis of this equation
Holdom et.al.B®] proposed a model for the bilocal function which leads to success-
ful phenomenological consequences. Our more general equation (55) or (56) admits

further improvements.
Our tree level results (54)-(56) may have another advantage.

Let us rescale the bilocal field by gx — x. Then eq.(27) becomes

In /DXC:‘(K[Q"xl+fd‘zd‘:‘x,,(z.;'ﬁ:(t,:o)wf,(z',zo)}

e ingh o
= t{Z[d‘xl--‘d‘z,.d‘x'x-ud‘z’n—ﬂ—?' (21, Ty, 0 Ty T) X
n=2 *

P17 Pn

XU, (21, %0) W24 (2}, Z0) « - - Wor (T, Z0) W21 (2h, 20)} - (64)

Consider the large-N, limit. We take the self-consistent limit that x and g2 N, keep
finite as N, — co. It can be seen from the large-N, argument(®®l that the R.H.S. of
(64) is proportional to N, in the N, — oo limit. On the L.H.S. of (64), the second
term in the exponential is proportional to N,, so that the leading tem in K[g~ x|
should also be proportional to N, to make (64) consistent. Therefore the leading
terms in the exponential function on the L.H.S. of (64) contain an overall factor N,
while other terms are smaller by powers of 1/N,.. This overall factor always goes with
the Planck constant as N,/A. Therefore in the loop expansion, loop contributions
are smaller than the tree level contribution by at least a power of 1/N,. Thus in the
N, — oo limit, the tree level results (54)-(56) are exact, so that the large-N, limit

calculation is greatly simplified. This is reminicent of the auxiliary field formulation
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of the Gross-Neveu model!*¥! which makes the large-N'limit calculation very simple.

V. Conclusions

In this paper, we have developed a method of deriving the general form of the
effective Lagrangian for gauge invariant bilocal auxiliary fields describing mesons
with various spins by formally integrating out the quark and gluon fields in 2 QCD-
like gauge theory. The integration over the gluon field is not carried out explicitly
but is formally expressed in terms of the yet unknown n-point Green's functions
of gluons. The integration over the quark field is achieved by developing a general
method of introducing gauge invariant bilocal auxiliary fields x(éc,a:’) (c£.(27). In
the approximation neglecting all the gluon Green's functions with n>3, x(:i, ) is
just like the auxiliary field usually used in the bilocal four-fermion theories, and it
represents the bilocal quark operator of the type ¥(z, zo)['¥(2, zo) (T is a spin and
flavour m;.tri;c) which is interpreted as the meson field in the naive constituent quark
model. When more gluon Green’s functions are taken into account, x(z, ) contains
higher dimensional composite quark operators as well. This goes beyond the naive
constituent quark model. The obtained effective La.grangia.n for x is of the form’
(30) with K[x| of the form (36) in which the coefficients K44 (X7,- -, X,,) are
related, in principle, to the gluon Green’s functions. The determination of the rela-
tion between K41 4s(X;, .-, X,)) and the gluon Green’s functions requires carrying
out the Dy integration in (27). In this paper, we take the standard loop expansion
to carray out the Dy integration in which the coefficients K#1~4» (X1, -+, X,) are
determined loop by loop expressed in terms of the gluon Green’s functions shown

in (43),(46),etc. A more explicit expression is given in Appendix C.
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Although the present formulation is only formal, it does give the general form
and the physical interpretation of the gauge invariant bilocal effective Lagrangian
including mesons with vi.rious spins. It also provides a possibility of really calculat-
ing the effective Lagrangian and making phenomenological predictions if a proper
approximation for calculating the gluon Green's functions can be developed. As
we have shown in Sec.IV that if we neglect all the n>3 gluon Green’s functions,
the vacuum stabilify condition at tree level just reduces to the improved ladder
approximation of the Schwinger-Dyson equation considered by Holdom in Ref.[9].
~So that at least one can do the same modeling in this approximation as what was
done by Holdom et.al.l®l®l which can lead to rather succt;ssful phenomenological
consequences. Our general formula admits further improvements. One may either
develop new approximations to calculate the gluon Green's functions and make pre-
di;tions, or express various physical observables in terms of the gluon Green’s so
that one can inversely study the properties of the gluon Green’s functions from the
data of the observables. We have also shown that taking a certain limit in N, — oo,
our tree level formulae can be the exact formulae in the lage-N, limit which greatly

simplifies the calculation. .

Appendix A

We derive here the relation (4) in the text. Let us parametrize the path between z* and
z}y by y*(zo,z,s) with y#(z9,z,0) = z*, y*(2g,2,1) = z§. The non-integratable factor

U(zo, z) defined in (2) can then be written as

U(zo,r::) = peit ] dunAr(v)
= perin)y e2EGeE An(y(zo,2)) (A1)
Thus
a:U(:EO: :B)
o 2199 (20,2, 3)
= =i [ dol(ao,y(ao, y(z0, 2, @222 4r(y 20,2, )} U (4020, 7,9, 2)
a 3
= —:g/ dsU(lo,y(xo,!l(ZO’z ’))[M:+¢'JS)AV(!/(ZOJ’ N+
3
$2A20210) (e, ) 202N g 20,2, 5), ) (A7)
- where
_%4A.(v)
Av,w(y) = W ’ (Az)
Now

f ds 3y.(zo,2,8) d

Epn [U(:o,y(xo,J(a:o,x 8)) A% (y(zo, z, 8))U (y{zo0, z, 5), )]

3y, (20,2, Y
= Q{y—(é-or—)(f(zo, (2o, y(z0,%,8)) A" (y(xo, 2, 8))U (y(z0, 7, 8), 2)] 1126 ~
a? v » T, ) v
iy [ 4o Ty o (a0, ) A7 o0, DU (450,25, 2
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. . [, 3%y,(zo0,1,9)
= —igU (2, ) Ay(z) ~ ‘9/0 A

x U(ZOv y(IOy y(xo, z, 3)) Ay(y(zo, z, ’))U(y(m' I, s): I) .

(A4)
Therefore (A2) can be written as

35U (20, 2)

. N LR X
= igU (zo,z) Au(z) + xg'/; da{-y"—(‘,’i‘!):“—)- X

100 (200 (20,2 ) A (40,5, U o0 7,4), 2]~

- B0l 2,9) 900 205) g 0, a0, 2,80 (20,2, )0 (om0, 2, ), 2))

. . [t 8y*(zo,z,8) dy¥ (o, 2,8
=:gU(zg,x)A“(z)+:g/° ds =Y (a;‘ ) 9 (as ) x

X U(zo, y(zda y(ZO, z, 5)){Aw,v(!l(:0 z, 3)) —,Av,w(y(zby z, ")) +
+l'g[A,,,(y(zo, z, 3.)), Av(y(IOr z, 3))1}0(3/(10: z, ")’ z)

- 1 a i 3y a a 1
= igU 0, 2)4(a) + g [ a2 G W)

X U(lo, !/(ID, y(zﬁr z, 8))}1‘,,(9(:{), z, 3))U(y(z01 z, 3); z) .

(A5)

With this we have

B (2, 20)=U(a0, ) B () (e, 20) + (1040 (50, 2)U (7, 7)

dz# ds
XU(Zo, y(fo, z, 3))‘43\;‘(5’(50, z, 3))U(y(‘20sv5y8)l I)U(.’t, ZO) y (A.G)

" = U(zo, 2)[Bu(z) — Au(2)|U(z,20) - / :d.sa“"(’“ z,9) 3y (20, %,9)

where
Au(y) = 3,4, (y) - 3, Auly) + iglAu(v), 4. (¥)] - (A7)

(A.6) is just eq.(4) in the text.
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Appendix B

Here we calculate the 2-point and 3-point extended Green’s functions Go,p 0,0, (%1,

I’ly 2, ”’2), Empwzma;n (zh z”l» ZZ:zlz) 3, 3'5)
From the colour symmetry, the 2-point Green’s functions can be written as

G:ll‘:lnn(zl’zi) = 6‘”“6“1#2(11'32) . (B'l)

Then

(a1, 2T, (1) 2 )7 U ()T () e 93 2]

= 5 G2, 2T, ()7 03, (20|, () 742 95, )] X

X (ba18:0a28, — Nic‘salﬂx‘sﬂzﬁa)

= [ @A G a1, 22) [ (P Vo (P8 (2L~ 22)602% - 1) -

= g e (Phoar(a} = 21)8(2 — ) X

XU (21, 70) 24 (24, 20) T2 (22, 20) W23 (25, 70) (82)

where { is the flavour index, a, 8 are colour indices, o, p are combined Lorents and flavour

indices. Hence the extended 2-point Green’s functions in (25) is

1
a::::(zhx'lrx%zlz) = —aGm,.,(zl,a:z){('r“’),,,,('1“’),,,,5(2:1 - xz)&(x’; - 21) +

1
+l~—,(1"‘)am1(7“’),,,,§(z" - 21)8(z) - )] .

(B.3)



For the 3-point function,we need the SU(,) relations

Jabe = "2£([’\2_at1\2£§§2i)=E(Ah)uﬁ(*\a)ﬂv(kc)va_j;:('\a)aﬂ('\b)ﬁv('\c)va s
due = ACE PV = [00aa00psehae + FOas(Wss(Ara

(B.4)

and

fm(&)alﬂ.('\i)ﬂg(’\c)aaﬁ; = 2;(50332601516&“.93 - a:ﬁ16a;ﬁ:6012ﬂa) 3
dﬂ“(’\i)mﬂx (Aﬁ)ﬁ: (/\c)c;ﬂ, = 2(8%1’250!:515&15: + 5a,ﬁl5a,p,5a,ﬂ_, -
2 2 2 ' 4 ‘
—ﬁ;ﬁa.aﬁa:ﬁﬁa.ﬁz - -N—‘ffmﬁs&:ﬁ:%m = 3 Sarsrbazprbasps + m%.ﬁﬁazﬂz&aas)
€ [

(B.5)
From the colour symmetry, the 3-point Geen’s function can be written as
G335 (21,22,3) = fayar0s G hans (21,22, 23) + dayazas GLLo s (1, 22,73) - (B.6)

Combine (B4) (BS5) and (B6),we get

b St U4 ] ! ]
G oipans (z1,2%, 22, x'h z3,23)

= Ec(ot)mus (1'1.1'2,23)[‘1#,',,,'15:,_,‘7::,‘5(1'1 — z3)8(2 - 21)6(z5 — z2) -
183, A B~ 22)5(2h - 23)5( — 1))

+§G%m(zn T2, 28) (152 5y V025 1o 0, 6(2) — 22)6(2h — 23)8(zh — 1) +
R AN P LA §(z) — z3)8(x — 2,)8(zy — z2) +
+N£:’1,’,“‘,,,*7,',‘:”1f,‘;n6(z'1 - 21)8(zh — z3)8(z5 — z3) +
AT et S(2h — 230002} — £2)5(2} = 1) +
T T B~ 22)8(h — 21)8(2h — 75) +

g i T2 182802, = 110055 — 22)8 (a4 - 23)]

(37

Appendix C

Now we give the explicit expressions for K3'*'7?*? and Kg'?'7?/*7** in terms of the original
gluon Green's functions. For convinience, we take the covariant gauge 3,8% = 0. Due to
translational invariance and colour symmetry, the 2-point Green’s function can be written
- .

Bk

G (z1,22) = 8a,a,G uyua(21 — 22) - (C.y)

We define C7'#1727 and C7'/172%? by

G (=2) (1" Vo103 (V)02  CT 73 (2) = ~265,048p100 »

(C2)

§(0 1
{(7#)0192(7“)01#1 + 'I—(V—)/d‘z'fﬂ)alm(7“)02#:3031””” = ”F('fﬂ)vwz(7“)011’10:2”0”3
€ [
Then elementary calculations show that
[d‘ta:ld“z‘ld*xld‘xlzf{glhnh (zlx 2!'“ T2, Ia)va (I‘-~ z'l)x,,,,(xz, :’2)
= /d‘z,_d‘zg[Cf”’“’"”(n:l = 22)Xo1p1 (%1, Z2) Xoapa (22, 21) +
+C‘2,ww"’x0xm‘:"-" ‘)S}XUzpz(x%:”)’ ’
(€.3)

/d‘zld‘z'ld"zzd‘z:’zd‘zgd"zgf{g‘"’”"’“”’(zl, y, 22, 74, 73, T3) X
X Xayp: (21, 1) X302 (%2, ) X305 (%3, 73)

1 1
= fd*z;d‘zgd‘zg{[EGgﬂ)“wl(zl,:z,a:;,) - 55":"[}“2,‘5(2:1,::;,:53)] x
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X (1 )ests (14 )eaty (1%)ess, CT1454 (21 — 22)CT% (22 — 25) 07245 (23 — m1) x
XXcm (%1, 22)X 0202 (T2, T3) Xorsps (T3, T1) +

{( Gmmm(zl,x;,zg) - "Gf.l)p,m(zl» 2, z;))(v“‘),,;,(—y“’),,;,(ﬁ'”’).,s,

5(") 2D [ 2400y 01,72, it () ets (e % |
xc""*"‘*cr“’""‘*(xz — Z)CT5 (23 — 22)Xaups (21, 1) X292 (22, 23) Ko (25, 22) +

+-3 , Gpl,,.,,.,(%zz,ra)(3("l“‘)em(7" ) ezt (1 )ests +
+—('1“‘)<,s,('7'.")c,6,(‘1“’)«,5;)01""‘"‘(0) -
_%(Gmmm(’:lvIZ:33)('7“)1151('7“)6361('1‘“):35: fd‘ﬁfcuxmm(yn 2,73) X,

: x(”’“)hﬁ("’“)tnﬁz("f )‘a‘s) X

xC;lh‘lhlcfahqh(O)C:”(“S‘a(O)Xd‘lﬁl(xhzl)xoah(xhzl)xﬂpa(z-’»zs)} . (C4)
where G s (21,72, 73) and G}.’l),.,,.,(zl,zg,zs) are defined in (B).
In general, the KZ'#""%*# term must be of the form

[d‘xld‘z'l . -‘d‘:nd‘z:,Kg‘“"'""P" (21,24, 1 Tns )Xo (21, 21) -+ * Xonpa (Zns z},)
= [dudindiay d'on iz dio, x

CUy ™ (21,22, 25, ) Tne s Tnmty Za) X7 (21, 22) X772 (22, 73)X TP (23, 74) - -
XTI (2 g, 21 )X (201, 20 )X (20, 71)
+Cy ')" (21,22, 23,7+, =1, Ta-1,2a) X1 (21, 21 )X (22, 23) X0 (23, 74) - -
. 'X""“”"”(zn-z, Zpe )X (T 1, B0 )X (20, 22) +
Tl 7 (21,22, 23, s Zn-2, Znm1, Za) X (21, 71) X7 (22, 22) X7 (23, 23) - -+
<X (20, Taog) X0 (Z 0, Za )X (20, Bn1) +
C‘(’,""x o""‘(zl, T3, %3, "y Tn-2, Tn-1, zn)x’;" (z1. 71) X7 (22, 72) X722 (23, z3) .-

. Xd"-””"(’:rwz;zn-—z)Xa"—m"'l(In-bzn-x)x n/’n(zn Z'n)]
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(C5)

232,23, ", Tn-2, Tn-1,%n) is some coefficients which only depend on

in which C _'("f' (24,

the gluon Green’s functions.
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