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There has been a lot of interest in the study and application of low energy ef-

AN ATTEMPT TO CALCULATE THE EFFECTIVE
LAGRANGIAN FOR LOW LYING
PSEUDOSCALAR MESONS FROM QCD

' STRONG COUPLING EXPANSION!

fective Lagrangians in recent years. Effective Lagrangians provide powerful and
convenient means for studying physics of low energy hadrons!!}~P, heavy flavor
decaysi!l, precise tests of electroweak theory including possible contributions from
new physics®!lél, and strongly interacting electroweak symmetry breaking mechanisms!".

X Therefore it concerns most of the currently interesting problems in particle physics
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ranging from 10? MeV to TeV.
CCAST (World Labaratory), P.0.Box 8730, Beijing 100080, China ging

and The general form of the effective Lagrangian for low lying pseudoscalar mesons

Institute of Modern Physics, Tsinghua University, Beijing 100084, China? was given by Gasser and Leutwyler!!! based on a symmetry argument.Up to p*

and the non-anomalous chiral Lagrangian consists of fourteen terms and the coefficients

Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China Fy,By,L1,L3, -+, Lyo,H; and H; are unknown parameters which should be determined

by imposing certain number of low energy hadronic data as inputs'l. Although this
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. . . . chiral Lagrangian has been widely used, it is certainly interesting to investigate
An attempt to derive the effective Lagrangian for low lying pseudoscalar mesons

3 further the relation between the chiral Lagrangian and the underlying theo CD.
is given in QCD strong coupling expansion based on the idea of the effective field grang ying v Q

. . . . . This is important not only for theoretical reasons but also for practical needs since
theory with a physical cut-off A.This theory provides the information about chiral \

once the relation is known, the number of independent unknown parameters can be

symmetry breaking, and the quark condensates are calculable. The obtained ef- ¥
fective Lagrangian contains the exact Wess-Zumino-Witten term and the complete o \ significantly reduced, and this will increase the predictability of the theory. More-
Gasser-Leutwyler ;:hiral Lagrangian with all the coefficients Fy,Bo,L1,Ls, + Lo }?1 ' ’;;\) o over, once we can handle the nonperturbative dynamics of the underlying theory

2 L governing this relation,we can further generalize the study to the more interestin
and H, given analytically as functions of the two fundamental parameters A and g, ' , - & g y ¢

up to date problems such as the strongly interacting electroweak symmetry breaking

(effective coupling constant in the cut-off QCD theory). A and g, are then deter- S 2 =
. 2 . B L go) 7 mechanisms which are needed in the experimental study of electroweak symmetry
mined by taking the data of m, and m; as inputs. Up to order-1/g; contributions, ° ) : .
. . . breaking mechanisms at SSC and LHC.
the calculated m,,Fy,F},F,, quark condensates, pion- pion scattering lengths,and L
pseudoscalar-meson form factors are all in reasonable agreement with experiments. There have been various attempts to derive the chiral Lagrangian from some
underlying theories, and most of them are cut-off theories looking like effective field
) theories {81, In a series of papers, it is shown that the chiral Lagrangian can be ob-
1Work supported by the National Natural Science Foundation of China. »
?Mailing address ‘ tained from the Nambu-Jona-Lasinio (NJL) type four-fermion theory 119, In this
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kind of approach, there is a calculable quark condensate breaking the chiral sym-
metry and Goldstone bonson fields are the auxiliary fields for the quark composite
operators §st;q, where {; is the generator of the flavor group. Both the linear and
the nonlinear realizations can be adopted in this approach and the low lying vector
and axial-vector mesons can also be included. The obtained phenomenological re-

19110 However, more work is needed for understanding further

sults are encouraging
the precise relation between the NJL type Lagrangian and QCD from the point of
view of the effective field theory B8l Another approach*!) starts from the cut-off
QCD Lagrangian with u,d,and s'quarks and taking the large N, (number of colors)
limit. The cut-off A is defined as the characteristic parameter in an exponential type
regularization in which non-minimal chiral anomaly exists in the real part of the ef-
fective action.The Goldstone boson field U = exp(—1A*n®/F,) is formally introduced
as a collective mode and the Lagrangian of U with external sources is determined
from the requirement that the U-field theory gives the same non-minimal anomaly
as that in the original theory. All the coefficients Fy,Bg,Ly,L3, -+ -, Lyo,Hy and H,
are then expressed in terms of N,, A,and the gluon condensate. Unfortunately, the
information about chiral symmetry breaking is not included in this approach.The
obtained pion decay constant Fy is proportional to A rather than proportional to the
vacuum expectation value breaking the chiral symmetry as in the conventional un-
derstanding. To fit the experimental value of Fy, the cut-off A should take a rather
low value A = 320M¢V 11 which is even lower than the masses of kaons and » (the
pseudo-Goldstone- bonsons contained in U ). In order to incorporate with chiral
symmetry breaking, 2 phenomenological interaction Mg (§pUqy + G, Utgr) is added
to the QCD Lagrangian in this approach,where Mg is a free parameter triggering
the chiral symmetry breaking/*!l. Therefore the quark condensates are not calcula-
ble in this approach. There is also a different approach based on the consideration
of the instanton induced chiral symmetry breaking!'?. However, ‘in the obtained

meson spectrum, the lightest meson apart from the pseudo-Goldstone-bosons is the

tensor meson. i.e. there is no p-meson in this theory. Owing to the above situation,
further improved investigations on the derivation of chiral Lagrangian from QCD

is really desired.

In this paper, we will give an attempt to derive the chiral Lagrangian based on
the idea of the effective field theory from cut-off QCD with three light ﬁavors in the
approach of the strong coupling expansion. The physical cut-off is expected to be
higher than m, to include all the eight low lying pseudoscalar mesons in the chiral
Lagrangian, and it should be still in the several hundred MeV region to have a large
enough effective QCD coupling constant g, so that the strong coupling expansion
works. Note that this finite g, should not be simply identified with the conventional
scheme-dependent renormalized coupling constant in the full-range renormalizable
QCD theory®l. In an effective field theory®5!, all particles with masses heavier
than A and the high momentum part of the light particles are integrated out which
contribute a tower of extra terms £;{’ in the total cut-off QCD Lagrangian. In
L3}, terms with higher dimensional operators (nonrenormalizable terms) are sup-
pressed in low energy processes(®, Therefore we keep only dimension<4 operators in
C;;"f -With a certain consideration of gauge invariance of the final theory,we obtain
a NJL type four- fermion interaction of the light quark fields after integrating over
the gluon fields in the leading order part in 1/g? expansion. Results similar to those
in Ref.[9]-(10] can then be obtained but with fewer free parameters.Furthermore,
we also take into account, in this paper, the order-1/g? corrections which reflect the
gluon self-interactions, so that our total results are different from those in Ref.[9]-
[10]. Apart from the pseudoscalar mesons, the NJL type four-fermion theory in-
cludes also the scalar,vector,and axial-vector mesons. Vacuum stability condition
determines the nonvanishing vacuum expectational value (VEV) v of the scalar
field which breaks the chiral symmetry. Taking the nonlinear realization!'¥ and
integrating out the scalar,vector,and axial-vector fields in the stationary phase ap-

proximation (semiclassical approximation), we get the effective Lagrangian for the
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pseudoscalar mesons alone which contains the exact Wess-Zumino-Witten (WZW)
term!" and the complete Gasser-Leutwyler chiral Lagrangian!! with the coefficients
Fo,Bo,Ly, L2y, L1o,H\ and H; expressed in terms of N,,N; (number of flavors),A,and
g,. Fixing N. = N, = 3, there are only two fundamental parameters A and ¢, in
this theor&.They can be determined by taking the data of m, and m, as inputs.
The determined g, is really large and the value of A is A = 830MeV which is really
reasonable,therefore the present approach is self-consistent. The theory can then
preaict My, Fy,Fy, F,, the quark condensates, the » — x scattering lengths, and the
pseudoscalar-meson form factors, etc, and they are all in reasonable agreement with

experiments.

This paper is organized as follows. In Sec.Il, we give the generating func-
tional in the cut-off QCD theory and derive the effective meson theory in the
linear realization. Sec.IIl deals with the nonlinear realization,and the derivation
of the WZW term and the general form of the effective Lagrangian including
scalar,pseudoscalar,vector and axial-vector mesons at low energies. The gap equa-
tion is also derived there from vacuum stability. Sec.IV is devoted to the deriva-
tion of the low energy effective Lagrangian for bseudoscalar mesons (chiral La-
grangian) from integrating out the scalar,vector,and axial-vector meson- fields {51,
The Gasser-Leutwyler coefficients are calculated up to next-to-the-leading order
in 1/g? expansion. In Sec.V, we present the determination of A and g,, and the
phenomenological predictions of the obtained chiral Lagrangian for the low energy
physics of the pseudoscalar mesons. Sec.VI contains a brief summary and some

discussions on the present approximation and further investigations. Some of the

technical details in the derivation of the effective Lagrangian are given in the Ap-

pendices.

II. The Generating Functional and the Linear Realization of Meson
Fields

1.The Generating Functional

Consider the system of gluons Bj and N; flavors of light quarks g. The QCD

Lagrangian formally including the §-vacuum effect can be written as!'®l
Locp = La{B) +4(id - B -m)qg, (n
where m is the current quark mass matrix, B,=(A./2)B; , and

tr,(B“‘,I}“") ' (2)

1 8
La(B) = - 5ird BuB™) - o

in which tr. is the trace in the color space, B,, = 8,8, — 8,8, + i|B,,B,| and
f?,w =1 €uaeB*. In (1) and (2), we have rescaled the gluon field g, B3~ B; for
convenience.We then introduce a physical momentum cut-off A and consider the
effective field theory for the light particles below A. Actually we shall take N, = 3,
therefore A should be at least higher than twice of the constituent s-quark mass,
roughly speaking 700MeV, to include all the eight pseudoscalar mesons in the
effective theory. A natural value of A is about the c-quark mass. However, in
practice we shall evolve the theory down to a lower value of A in the several hundred
MeV region so that the effective coupling constant g, is large and the first term in
(2) can be treated as a perturbation ( strong coupling expansion). The specific value
of A will be determined later. According to the idea of the effective field theory,
heavy quark fields (with masses greater than A) and the high momentum part of
the light particles should be integrated out, and this will affect the physics below
A, so that total Lagrangian Iig%n in the effective field theory is not merely (1)-(2).
The effect of integrating out the physics above A miy contribute two kinds of terms
in £g\ép. The first kind contains terms of the same form as those in (1)—(2), and

this can be simply absorbed into (1)-(2) by redefining the fields and the coupling
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constant g,. The second kind contains terms different from those in (1)-(2), and we

shall call this £3//. Therefore
£3dp = Laoo + L3 - (3)

It is ﬁgén that describes the complete physica in the cut-off theory and thus the
finite effective coupling constant g, in (3),which is directly physical, is not equivalent
to the renormalized coupling constant in any of the conventional renormalization
schemes in the full range renormalizable QCD theory®l. In principle, g, can be
determined from the "matching” condition at the scale A [/, However, the present
problem is nonperturbative so that the "matching” condition is hard to realize.
Therefore we take g, as an unknown parameter and determine it from the low energy
data of hadrons.We expect the determined g, to be large, otherwise the present
approach will not be self-consistent. Terms in E‘,;,'/ may contain various kinds of
field operators. From simple dimensional analysis, we infer that terms containing
operators of dimension greater than 4 must have coefficients proportional to negative
powers of A (or the heavy quark mass), so that these terms are suppressed in the
study of low energy processes. As an approximation, we neglect these terms in this
paper. There can also be terms containing lower dimensional operators in E;,” , and
these should be kept in (3). It is known that introducing a inomentum cut-off A
will affect the manifest local gauge invariance of the Lagrangian 1117, Indeed, if we

integrated out the light quark field in Lg¢p with a momentum cut-off A, a term

~LM?B2B** with
NyA?
16%?

M = (4)

17 which violates the gauge

will emerge in the effective Lagrangian for gluons
invariance. The above integration also gives rise to dimension-4 operators (and
higher dimensional operators) of gluon fields. If we keep only the terms with lead-
ing powers of A in the coefficients of these operators, these dimension-4 operators

do not violate gauge invariance. So that, in this approximation, the only gauge-

noninvariant contribution which we have to consider is the —%M’B:B““ term. On
the other hand, the integration over the high momentum part of the light-quark-
field, belonging to E;," , contributes a corresponding term %M zB;’,B"“‘. Taking into
account this term, the two gauge-noninvariant terms just cancel each other which
just reflects the gauge invariance of the original full-range QCD. In the effective
field theory, the high momentum part of the light-quark-field is always integrated
out, i.e. the term %M’B;B"“ is always there in £%/ no matter how we treat the
low momentum part of the light-quark-field in Lgcp. Therefore the original gauge
invariance is not guaranteed to be kept exactly at any step in the calculation if the
low momentum part and the high momentum part are not treated on equal footing.
In this paper, we only require that after integrating over the low momentum part of
the light-quark-field in Lqcp, the final effective Lagrangian for gluons contributed
from the total cg‘g,, takes the gauge invariant form. This is really the spirit of the
original gauge invariance in the full-range theory, and thus we may regard this re-
quirement as a kind of "matching” condition which *matches” the gauge invariance
in the two theories. Therefore the only dimension<4 operator that should be taken

into account in L3/’ is LM?B2B*, and our L8, is
A 1 a -
Lo = La(B) +3M'BIB™ +3(id - B-m)g . (5)

The inclusion of the %M 2B:B"“ term is formally similar to the discussion on QED
in Ref.[17], but the physical interpretation is different. In (5), the momentum cut-
off is understood to be expressed in terms of a cut-off function, say 6(A* - p*), in

the momentum representation of Egéu.

Next we consider the generating functional for this system. Let I be the exter-
nal source for the gluon field By, and Js,Jp, Ji7, J§ be the external sources for the
composite quark operators —gq, 179, §y*g, and §y*vsq,respectively. Js,Jp, Iy, J4
are colorless Nyx N; matrices. For the convenience of deriving the WZW term, we

shall take the Euclidean space-time formulation with the metric g* = —6*" in the



following calculations. The generating functional Z[I,J] can then be written as

2|1,7] = / DqDIDB; ezp [z { La(B) + %M’B:B“‘ + 0B 4
+3(i@ — B~ Js + iJews + Ay + 44%)a} (6)
where
Lo(B) = =gt BuB™) — iggstr(BuB™) . (7

Here we have put the current quark mass matrix m into the definition of Js, i.e.

the physical case corresponds to J¢ = m rather than Js = 0.

The 6-term violates CP, so that it plays a special role in E‘(QAC]-D. We shall keep its
complete contribution in our calculation. For this purpose, we make the following

local chiral transformation

By(z) - Byl@) . qlz)—lg(=)Pr +g'(z) PLle() , @)

where P = j(1£+s) and g(z) is an NyxN; unitary matrix.We know that the
functional measure DgD7 is not invariant under the chiral transformation (8)'#
and we have (See Appendix A)

N. PSS SR S
34077 /D‘tr (u™'du) +t/;‘ﬂ(u,JL,Ja)

——jd‘z[lndct(u)]Iel?tr,(B“.,l'?“") }, (9)

Dgbg — DgDgexp{s

where, tr' is the trace in the flavor space and the Lorentz spinor space, Ds is a

five-dimensional disc bounded by S*,

u(z)=g(z)g(z), JEEJ“,‘.:!:J:, JfEJ{.‘dz,., (10)
and
— N¢ ' % 3 2
A(H,JL,JR) = tf{ iJL(JRdJR+dJRJR+JR”R JR)

48x2
1
-—u"JLu(-JRRJR + Rd.’};) + EJLLJLL] (11)

—-(JLHJR,uHu"") + %(JLngu")z} —(u=1),

9

in which
R=u‘du, L=duu™, Ji=u'Jpu+ R, Jp=uJgu™' - L. (12)

The first term in {9) is just the WZW term. The second term in (9) is an anomaly
term related to the external sources J and J/ ¥ and it vanishes when Jj = Jf =0,

but it affects the topological baryon current ¥, We then take u to satisfy

Indet(u) = —i6 (13)
so that (6) becomes
—= & 1 2 na pop 4 ag
2(1,7) = ] DgDFD BS exp{/d‘x[ﬁK(B) + SMIBIB + ;B +
Qg ~ B—Jg + idpvs + 4+ 4, w)el + (14)
L [t ) i [ A, d IR}
24072 /p, sV ’
where
~Jg+iJpys = (9Pr +g'PL) (~Js +1iJpys) (¢Pr +g'PL),
W+l = dde) +a' ()0 (15)
-4 = a3 dh) +aldy - e
Lx(B) = Lo(B)lizo= ~39;%tr.(Bu B*).

Treating Lx(B) as a perturbation, the generating functional Z[J]|=Z0,J| can be

further written as

. Nc ’ - .
Z|J] = exp{+i /Dstr (u"tdu)® +:/ Au,Jp, Jr)} x

240#2 54
6 - a 4 1 2 pa R, a e
xezp(SK[ﬁ]) /‘l')qurDlif‘Jl e::p/d z{ §M BiB* + I;B™ +
+369 — B—Js +iJpws + & +J,15)a} li=o, (16)
where
Sk|B] = /d‘zﬁx(B)- (17)

10


http:matrix.We

The integrand under [ DBj in (16) is simple. The gluon field is quadratic in the

exponential. Therefore the [ DB integration can be carried out 120 and we obtain

Z|J] = ezp{i

Ne [t 4 [ A, TR} x

24072 Jp, 54

Xczp(SK[:—[I) fDqui czp/d‘z {q(sd - J; + iJ;,fys + ,IV' + /A"y;)q -

1 A L e
_m(jou - E"é"?“q) (Iu - Q'i'qu)} !l:O . (18)

Here we arrive at a four-fermion interaction. Next we make an inverse chiral trans-

formation g'(z) to transform back to the original quark field, i.e.

q(z)—lg'(z) Pr + 9(z) PLig(2). (19)
Now
DgDg — DqDFezp{—i Nﬂ,/ tr'(u” du)® —if A, J1, Tr)
24072 Jp, §¢
+f d‘z{lndet(u)]Yél;r—ztrc(Ff,.yﬁ‘,‘”)}, (20)
where
Fru= S F= ity ~ oty il 2], (2)

and Fp,, = LeuacF ", in which I, = 12, With (13) the generating functional can

be written as

] . .
Z[J] = CIP(SKIED /DqDE ezp/d‘x {g(id - Js + ;0_],,»,5 NRY G _h%)q
1A e 1 o . -~
"2—[{7(7?’7“‘1) (q?wuq) - mlﬂl * - ‘Eﬁ"c(Flquf ) }li=o
(22)

In (22) the f-term is completely expressed in terms of tre(Fr F) after the gluon-

field integration.

The four-fermion interaction in (22) is composed of two colored currents. It can

be expressed in terms of color singlet operators through Fierz reordering and the

11

result is

zZJ| = CxP(Sx[:—I}) /Dqui exp[d‘x{i(i& —Js+idpvs+ 4y + Lo + %)q-k
+%w[(qu)z + (@t9759)* - %(W,'m)’ - %(W;'msq)’ + -}%:(aq,,q)’]
-%MJZ’““ -f#trcmw?}‘”) }i=o (23)

where t;,7 =0,1,2,---,N,-1, is the generator of the U(N;) flavor group, normalized

as
) ,
=, J=0
ti= ¢ V¥ (24)
#; 3 j#o'

Eq.(23) is to be compared with the NJL type four-fermion interactions considered
in Ref.[9]-[10]. We see that there is only one parameter A in the four-fermion in-
teractions in (23). This specific form comes from the color octet current-current
interaction in (22) which is the characteristic of QCD. Furthermore, our Z{J] in-
cludes also the corrections in 1/g? expansion through exp(Sk[5]) which includes
the self- interactions of gluons. Therefore (23) is different from the theory consid-

ered in Ref.[9]-[10].

The coefficients of the four-fermion terms in (23) are of O(M~2)~0O(A"?). One
may question about our approximation in which the four-fermion terms in C;,“ are
not considered. The fact is that the four-fermion terms in £;{f can only come from
integrating out the high momentum part of the gluon fields.Actually this part of
integration has already been included in the way of doing the integration over Bj in
(16)1*° which leads to the four-fermion interaction in (18). Therefore, by definition,
there is no O(A™?) four-fermion term left in £5. Since there is still a cut-off func-
tion associated with Lx(B), there can be O(g;?A~?) four- fermion terms in £,
However, as we shall see in Sec.V that g;? is very small, so that we can neglect such
;{ !

terms in L%’. In this paper, we only take account of O(g;?) terms and neglect all

the O(g;?A~?) terms through out the calculations.
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Next we introduce auxiliary fields .§j, 13,-, V;-", and /i\;‘ for the composite operators
—IMGt;q, s MGt %0, ~1M-*Gt;v#q , and —~IM~*qt;7*v5q , respectively,in the

standard way. They are regarded as the meson fields. Eq.(23) can then be converted

into
2|7 = e:cp(SK{ ]quq pSDP DVDA np[d‘z "5?[215’“
"Tgﬁ tre( Fru 1)+ lu?+-’~~(5+1s)+:( Ip)rs +(F+ ) +(A+Ia)wsle+
+ M-8 P2l v 2d +2m( L W e (29)
N.
in which .§.=_t,~§,v ,.§7E.§j.§'j , Pztjﬁj s 1325}3,-}3, , -+, etc. For convinience, we

introduce the new variables S=8§ + Jg ,P=P +Jg,VE=V# 4 Jy, AP=A% + Ji.

Carrying out the quark-field integration, we get

Z[J) = czp(SK[;i]) /DSDPDVDA exp{inDet(id — S + iPvs + Vi + Ays)+

8 » 1
+/d‘z ”27@1“” — imstr.(Fi B )+2M’(1—_—,:—-1) (Ve - JL)?

+ MY —(S = Js)* = (P—Jp)* +2(V¥—J9)* +2(4* =T} 1o, (26)
where Det is the functional determinant,and

vi=v# r (27)
+'A—l; .

Eq.(26) is our generating fuctional for the meson fields in the linear realization.

2. The Local U(N;) xU(N;)r Symmetry

13

Let g1(z) and ggp(z) be the group element of U(N,), and U(N;)g respec-
tively.Consider the following local U(N;),xU(Ny)p transformation

S'(z)+iP'(z) = gr(z)[S(z) +iP(z)lg}(z)
§'(z) —iP'(z) = gu(z)[8(z) - iP(z)|gk(z)
Viz) + 4L(z) = gr(2)[Vulz) + Au(2)lgk(2) + 19r()ugk(2)

(z)
Vi(z) = AL(z) = gu(2)[Va(z) - Au(2)lg}(2) + igr(z)B,gl(z)
(

(
J5(z) +iJp(z) = gr(z)[JIs(z) +iJp(z)lol(2) (28)
Js(z) - 'Jp(z) = gu(2)[Js(z) — ip(2)|gk(z)
Foul2) + 4u(2) = gr(2)[Ivulz) + Jau(2) ok (z) + igr(z)Bugh(z)
Jou(z) ~ JA»(I) = g(2)[Ivu(z) - Jau(z)lgL(z) + igL(z)B,gl (z)
IY(z) = Ii(z)

All terms in (26}, except the fermion determinant term InDet(id — S + iP~s +
Vi + fvs) , are manifestly invariant under the local chiral transformation (28). The
transformation property of InDet(if — S + iPy + ¥; + Ays) can be examined as

follows. The transformation of the covariant derivative

1D(z,y) = (1§ — S+ iPys + Vi + Ars)6*(z - y) (29)
is
D'(z,y) = l9r(z)Pr + gu(z) P]D(z,v) (9} (v) Pr + gk(y) PL] | (30)
hence
InDet(iD') = InDet(iD) + InDet(gngl Px + g.bPy) - (31)
Now

1 1
RelnDet(grgl Pp+9LghPL) = 5Trin (9rel Pr+91gk PL) +5Trin (919k Pr-+orglPy)

1
= 3Trin(Py + Pa) =0 , (82)

i.e. Det(gRg}‘PR +ng;tPl,) is formally a unimodular phase factor. Therefore the real

part of InDet(iD) is invariant under the transformation (28)%!, Moreover, when

14



9r(z) = gu(z) = g(z) , we have
Trln(gkgzPR + !ILQ;%PL) lon=gi=¢= Trin(PL + Pr) =0 .

Therefore the imaginary part of InDet(iD) is invariant under the diagonal transfor-

mation g1 (z) = gr(z) = g(z) but 1s not invariant under the chiral transformation

(28).

Thus, except for IminDet(:D) , all terms in (26) are invariant under the local
chiral transformation (28). This symmetry has been considered in Ref.[1] as the

basis of determining the form of the chiral Lagrangian.

III. The Nonlinear Realization and the General Form of the Low

Energy Effective Lagrangian for Mesons
1.Nonlinear Realization

Instead of S and P, we introduce a polar parametrization (nonlinear lfea.liza.tion)

for S +ip 110
S(z) + iP(z) = Q(z)[T(z) + v]Q(=) , (33)
where }(z) is 2 unitary matrix whose phase can be parametrized by the Goldstone
boson fields, and I(z) + v is an hermitian matrix. Here we have formally separated
out a possible VEV v of the I-field, i.e. £ — Js is the quantum fluctuation around
v. Since Sy(z) is the auxiliary field for — Lz (qtog) , we see from (33) that < gq >

is related to v by the simple relation
< gg>= -2 N!Mz<30 >= "2NIMzU . (34)

The value of v is to be determined by the minimum of the effective potential, so that
< gq > is calculable in this theory. If v#0 , chiral symmetry is broken dynamically

by < gq >.

15

It is also useful to introduce
U(z) = 0(z)0(=z) (35)

which is also unitary. Under the transformation (28), the fields L(x), 2(x) , and

U(z) transform as

(z) = h(x)E(h!(z) ,
N(z) = h(x)ﬂ(z)gz(x) = gr(z)U(z)h!(z) , (36)
U(z) = n(z)U(z)gl(a),

where the unitary matrix k(z) is the element of an extra hidden local U{Ny), group

N . . . .
B3] coming from the freedom of introducing the nonlinear realization.

2.The WZW Term

Now we evaluate IminDet(iD) . For a given D , we make a chiral transformation

with gg(z) = Q(z) , g1(z) = N!(z) . From (30) we have

1D—=iDy = [i§ — (Z(2) + v) - Vin(z) — Aa(z)¥s)6%(z - v) (37)

-

where Viq and Aq are given by (28).Consider a change of @, — (1 + 602 . Then

6(inDetiDg) = Tr(D5'6Dp) =
= 1Tr([D3? (600 - 0160) Dy - D' Dy (600! - Q160+

~ 38
+Dgt (600! + 0160) 4D + Dq'Dy (6001 + 0160) ) (38)
=Tr((600" + Q160),] .

This functional trace is evaluated in Appendix A, and we get

6(InDetiDy) = Tr[ (600" + 0'60) G(1,Va, Ag)] , (39)
where
N 1 1
G(I,V,A) = Fe"‘ o [gAuA,A,A, + E(Vu‘,vﬂ, + gAwA,,)—
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- i-li(A,,A,V,, ViAo + AV A + Lt (P F), (40)
with V,, = 8,V, — 8,V, ~ i[V,,,V,] — 1A, A 5 A = 3,4, — 8,4, —i]V,, A} —
i[A,,V.] . The difference between our G(I,V, A) and the function G(V, A) in Ref.[10]
is only the term ﬁ’;,—trg(F,“.,i‘,"") in (40}, which is independent of {1 . Therefore we
can simply quote the result of integrating over 612 in Ref.[10] and get (see Appendix
A)

InDet(iDq) — InDet(sD) =
/ tr' (U dU) +i / AU AL ) + [ d*z(indetl)) < tr(Fra Ff") |

(41)

= 124077

where A, = V¥ + A* | A] = V¥ — A¥ [and A(U, AL, Ag) is given in (11) with Jy ,
J4 replaced by V, A, respectively. Since RelnDet(siD) is invariant under the 2(z)
transformation, the L.H.S. of (41) is simply iIminDet(iDy) — iIminDet(iD) . Thus

we have
1 N.
240x2

- f d*z(indetl) tr‘(F,-,,,,F, ) + ilIminDet(iDq) . (42)

iIminDet(iD) = / tr'(U"dU)‘ —i ] AU, AL, Ag) -

From (37) and (28) we see that the integration constant iIminDet(iDy) does not
contain pure U terms. The first term on R.H.S. of (42) is just the WZW term.
Therefore our iIminDet(iD) contains the exact WZW term together with other

anomaly terms.

3.Effective Lagrangian for Mesons

In terms of £ and U , our generating functional (26) can be written as
2|J) = ezp|P(J)] [ Du(U,E)OVD A eap S.1f[U,E.V,A,0,0],  (43)

in which Du(U,Z) is the functional measure for the transformed variables in (33) ,

P(J) = M/d‘z{ T3 TR 2R 2t m—l)Jvo}, (44)
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SeyrlU,Z,V, A, J,6)

il

Jd*zL,s/(U,E,V, A,J,0)

i

eff
(45)

where P(J) is a pure external source term, and the three parts in S.ss|UE,V, A, J, 6

are

SHMNU,E,v, 4,J]

/ 2L MU, %,V 4,J)
= M*/d‘z{JS[nm +QITA! + (U + U')y]
—iJp[AZQ - Q0! + (U - Ut)y] — (46)

1
_4J\:"VF — 4]:.4“ + 4(1 - :E)Jvovo} y
N,

il

s, 5, v, 4) fd‘zcﬁj‘," U,L,V, A)

= M’/d‘z{ —(S+v)+2vi+2at + 2(———~1 12_& - 1)V}}
TN

o N Py
.waz[mtr(u WP ~i[ AU ALAR),  (47)

sywsv.a0 = [ d*xfzﬁ‘;',”(u £,V,4,0)
= In{ ezp(SK[ ]) ezp| Re Tr In(iD) + 1Im Tr In(iDq) +
(I“ 1
[ da [ = 60+ IndetU)tr(Fru FE))} 1o
(48)

which are, respectively, the meson-source interaction part, the meson-field self-
interaction part independent of SK[;,%} , and the pure meson part containing SK{%]
(non-leading orders of 1/g? expansion). We see that the WZW term and the
anomaly term [g, A(U, AL, Ag) are all in Sf;;l) , L.e. they do not receive any cor-

rections in the 1/g? expansion.

The symmetry of the effective action can be examined as follows. The term

indet U in S‘%) is not invariant under the chiral U(N;)p xU(N,)g transforma-
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tion.According to (35), detU transforms as
detU' = (detgg)(detg,) }(detU) . (49)

For the SU(Ny), and SU(N/)g subgroups, we have detg;, = 1 , detgg = 1 ; for the
diagonal Uy (1) subgroup, we have detgp = detg, . Therefore IndetU is invariant
under the transformation of the subgroup SU(N;),xSU(N,;)rxUy (1) . In other
words, IndetU explicitly breaks the U4(1) subgroup of U(N,), xU(N;)g . However,

IndetU appears together with 1@ in the combination

10=10 + IndetU (50)

in 8,y Wz) . If we take the transformation of 4 to be

¢’ = 0 + ilndetgg — ilndetgy, , (51)

the combination if can be made invariant under the complete U(N;)xU(N,)r

transformation. This is just what was mentionned in Ref.[1].

There is an extra hidden symmetry U(N;), (cf.(36)) in the nonlinear realization
due to the freedom of defining £ and Q1 . The present theory also respects this extra

symmetry.

Further evaluation of S,] y includes: (a) the evaluation of ReTrin(iD) , and
(b) the operation of ezp(Sk[%]) (1/g} expansion). At low energies, we can expand
ReTrin(iD) in power series of covariant derivatives of the meson fields. Formally

we write it as

ReTrin(iD) }j R. , (52)

where R, is the sum of terms containing dimension-n field operators. From dimen-
sional analysis,we infer that the coefficients in R, for n > 4 must be proportional
to negative powers of the fundamental scale parameter A, so that at low energies

these terms are suppressed 221, As an approximation, we shall keep only n<4 terms

19

in (52). The expansion can be carried out by using the technique in Ref.[23] , and

the details are given in Appendix B. The results of Ry , R, , -+, Ry are

RO = %TY ln. (Uz+¢,¢’ ) N

Ri=v /J‘Z/(z r(A:Z)

2
_ ex A _ianyy2, YV v srrt N8
Ry = /d‘:c/ (2“)‘ tr{ (21_\.,, VA E L (B Auy’) (DU DAU)4
+[A19‘“’-2At(*'D“+k")Ak(iD"+k")[(V =Jyu)(VE=J9) + (Au— Jau) (A% = TR} -
Ry = /d‘ / @i tr{ vAls 4 L (An.,An“Ak)(D“U'D v)n'sa+
+E(A,1VA,,7”)[(D“D,,U')QSQ +(D*DU)EAY)
Ri= /d‘x

tr{ ( A’ +Z A HEt s (AZq,An")(D“D UY(D,DU)+

d*k
(2n)*

1 1
+v‘{(§§§A,'y,A,,f1,Ak'y"A,/y" - ;IEAn,An"An‘,A,,'y")(D,‘U'D“UD,U'D"U)+

48

1 5
(288Ak’7pAn Apte D ~ 576At%Ak%Ak’Y"Ak’?d)(DuU'DuUD“U’DVU)H
5 1 1 . .
+(“§A: - EAJ:["M‘V«MFY”Y” + ﬂA,,(:D;’ + k) A (iD7 + K7) Ar[75 %]~

1
—-éA;(iD; + k) Ax(iDr, + k) Ay (3D] + k%) Ar(iD1o + ko)) (Vi VE + A, A¥) -

v? v v s Vs t 2 v? s tyt
~(F A A A= A A+ = A3) (DU DU EMN~ - A4 D(A'EQ)| (D (0 20)] -
—vz(;An,An"Ak—k%Ai)({D‘“(Q’EQ')](D,U)ﬂ'EQ+{D“(Q'Eﬂ')]ﬂ20*(D,‘U))+

ot
+5 (Alm ALY (DU IE0! (D,U)0' 20

i 1 1 . . T T K
"wz[*%Ak['b,ﬁa]Ak"r’Aﬂ”r"EAk(tDu%-h)Ak(iDlnka)Ak"ivAk(Q 7 —g* )| x

x[(V* — A*)D,U'D,U + (V* + A*)D,UD,U']} , (53) g
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where
ye
D;‘ = 9 Ionlvonl _"ﬁ; s
DHU = U — (V¥ + AU +iU(V* - A%) ,
D*UY = 9RUt — (V¥ - AMUT +4UNVH + AY) (54)

DH(OEN) = S*(ALA) —i(V* + A¥)QTA + iQEA(VE — 4%)
DHO'EAY = a(A'Sal) - i(V# — A4)atsal + intEat (Ve + 4%) |
Ay = (V+ K+ D Py - 2k,DY)7?
We have checked that (52) and (53) are consistent with the formula obtained from

using the Seeley-Dewitt expansion (*4 in Ref.[11].

Next we introduce the operator

5. § 1 2 (1%)?
Ol5s|=eep(Sklgs)) - ecp(GTrin(o? + Pr Py )~ [daoz ) (59)
and define
ao-O{ } (56)
It can be shown that up to the next-to-the-leading order in 1/g? expansion, the

anomalous part of S,

” M2) (imaginary part in the curly bracket in (48)) does not
contribute. In this paper we only present the contribution of the normal part in
Sfxz) .Upton<4itis
SM(U TV, A, O)norm = [d‘zﬁﬁ‘}‘,”(u £V, 4, 0)norm = [Inao +
§

-‘o[ }(R,+R, + = R’+R3+R1Rg+ R’+R4+R,R,+ R§+ R’Rz+ 24}2:)
~{a5" 0l ,m},—o{ao ol U“R= FREy+ LRY) = o Ol (R + SR +
o Ol RYcofoq OLrI(Rs + S FD)} — las Ol IR lr=o (57)

Substituting (53) into (57) , we get
SYPIU,E,V, A, Bluorm = [d2LYP(U,E,V, A, O)nerm =

‘ 2
=lInag+ /d‘x[tr,{valE + (ial - v%a;)E? — va,I® ~ (i—a; + %ag)_):‘ + ;—éag(D,‘U'D“U)
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A?

UZ
“ggmal (Ve = W) (V¥ = J7) + (Au = ) (4" = JR)| + 2ae(D*D*UY)(DDLU)+
4013 anz t N 4 012 Sagg t ‘DU
28 _ 4p UtDry . “
288 = 75) (D DU'D*U) + v!(5g% ~ +=2) (D U'DUD*U' D'U)+
(e + gy~ Lgy— L YV V4 A, AM) v DU D*U)'EN
1 a i9 2 240'8 '014 v + A ——06( U -
2 4
—(—a—as "2 a0+ as)(D UtDru)tsin - —-—ale‘,(ﬂ'EQ')][D“ (Qzn)j-

—%as[(D,D“U')nzn + (D, D*UNTOY + Tau(D“U')QEQ‘(D"U)Q'EQ—

—uz(i‘f'i + %){(D“(Q'EQ*)) (D*U)Q'E0 + (D,(A'DAN))Asat (DHU))+
Fiv'(gg = 3 (Viw = A) (DHU)(DV) + (Ve + 4) (DV) (DU} +
2 2

+—2—015(t7!2) *-—ga"tf!(a 26“2)(“’ E) 4[(!7’/" ,,)(tr,V“")+(tr,A,w)(tr,A‘“’)}+

v 1 2 4
+('2'£115 - vsalg)(tr,E)(trl)Z’) + (gals he %alg + %azl)(tr,22)2~
1 1 3
16(21120 - viag,)(try2¥)tr, (DU D*U) + %am(tr,E)tr,(D“U'D“U)-f

2

+ Es‘azo(trlz)t'f[(DuU’)(D“(n):n))}_"zaw("l):) (tr,2°%) - %‘a,s(tr/E)tr!{(D,.U') (D*V)

4
1152(5a,. 2a5)tr;(D, Ut D*U)tr (D, U' DU )+g%(4a25—az¢)tr,(D“U'DyU)tr,(D“U

3 2 4 4
v v
+€am(tr,2) —iags(tr/E) tr,(D UtD“U) (gaze‘-—2—0,27)(tf!E)g(tffzz)'{';iazg(tY/E
(58)
where tr; is the trace in the flavor space,and

a; = ag O{ ]/(g,; tr' B (2, 2) |1=0

10[51]/ (2 )‘""A‘(I' 2 li=o
as = 650 1/ (A1 A7) (2, 2) |10

a( = a5’ 0| 611/ o )‘tr "(Ak[ 1 1867 7) (2, 2) f1=0,
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_ _ § dk diq
o0 = 05"0l571 57 )4""‘3* =) i, an = 50157 [y [ Gositr" 3, 2) [ fatr” (Bemer)(w:9) l=osomn
R PR ] d'k d'q
as = a5 ' 0| M]/ L (A A (2,7) [1=0 ass an'Olé—i]/d‘y[ Jr"Ax(z, z)f o ),t"'(Aﬁ”tuAn“)(y.y) |1=0,conn »
ay = q, 51}/ Akl'Ym'YvIAE'Y“Ak”! )(1, z) Il:(l Y Ay = ’0[61 /d‘y[ ﬁk’y,‘Ag’)' ) z,x / (2 ) tr"(Aq'y,A(y")(y,y) ]l:O,conn s
— d‘;; v ‘ . . q )
as O{HIf —:tf (82(iDru+ky) Be(i D1+ k) A, 71} (2, 2) l1=0 ax = q 0[51}[ y/ ) Lt (ArAe)(z, z)/( P (A A ) Y, Y) li=o0.conn
dq dp
= t "A s s = -1 . b " 3 " o " “0.conn 3=
ag = I[ (2 X Az, 1) |1=0 as = ag O[“]/d‘y[d‘zj o )4tr A,‘(::,a:)/ @ )‘tr Aq(y,y)[( ")4” A,(2,2) |1=0,
dk d‘p
-1 — 1
a1 = ag O[ } —2_‘ (831 B ) (2,2) [1=0 a7 = 10[511[‘1‘ /d‘ 2—)"4""A“ z,2) / (2 tr'A o(v, y)/ (2 )4t'“A:(z‘ z) l1=0.conn "
ay =a;'0 (A, A3 (2, 2) |1=0 , ax = @ 10{6[ /d‘yfd‘z/ )’ tr r"Aq(y,y)x
P d‘k . dt
ay = aolo{ﬁ}/ W"”(Ak"luAk'Y"At’?yAk'Y )=z,2) l1=0, X/ (2;; r(Bp71uBp7*) (2, 2) |1=0.c0nm »
§ dk d*
= =1 v " 9 4
as = a4 OI }/ (2 )4tr"(A&’hAf‘luAk'1"Ah’T )2, 2) l1=0 ayp = 0,010[51]/’41";//(14 /.r:l4 / migtr Az x)/ (2—”—)7&' Ay, v)x
. ) . Ly d'p d'r
Q¢ = a'O 0[61}/ 2 )4 (Ak('D’#+kﬂ)A*(,D;l+k“)Ak('DlV+k”)Ak(lD! +k ))(I’I) 1’7—0 ’ X/ W‘rﬂA}’(Z? Z)/ (i;)—‘tr'Ar(us Il,) 1I=D,¢:onn L] (50)
- d'k . . s H "o s . . di "
a = %1015}/ (21)‘t7"(Ak(tDl,.+k,.)At(xDI..+k.,)(A.,’y”An“-—An“An”))(z,x) l1=0 » in which ¢r" is the trace in the color and Lorentz spinor spaces (not including fla
o vors) , and the subscript conn means taking only the connected pieces in the terms
_ é k d'q
— A 7 " U] . k2 . - . X .
a1 = ag 0[511/d‘y/ ———(21)‘" Ag(z, z)/ (21r)4tr Ay (Y, 9) l1=0.conn » : with two or more j; operations. We see that the non-Abelian self-interactions of

the gluon fields in the underlying QCD theory reside now in the coefficients a, , a,

6 !
a7y = GG'OIEi/d‘y(x—y)u(x—y)“/ s

(2m)t
ais = eyt led‘yf t'" (Au(z,z ['Vu!'h])/ (2r )¢ (Bq (4, ¥)7*7") lr=0,conn » Substituting (46),(47), and (58) into (45), we get a lengthy expression for the
ay = ag o[“;/d‘g[ —ir" Bz, z)/ tr"Az (¥, ¥) r=0,conn »

I)/ (: )4"' 'A, ( ) |l=0,:ann ’

, @29 through the O[:—,] operation.

low energy effective Lagrangia.n’

d4q LegflU. BV, 4,0,0) == L0, 3V, 4,91+ LGP0, 2, V, A1+ L5 PU, £, 4,0,
"
a0 = a5 07l / @ / @t Al )/ " (BB (4:9) lr=ocom » )
60
- dat
an = aoloiﬁ]/d‘y/ W"J‘Ai(xt Z)/ (Er%h”A:(y'y) !I:ﬂ,wrm ’

23 24



which contain 44 terms. The constant term Ina, is only relevant in the study of the
physical vacuum. If we simply regard the coefficients ao , a; , - - , az as free pa-
rameters, this effective Lagrangian is just a generalization of the Gasser-Leutwyler
effective Lagrangian to the case including pseudoscalar, scalar, vector, and axial-

vector mesons. This general form is independent of the 1/¢g? expansion.

The advantage of the present approach is that all the coefficients ap , a; , - -,
a3z in C,,, (U,L,V, A, J,8) (cf.(59)) are calculable order by order in1/g? expansion
as functions of the two fundamental parameters A and g, (The VEV v can be
calculated from the vacuum stability condition (cf.(68)).). In the following, we list
the calculated a; , - - , azo up to order-1/g? in the 1/g? expansion.

N, 1 (N}-1) A s eutas aa A’
il ay EW{”Z@)G: "2451111 +60’a1a3 - 1610103 —24bovzln(1 + ;;)“l’
24N, 4,
(16w2M3?)

N, A' 1 (NP-1)
= mlﬂ(l + ;;)-“

a; =

24N? ..

. N . A?
[—@y(4bo + v*,) + v*(8bg + v?a)In(1 + v_‘)] + (T6x M) ——t—y?add,}

?W{+12&1&,+24&§—-[144bu—48b1+120’&,-&-32:(&1 +a3)]x
]

16N.4 . . . A?
(—mlga; - (3”2(41 + 301) + 6060)[71(1 -+ U—z)]—

24NZ%al A A?
—W{4v:as - a; + v’alln(l + "‘,"2‘)]} 3

N, AL 1 (NE-1)

as = -—;ln(l + :.’,-)

A?
xin(l + 5) -

" N R PP A’
W{486;03+240;'-'l57650+4802a1+32$(a1+401]]lﬂ(l + v—z)*—

A 6NZal

1985 ~(120°(81-+22) +96kolin(1 + 55)~ e S

AZ
R 2‘ —A 2“ P
(167200%) [16v*a5—a]+16va,in(1 + vz)}} ,

(1+§_)_1 (N2 -1)

A?
A A 24 ~
g—fmz—);{ZSSala;-%[SSboi—‘ibl-{»Bv al—Sxal]ln(l + ;{)_

_ 384 N.d,
(16x2M3)
N, +_1_( -1)
8x%y? g2 (16z”M’)2

A? 8N,
Xln(l + ﬁ) + m(lSw’M’)

576N . A?

A!
2 0n Py o oite 3 —
(1260 +v"(38, + aa)lin(1 + 55) + rrepmmavialin(l+ )}

. A?
ag = { (60bo 3661)——-—(3ag+a1) [18&,+544,+18as+12zin(1 + ;i)]x
61
[-3a2 - —;ﬂg(a1 + 8d,) + ((54a; + 9d3)a;—
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+(104a; — (90a1+42a,)1n(1+ ))ln(1+ =)+

. A? A? 4N " e s A?
~(36v%d, +192bo)In(1 + = Nin(1 + -;,—)H——-————(IWM‘,), [14a}~18(a1a2+8285)In(1 + IlI
N 1 (NZ-1)
27207 g2 (16x2M?)
A? 16N,
In(1
xin(1+ v? o)t (1673M?)

32
a6 = { ,(60b0 12b1)——'}7{(&1+3&2)-[18&;+36&;+6&3+192x1n(1+-3

12 . s egn o 9.
[ Gal - -760(&, + 263) + (01(5401 + Eaz)—

N a1 Az

(48073, +240bo)ln(1 + —A-))ln(l + ﬁ)} (802}~ (36aads+54a])in(1 + 2]} ,

)
a; = -—::fz; g—l—ég:—zbl%{ 7 (3060 +2b; +2(4a,+4,)]|+48(94, +64; ~ay+2zIn(1 + Az)]
xin(1 + Az)+(1:5?r221]:;z) [3a}+ €% (a;+2az) - (9818, (8v’a,+24bo)In(1 + ——))ln(l + Az)l
“4‘(—;%]4:2—)“‘&2(2“1 + d;)in(1 + )} ,
ag = glz —-———(EQI;MZ; {—36a3—(96b,+48zd,)In(1 + Az) (IG:Mz)[ 154,83—2483 8,4+ 124, 8,4
+(—T72b18; + 204bpd; + 18v7d;(&, — @,))In(1 + A—1‘)}+
oyl -Seias — 360", (6s - 28)in(1 + 21}
%= St (ﬁ: ,;{3,{5,( B PPN 418
xIn(l + 22) (mi'y;l,)[ ! (218,8;,—a3+6a —19260)—%1;0&,—12(3&,»(3&,+2&,)1n(1 + é;j
xin(l+ %)] (—IG—I;W[ a,8] + 48(a} + 8a,dy — 16&3)In?(1 + — A* )}} .
aip = Gg:)‘—‘rg—lz(Eé\:{z;lgz{%—‘:(2&1—%9“&2—;&3)4‘%;%—3231?": (801+5281n(1 + A2))

A? 8N, 1, , .. 21, 16
Xlﬂ(l + ;—2‘) - EW)—[—Z'(“GI — 56414, — -—a; + 528b0) + ;’Tboar}-

AZ 3N2

(lﬁ,rzMz 3l 2(4 182 — 52438,) -

—(34a1+17ea,&, 25643 — 22402&11n(1+ ))ln (1+—)}}
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N, 1 (N}-1) 16 19 20 A? z Al

ay = m+gz m " (2&1 —az——30,3) '—3-;;13—2—32!—”7%—121"(1 + ';;)}X
A? 32N¢ 1 ..
xln(l + vz) (167!‘2M2) {vg( — 148,85 — —07 + 9650) —Tboaz-l-
. A? 4Nc a2 “Za
+(208, — (93, + 643)in(1 + —5))in(1 + ,)] + m[;(%ae ~ 24834,)~
A2 2 Az 2 Az
—(3a} + 24,8, + 84} — 96v*@yin(1 + ;?))ln (1+ ——)]} ,

2N, 1 (N}-1) N 10 9,1,64, 144 A’ 1440 A?

4127 3rae i (167F2M2)2{ ( & 2a3)+;; 30t l oHs2n(l + )]

A 6N, 5 32
xin(1 + < 3 — 404,3; — %-a; + 672b0) + Sobods +
v

i~ mr)l‘}i(&f
A? 96N?
Al m[

+(1444, — (180a1+30az)ln(1+ ))ln(1+ (afa; - 2a3a,) -

—(58} + 76,8, — 843 — 13v*&,In(1 + ;}—;))In(l + -7)1} ,

N, 1 (N}-1) . 10, 3 32, 64 A? 64 A?
= "Gyt g (16 A A (2 g g le) e g B (G m-in(l + )
A? 32N, 3, 8, . f a2 A?
X!n(l + u ) (lﬁtzM:)[ 2(201-'10010:'*‘2 *48b0)+3b003+6(601+aq)lﬂ (1 + ;)7)]‘*’

+ 48N? [
(lﬁszz)z 2
A1 (NP-1)

a3a n o a N A?
- 283a,) + 4(a% + 24,8, — 483)In?(1 + ;);)}} ,

- ¢ P 1. n a A a2 a2 2
G4 = 412 ( + ?)‘*‘Ez‘(—léwz—z);{GGga‘*5(120.3"24ala;“‘602—8{13+2[84b0+3bl—4bz+120 a;
s 33,02 A N 20, 3 - 13

~4z(68; —38,+2ds)]in(1 + ;;)4» (161’3\4’)[ az+2a,a,——12ag 43+144,83+178385+ 24836,

-'34&1&253 - 12&1&1&4 + (42660&1 + Tbo&g + 63b16.,, + 2[11&1 had 7402;1?‘1’

+15v*2,8; — 6v*a,85)In(1 + A—z)} + —Nz——{eag —15a38, -343al — Halag + ia;—
v’ (16m2M?)? 4 8

39, 45, A?
-30a3a3 + ?alagaﬁ- Ta;a,tu +6a3a,d5 + 6(12a] — 943a, + 2083a5)v*In(1 + 7)1} ,

1 (N-1)

e {24 A? N,
B=g (16w2M2)2

(2bl+zag) 2431"1(1 + v ) (16 ’M’)[ 2(25600,1—11460(13'{'961(17)-—

1 2
-—(72&{-—»15&1624-15&§+6&1&3+-15—&2&,+6(v’&1+2060+IGbl)ln( ——-))ln(l + — A )}
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N? 63 A? A?
+W{18 — (18434, — ———ala,, 27v%d,84n(1 + S Nin(l+ — )}}
_ 1 96(N2—1)N. ..
g (16riMyT
_ _1768(N?—1)N,
g} (16x3M)¢

we

o A?
alagln(l -+ -v—z) N

1 192(N? - 1)N. 2
fo = EW“I“S(“: +a)in(1+ 25)

_ 1192(N!~UN,, ., . Az
o= —;?Walas(‘ial"{* az)ln(] + u_:) ,
_L384(N? - )N,

¢! (16m2M2)4
1384(N2—1)N,,. ., . . 4
“EW(QI +a7)(4a') +az)ln2(1+ v_'-‘) ,

1 48(N? — 1)N, . A2
Q}Wmas[ (5a1+4a;+Az)+12ln2(1 + —v_z)l ,
_1384(1\(3 —1)N,
g (16m2M?)t
- 1192(NZ—1)N,, A A?
Ry (88} + 48,182 — a3)in*(1 + ;}7) ,

G5 = Qg7 =Gz = A9 =0,

A s A?
(a; +a,)zlnz(l+;-2-) N

n JOP A
(164}+831a;+a§)1n’(1+;z—) ,

Qa5 = —

(61)
in which
A?
i, = A’—nvzln(l-{-—) s n=12---
l Az
——A‘+ A’ 41 (1+ =),

1 4 _ 2 4
8A 2A +Zv.ln(1+;2—) , (62)

1 3v? 3vt A?
__A( - ___Az b a2
8 g A it )

3N, 1.,  viiN,
(167r3M’)(ZA + (IGW’M’)") :

bo

i

by

bz
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In the calculation of the A-dependent terms in the coefficients, we have kept
only the parts which are divergent as A — oco. In this approximation, the local
U(N;)LxU(Ny)gr symmetry (28) is not violated, (for the logarithm function,we
have kept the entire In(1 + %;) without expanding it in powers of x—: because the
property of the vacuum is sensitive to this function (cf (69)) and we want to deter-
mine the physical vacuum as accurate as possible.). For convergent integrations we
simply take A — oo to preserve the local U(Ny)xU(Ny)g symmetry (28) (This is
equivalent to taking a finit A together with the necessary terms in ﬁ;,” to preserve

the chiral symmetry [?!]).

4.The Physical Vacuum

It is well-known that the physical vacuum is the state minimizing the effec-
tive potential, and the minimization concerns only the scalar field. Neglecting the
mesoﬁ-loop contributions (U-field loop corrections taken into account in Sec.V), the
extremum condition for the effective potential is simply

8Sess(U,E,V, A, J,0)
Joge.
dv

where S.;;(U,Z,V, A, J,0) is given in (45). Since U = 1 and L,V ,A all vanish in
the vacuum,eq.(63) simply reads (cf. (46),(47),(48), and (58))

= 0 , (63)

_6_ [lnao + /d‘z (2M2ng — M)} lae. =0 . (64)
v
From (55),(56), and (59) we see that

% Inag |yae. = /d‘x a1V |vae. - (65)

Therefore (64) reduces to

[2M* Js +v(a; —2M*) | [yee. = O . (68)
What we are interested in is the dynamical breaking of the chiral symmetry.

So that, we will first turn off the current quark mass m and study chiral symmety
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breaking from (66), and then turn on m and treat it as a perturbation (chiral
perturbation). In this prescription, we should take Jg loac.= O instead of Jg |yee. = m

in (66) so that, in the chiral limit, (66) is
vle, —2M%) = 0. (67)

The coefficient q, is calculable order by order in 1 /43 expansion (cf.(59)). If g; < 0,
there is only a trivial solution v = 0 of (67), i.e. chiral symmetry is unbroken. If

ay > O,there is also a nontrivial solution v #0 provided
a = 2M* . (68)

It is easy to see that the effective potential V5, = —S,4/(1,v,0,0,0, 0) increases
with v when v is very large. If a; |,=6> 2M?, the solution v = 0 is a maximum
of Vs, so that the physical vacuum is given by the nontrivial solution with v de-

termined by (68). Eq.(68) is just the gap equation in the present approach and it
looks very simple.

As an example, let us look at the specific form of (68) to leading order in 1/q?

expansion. g, is given in (61) and (62) which is

N, N..» A?
ay = 4—7‘_’2‘(11 = ‘l_ﬂ’CE{A - 111(1 + —v—z)] )
therefore (68) reads
v? A? N
—1 ~)=1-L
wnlt ) =1 g (69)

For N = Ny = 3, a; |y=0 is greater than 2M? and (69) does have a v #0 solution
which gives the chiral symmetry breaking in this theory. Note that (69) cannot
be simply applied to the case of N, t > 3 in QCD since when heavy quarks are in-
cluded,the current quark mass matrix m cannot be treated as a perturbation and

thus the chiral limit form of vacuum stability condition (68) no longer makes sense.
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Taking into account of the order-1/¢? contributions with a, given by (61) and
(82), we can see from (68) that chiral symmetry breaking takes place only if @, = fg
is greater than a critical value

o = 24n(N? - 1)
° " N}(2N.-Ny) -~

For N, = Ny = 3, this critical value is a,=22.3 . Therefore in the broken chiral

(70)

symmetry phase a, is large, so that the strong coupling expansion really makes

sense.

IV, Low Energy Effective Lagrangian for Pseudoscalar Mesons

The low energy effective Lagrangian for U can be obtained by carrying out ‘the
integration with respect to £,V,and A4 in (43). The U-field contains the pion, the
kaon, the n and the n' mesons. Our present study does not include the physics
related to the n — n' mixing, so that we cannot describe the n — n' system properly.
In the following, we derive the effective Lagrangian for the low lying flavor octet
pseudoscalar mesons by simply turning off the flavor singlet field, and we regard
the n-meson as a member of the flavor octet. The integration over L,V ,and A can-

not be done exactly. We consider the following two commonly used approximations.

1.The VEV Approximation (VEVA)

This is the approximation taken in Ref.[9}-[10]. In this approximation,instead
of really doing the integration, the auxiliary fields are taken to be their VEV’s, i.e.
T = 40(Js — iJp)0 + OY(Js + iJp)AY , V¥ = J; , A* = J§ . Then the normal

part of the effective Lagrangian for U is

Lg(UJ) = Inag + tr {M*[((Js — iJp)U + (Js + iJp)U'|+

+41(2M’ — v?ay){(Js + eJp)UN(Js +iJp)U' + (Js — §Jp)U(Js — iJp)U| — v} -
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2 2
—éu'azus ~ idp)(Js + iJp) + tr{ T-as(V,U'VAU) + Foaa(V,V,UY)(VV°D) -

4

4
—2"@(«1,, ~-a1) (VU VHUV, UV U) + 5‘;—6(2.;1, — 5a,)(V UV UVFUT VYU +
+1"—6(m3 — 20%ag) (VU VRU) U (Js + idp) + (Js — iJp) U]+
1 " v
+'1_9“2'(4003 + ay — Sag - 32414)(FV“VF“/‘ + FA“VF: )+

2
+a‘;-6(a, — 8ays) (FEV, UV U + FY,UNV,U) ) +

4
+i{-g§(5a3‘ bt 2035)”‘/(V“U‘V“U)tf,(vatqu)+
4
'\"36—6'(40;5 - au)tr,(V,‘U'V,,U)trI(V“UtV"U)+

,
+%amtr/[(.]3 +iJp)Ut + (Js — idp)Ultry[(Js + 1Jp)Ut + (Js — iJp) U]+

S N
+;3a,otr,(V“U'V“U)zr,[(Js +iJp)Ut + (Js — iJp)U|-

a8

~ agalCrrFvuw)(trsFy") + (try Fau) (b, FXV)] (1)
where

Vo = Dy lw:w TS L

Y = o4y —ovJf +4[Jg, Iy +iJ4,JY] (72)

FY = a#Jy —ovJ5 +(Jy, I4] + i[J4, JE)

Ff‘“’ = FJ'tFy .

As has been mentioned in Ref.[1] that in the low energy expansion, we should regard
U as O(p°), J; and J% as O(p'),Js and Jp as O(p?). Eq.(71) is just a low energy
expansion up to O(p*). The O(p*) term with tr,[(V,V,U')(V#V*U)] can be further
simplified.Differentiating by parts and dropping the total derivatives, we get

tr (VL VLU (VEVYU)] = trg[(V,, VU (V,VYU) - FL,UFR U+ (73)

H{FywFY + Fau, FL) + iFp, YU VYU + iF, VEUIVYU| |
This O(p*) term can be further simplified by using the O(p?) Euler-Lagrange equa-

tion of U which is

sM?
V.V = -U(V,U'VHU) - —[U(Js = idp)U = (Js +iJp)|
3
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M? . .
v, VAUt = ~(v U Ut - %G—[U'(Jg +iJp) Ut - (Js —idp)] . (T4)
3

From (73) and (74),we have

try((VuVLUN(VEVAU)| = tr [V UNVFUV, UV U+

+(8M B )2 (202 + 208 — (s — idp)U(Js — idp)U = (Js + #Jp)UN(Js + iJp)U")+
va.

+ (Fyu FY” + Fay F2) = Fu UV FBU +iFp, VP UV U +iFL, VAUV U] . (75)
With (75) and the SU(3) identity (I
try (VL UV UVAUIVU) = =2ty (VU VAUV, UNYU) + %[tr,(V“U'V“U)}z +
+tr (V, UV, U)tr (VAUTVAU) (76)
eq.(71) can be written as
Lo UT) = iFo’{tr,(V,,U'V“U) +2Botr,|(Js — idp)U + (Js +idp)U'} +
+L[trs(VLUNVPU)P + Latr(V, UV, U)tr (VAU'VU) +
+Lgtry(V UVFUV,U'VU) +
+2BoLtr,(V, UIVPU)tr|(Js + iJp)U" + (Js — iJp)U] +
+2BoLstrs [V, U'VPU ((Js + iJp)U' + (Js — iJp)U)| +
+4B2 Lgltr((Js — Jp)U + (Js + iJp)UN)* +
+4B2Lyftr;((Js — iJp)U — (Js +1Jp) UM +
+4B2Lytr;|(Js — iJp)U(Js — iJp)U + (Js + iJp)U' (Js + iJp)UY -
—iLgtry(Fru V*UV*U' + F V*U'V'U)
+Laotry (U Fru UFE) + Hytr f(Fru FR* + FLu FL")
+4B’H,:.-,[(Js ~iJp)(Js +1iJp)] —

~ 384 [(tr,Fv,,)(tr,F‘“’) + (tryFaw)(trFA")] (77
in which
2 8M7 4
Fi= %G& By = 7‘;‘» L= 1152 ——(2ay3 — 5a;3 + 5ag — azs),
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ot K
L = —(2a12 — 5613 — 624 + 4a2s), Ly = E[as - v¥(aiz — aus)],

576 : 4
czv—::'gﬂ—]g‘,‘, 5 = 25:3M’(a3~2v ac), Ls::ﬁiﬁﬁ?’ L, =0,
Ly = '55%']\0721( ;1:1: az) — v? > e, Ly = ——92;—(2% + ay — 8ays), Lyo = "':—;’06 ,
= 334 ——(40a; + a + 8vag — 8ag — 32ay), Hy = 512(136 l0g — M‘ azag)
(78)

Eq.(77) contains the complete Gasser-Leutwyler chiral Lagangian I/l up to O(p*)
with the coefficients given by (78). Fixing N, = N; = 3,the VEV v can be solved
from (68) for given A and g,. Therefore all the Gasser-Leutwyler coefficients are
expressed in terms of the two fundamental parameters A and g, through the calcu-
lable al;s (cf.(59)) whose up to O(1/g?) formulae are given in (61) and (62). There is
an e);tra term (t,he last term) in (77) containing only the Uy (1) and U,(1) external
sources.From (61) we see that a;g is at most of O(g;*). If we gauge the flavor degree
of freedom and regard the sources JJ and J4 as the corresponding gauge fields, the
effect of this extra term is that they make the Uy (1) and U4(1) effective coupling
constants different from the SU(Ny) coupling constant.

The explicit form of (78) to leading order in the 1/g? expansion can be easily

read out from (61) and (62). With the relation (69), we have

N A2 A? N Ny N,

2 LA e | T e — —-—!- = —————f = —
B = Gavin(t+ 35) = ;o (Ve = 30), Bo= 35~ N, L= e
L, =2L,, ) Ly = ~4L,, Ly=0,

N, N.- % A?
Ly = — on? N, ln(1+—:—), Lg =0, Ly =0,
N. N, N, A?
Lg = L1[24~—(1 - 71)(1 - W’):nu t=) -1, L=8L Ly = —4L,,
(V. -
H)_ = L;ln(l + ;{), Hg = Lz[l - 24——"'1;]—?}—'1"(1 -+

It is interesting to see that, in the present approximation, L,,Ls,Ls,L4,Le,Ly,Lg, and

Lyg, all coinside with the corresponding large-N, and chiral limit results in Ref.[11].
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In the N, — oo limit our F¢ also coinsides with the corresponding chiral limit result
in Ref.[11]. However, the physical origin of our F{ is different. Our F; is scaled by
v rather than directly by A (Note that Fy vanishes if v = 0.). This is consistent
with the conventional understanding of F, which leads to the Goldberger-Treiman
relation. Different from the result in Ref.[11], chiral symmetry breaking (cf.(69))
makes our F§ proportional to N, — ﬁ;‘» rather than simply to N.. This difference is
significant for N, = N; = 3 since it makes our cut-off A larger than that in Ref.[11]
by a factor of /2, ie. A=453MeV, if one requires F? to fit the experiment. However,
this value of A is still lower than mx and m,. For N, = N; = 3 the coefficients
Ly,La,Ls,Lg,and Lo in (78) are in reasonable agreement with experiments !}, but
Lg in (78) has a wrong sign as compared with the experiment [, In the following,we

consider a better approximation.

2.The Stationary Phase Approximation (SPA)

In this approximation, the functional integration with respect to L,V and A is
approximately represented by the contribution of the classical orbit (the solution of
the Euler-Lagrange equations for £, V# and A¥#). This is the leading term in the

semiclassical expansion, and thus further quantum corrections can be calculated

in the standard way. The SPA reflects more about the path-integration than the

simple VEVA does.

The Euler-Lagrange equations for L,V# and A* are

68.4/lUT,V, A, J 0] -0 68,44|U,L,V, A, J,6) 0 8S.4slU,L,V, A, J, 8

355 : 5V, : 5A,
(80)°
The classical solutions needed for calculating the effective Lagrangian up to O(p*)
are
M? e
L= m[n(]; ~iJp)0 + Q' (Js +1Jp)N + 1—(;‘;71;(0,3 - 2v%ag)Q(V, UIVFU) O +
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1 M . .
+(2a; — Nyaie) ™{ 2 zal,stff[U(Js ~1Jp) + U'(Js + iJp) |+
c}cg 2 2 1
Isvaz}axe(ag —2v ag) + v az]tr,(V“U V“U)} s (81)

2

VE =T+ :'%a,c,[v(v'*u*) ~ (VeUNU],
2

AF =T8¢ i%a,c,[U(V“U') + (VeUYU],

where
(2Ny — N, )A? (2N; — N JA?
82 ’ 872

Then the normal part of the effective Lagrangian for U is

1
= =] + Evzag]”l . (82)

2
Logs(U,T) = lna.a+ir;{;ga;,clcg(V,,U’V“U)+M'v[(.l5 —iJp)U +(Js + idp)U')}+

v? v v?
+r{ oA (VLU (Y, VU) = Slascd(1 — Taser)(cles(a + o7 — 4aie)+
1 2 1
+Ea;(l—%—ascg)(40a.;+a4~8a8-32a14)}+gc:c;(2a1,—5a13)](V“U'V,UV“U'V”U)—-

v? v? 1 v?
—‘i‘g—‘z[ascg(l‘70302){C;C2(2%+a7—8015)—gaa(l—?agcz)(862+a¢*803~3201()}+
4,432 4 8 ¢ 42 2 2 tosr?
+§clc,(—§-v a2013 = gv'aza;3 — dv'ag + dviasae — a3)}(VUTVAU) +

Ml 2 N . t .
+"—1‘€a—(a3 —2v ae)(v,.U V“U){(Js - IJP)U +U (Jg + 1Jp)}+
2

2

+m—[(.]5 - 1JP)U(JS - ZJP)U + (J,g + lJp)U'(Js + th)Utﬁ-
t]

2 2
v v
+z§§2[4cfcg(2% + a7 - 8ays) + asea(1 — 74301)(4002 + a4 — 8ag — 32a14)]x

(R + FR)(VUVUY) + (R~ FR)(V,U19,0)] -

—égz[&a.;ﬁcg«a,c,(l —E;aac,) (400, +a4—8a3—32a14)|(Fy uo + Fan, ) U (FE* - FA\U' +
+%§ [4viasclici+(1— %zasc; + B‘;aici) (40a2+a4—8as—32a14)| (Fv uu Fi" + Fa, 1)~
M = 2y i) 0 + i)+
2va,
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N,v
+clc,[1152 (5a24— a¢;)+{128an(a3—-2v a6)+ ’2 ,o+32 ®_ (as—2v?ag)?}eo]ltr,(V,UIVHU)P
ot
57601‘:2(4““ —an)tr,(V va U)!f/(V“U'VyU)
Mladed oy a0 200 1y (V01 VRU)r|(Js — iTp)U +(Js + iJ)U}+
16 vay az
M‘Coalg . . t112 a1 tr,F, tr ¥
via, {tr[(Js — iTp)U + (Js +iJp)U'}" — ooltr Frp) (tr FY7)
v?

a

3:‘:(1 - _“392) (t'!FAw)("!FA ) (83)
where

coE(zaz - N,am)—l . (84)

After using the O(p?) Euler-Lagrange equation (74) and the SU(3) identity
(76),eq.(83) can also be reduced to the standard form (77) with

2 SM’

P B, =

Fy Foaa o Bo=
o
L, = 1152{c c3(2a12 — 5ays + 5as — 2as5) — 3ase3(1 - -:‘—agc;){c,cg(2a5 +ay—8as)+
1 v?
+—a3(1 — Ta;c;) (4002 + a4 — 8ag — 32014”}"‘
+c°56112cz {Za‘s( as — 2v%a)* + Nyvial, + 4viage(as — 2v'ag)}
2
v
Lz 576{6162(2(112 5013 — day + 4025) hnd 3(156;(1 - ?asq)[cic, (20-5 + a7 — 8015)+
1 v?
+—8—a3(1 - Z—a;cz)(llﬂag + ay — 8ag — 32a14)}}
cics 16 3
s = 2516; [(03*202%)2—?(012 alg)]+ ﬂ;cz(l———0.301)[6102(05+2&1-12&15)—
3 v?
16as(l - 76362)( 40a; — a4 + Bag + 32a,4)] + -—-ae,c,cl ,
3.3
ascociey 2,y 2 ascic3 2
= ——2[(ag—2v +v agazp| , Ly = —"(as—2v ,
L, 2564, [(as ag)aje+v azaz 5 256a,( 3 ag)
85

L alajgeoeics Lo=0 Ly = ciel( al v? ) (#)

S = “l02da, ' T 0 2T O9N524q, 102
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2

v
Ly = 384[4clc,(2ag+a1—8a15)+as¢:z(1-'Taacz)(4062+G4"8a8‘32“14” )
ot
Lio=— 384[86“162 0303(1"‘4‘*03C3)(4063+a4_8a8 32ay)] .
H = cled4 ! (1 ~vzac +vv—‘a.’c’)(40a +a,—8ag—32a14)
960612 384 252831 2T ay 8 )
clcz

16
* = 5120 —L2 [g2(1 M’ )+—u azag] .

Thus we have also obtained the Gasser-Leutwyler chiral Lagrangian in the SPA,
but the coefficients given in (85) are different from those in the VEVA (cf.(78)). To
leading order in the strong coupling expansion, we see from (61) and (62) that the

explicit from of (85) is

2N, - N.) A? A2 N, 3N,v
Fr= BN g N, - 1
Q 12“_1 v n( + vz) 127 2(2 A )( Nc)’ 0 2(2Nf-N‘)(1.. 2L;'v.r:)‘

__N Nyvar, Noya A? Ny Ny 2N, ., 2N, |,
L1 = gii0gee (3201 g ) (4 7 in (1 + 5) 4160 7n) (A (-1 +H (= -0
Lz :2[41,

= N i aa-Noya Ny, 2N A? 2Ny
Ls = grgana 7320153 (e 1)+ (557 - 1) Iin(1 + T5)-24( (1+Nc)( -0

Ny 2Nys\g 16 Ny oy 2N, 2N, )
1=y 2o _y _ 2Ny
+8( 2N,)( Nc) 7 (1 Nﬂ) (1- 1) +e N, )%},
L( :—’0,
N, 2Nf s Al
5 = 17281r’( ~-1)%n(1 + v_’)‘
(86)

LG = L-, :0,

_ N, 2N; _, A?
Le = g3pami (3, — Wm0+ 35),

- N Ny Ny A* 2N,
Lo = 43211{4(1 2N, )(1+N Jin(1+ ;) (T,MI) 1

— Nl f A% 1 2N, 2
L=~ 43271'1{4(1 2N, (1+—-)ln(1+—2—)+2(_]€_1) b

N Ny A* 2N,

- N! 2
Hy = - (25— Nt )‘ (1+-3)- (Tc—l) h
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N N
11522 N,

Hy =

(8N. - 5N)) A?
1 2—N!—In(1 + -v—:)

Several remarks are in order:

i. Compared with (78), there is an extra factor %(% — 1) in the formula for
F? in (86). The positivity of F¢ requires that 2N; > N,. This condition is only due
to the SPA and will be modified by the quantum corrections. For N, = N; = 3,
the requirement is satisfied and this extra factor further increases A/F; by a factor
of /3 which makes A just greater than twice of the constituent s-quark mass if one

requires F¢ to fit the experiment. Therefore this result is quite reasonable.

ii. Different from (78),the positive term in Lg in eq.(86) does not vanish at Ny = N..

Therefore the SPA result of Lg has a correct sign as compared with the experiment!!.

iii. In both VEVA and SPA, the obtained Ly is zero even with O(g;?) correc-
tions. This is not surprising because it can be shown that Ly is related to the n' — 9
mass difference,

ml, —m} = 16N Fy*miL; . (87)

The n' —n mass difference is related to the U4 (1) breaking mechanism, say the topo-
logical nontrivial solution 151, which is not considered in the present calculation.

Therefore Ly should be calculated by further taking into account the topological

nontrivial solution.

V. Phenomenological Predictions

We shall first determine the two fundamental parameters A and g, in the theory
by taking two suitable experimental data as inputs, and then make phenomenolog-

ical predictions from the obtained effective Lagrangian. Since the SPA is a better
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approximation than the simple VEVA, we shall take the SPA formulae through out

this section.

1.Determination of A and g,

The present theory considers three flavors of quarks. Thus it is better to chose
two well measured quantities concerning all the three flavors as the inputs. In this
paper we take the well measured pion and kaon masses as the inputs.We neglect
the small isospin breaking effect so that we take the isospin averaged m, and my

which are 6]

1
my = —3-(2m,t + Myo) = 138.0367+0.0007TMeV

1
MK = S(mxs + myo) = 495.65910.020MeV . (88)

The theoretical formulae for m, and my obtained from the chiral Lagrangian in-
cluding the pseudoscalar meson loop corrections have been given in Ref.[1]. Our
present theory is an effective field theory so that the obtained quantities are at the

scale 4 = A Bl Therefore the formulae for m, and mg in Ref.[1] read

3
I

- 1
x = 2mBy(l+ u, — Fhnt 2mKs + K,) ,

- 2
my = (M+m,)By(1+ 3 + (M +m,)Ks + Ky) (89)

where

3
[

1

E(mu +md) y
2mBol 2mB,
2R L AT

ilm+ +2m) By 3(m + 2m,)B,

Hy =

fn = 32x2FY i A? ’ (%0)
8B,
Ky = 43(2Ly- L) ,
[+]
16B
K, = F2°(2m+m,](2La—L5),
0
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The current quark masses have been determined from the current algebra by Wein-
berg ¥l which are m, = 4.2MeV, my = 7.$MeV, m, = 150MeV. Taking our
SPA formula for Fy,Bq,Ls,Le,and Lg up to O(1/¢?) on the right hand side of (89)

together with eq.(68) with the same accuracy, we obtain from the input data

A = B830MeV ,
92 4
s = L N , 91
a ype 2.13x10 (91)
2
v

This value of A is quite reasonable since it is just higher than twice of the
constituent s-quark mass and is still in the few hundred MeV region in which the
QCD coupling is strong. Furthermore, as a rough estimate, the tree level SU(3)
averaged vector meson mass My in our theory can be read out from (60),(47) and

(58), which is
NA?
M? - sipr ,
(éa“ - 2—5"01 - l—;'z‘ﬂm, + ;—‘aa)
With the values (91) we get iy = 946MeV which is higher than A. This is con-

(92)

ﬁ%,:

sistent with the idea that the vector meson field should be integrated out in the

effective field theory with the cut-off A (The value My = 946MeV is not far from
24 4m3 . +m3 +mi

the corresponding experimental value *% i, = (s—mgmw’ = 83TMeV ).

The determined «, in (91) is much larger than the critical value a, (cf.(70)),
thus chiral symmetry breaking really takes place, and the 1 /gf expansion converges
rather quickly, so that our formalism is self-consistent. The largeness of ¢, is due
to the fact th4t to leading order (g, — o0) the predicted values of m, and mg from
(89) are already very close to the experimental values (88). We would like to em-
phasize again that this g, should not be identified with the renormalized coupling
constant in any of the conventional renormalization schemes in the full- range QCD
theory B, It is also different from the effective coupling constant in the chiral quark

model M in which the quark and gluon fields are not integrated out.
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2.Predictions for the Gasser-Leutwyler Coefficients

With (91), the values of the Gasser-Leutwyler coefficients obtained from (85) up
to O(1/g?) are

Fy=92.1MeV | B, = 1614MeV | Ly = 0.561x10"% |

Ly =1.12x107% |,  Lg=-315x10"%, [L,=1.38x10"%

Ly =0.272x107% |, Lg=-5.71x10"7, L;=0 , (93)
Ly = 0.233x1073 |, Ly =4.46x10"% , Ly = —3.45x1073% |

Hi=-1906x10"% |, H; = -0955x10"% .

In the sense of the effective field theory, these numbers should be understood as the
values evaluated at the scale 4 = A, therefore they should not be compared directly
with the experimental values given in Ref.[l] in which the scale is g = m,. The
evaluation of the Lis considering the U-field loop contributions has been calculated
in Ref.[1] which is

Li(ua) = Li(us) + —~in™ | iz 12,0010, (94)

1673 py

where L] is the renormalized coefficient in the minimal subtraction (MS) scheme
in dimensional regularization, and the values of I's are given in Ref.[1]. It is known
that, up to I-loop, if we replace A by u in the momentum cut- off regularization,
the obtained results are the same as those in the modified minimal subtraction
(M) scheme 1?8, In our present approximation, we keep only the divergent part
(as A — o0) in the A-dependent terms in the coefficients a!s. Therefore there is
no distinction between the M'S scheme and the MS scheme in the present approx-
imation. Thus the values in (93) can be regarded as L’s at the scale u = A, and
hence we can used (94) to evolve them down to the scale u = m,. These are
listed in TABLE I together with the experimental values given in Ref.[]1]. We see
that L,L,, Ls,Ly,Lg are in good agreement with experiment; Lg,Lg,Lg,and Ly are
smaller than the experimental values but are still reasonable. The problem of Ly

has been discussed in the last section. Although some of the predicted coefficients
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lie outside the experimental error bars, this deviation does not cause much effect on
the predictions for most of the physical observables since the Lis are coefficients of
the O(p‘) terms which contribute only a small portion to the physical observables.
In the following subsections, we shall calculate the main physical observables from
our theory and compare them directly with the experiments. In the calculation of
the low energy pion properties, the coefficients I},]3,- - -7 in the N; = 2 theory are
usually used [}, The relation between these coefficients and the L!s has been given
in Ref.[1. In TABLE II, we list our predicted Iy, I3, - Iy and the corresponding

experimental values (1}, We see that the agreement is also nice.

3. Predictions for m,,Fy,Fg,and F,

In this paper, we simply regard the n-meson as a member of the flavor SU(3)
octet 0~ mesons and denote its mass and decay constant by mgs and Fg, respec-

tively.

At tree level, the formulae for mys,Fy,Fx, Fyg are simply !

miy = g(m+ 2m,)By ,
Fp = Fx=Fp=F . (95)
With (93),we obtain
mug = 574MeV | F, = Fyx = F3 = 92.1MeV . {96)

Taking into account of the U-field loop contribution, the forrpulae become {1l

2 4 2, _ 2 1
mly = 5(rn- +2m,)Bo[l + 2u — gin + 3(M + 2mu) Ks + Ki| + 2mBol~pix + i + S o]
Fp = Fll -2, — pg + 2mKe + K|
3 3 3 _
Fx = F0[1 - Zl‘r - E“K - Z“n + (m+m')K6 + K"'} ’

I

2
Fos Foll — 3uy + E(m +2m,)Ke + K4 ,
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(97)

where 7, iy, iy, K3 and K, are defined in (90), and

_ Bo o (ﬁ + m,)Bg
#r = g (M T
128 B2 4B 8B
Ky = ——3(m,~m)*(3Ls+Ls) , Ke= —p Ls , K7 = (2mi+m,)L, . (98)
9 Ff F? F

Up to O(1/¢?),0ur SPA predicted values are

mps = 580MeV | F, = 107TMeV |,

(99)
Fy =116MeV | F,s = 122MeV .

Thus the U-field loop contribution increases all these quantities and makes F, 5 >
Fx > Fr.The predicted F, and Fx can be compared directly to the experimental
values (¢ F,+ = 92.5+0.2MeV and Fxz = 113.0+1.0MeV (We have multiplied
the values in Ref.[27] by 1/v/2 according to the present definition).They are in
reasonable agreement.Our predicted m,s is higher than the experimental value of
the physical n-meson mass m,, = 547.45+0.19MeV %) The deviation is 6%.There is
a model-independent relation between F,4,F,, and Fy,

Foe 4, Fy
—_— e ] = —f— ~ 1
F, 3(Ff ) ’ (100)

derived from the SU(3),x.SU(3)g chiral perturbation */. The numberrs in (99) sat-
isfy this relation with a deviation ~20%.Recently there have been new experimental
data for the physical F,: F, = 94+7MeV 1% and F, = 914£6MeV Y These are
considerably smaller than the predicted F,5.The conventional interpretation is that
there is a significant n — n’ mixing with which the theoretical values %f the physical

m, and F, are all close to the experimental values (131,

4.Predictions for the Quark Condensates
The formula for < gq > is given in (34).In the chiral limit, at tree level,

- 1
<Uu>=<dd >=< 55 >= N, < gg >= ~2M% = - F?B, , (101)
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where Fy and B, are given in (85).With (93),our SPA predicts
< Tu >=< dd >=< §s >= —(0.24GeV)® . (102)

This is very close to the original QCD sum rule determined value —(0.25GeV)3
1821 Taking into account the U-field loop correction !} and neglecting the isospin

breaking effect,we have

<THu>=<dd >

1
—F3Bo|1 — 3u, — 2ux — 3Hn +mK, + K, ,

< 38 >

Il

4
'*FgBoil — 4y - 5‘1" +m,K; + Kg] , (103)

where
328,

FZ
and we have ignored the #° — 1 mixing in (103). With (93), the SPA predicts

SBO

K, = (2L5 + Hg) Ky = (2m + m,)Ls s (104)

<Tu>=<dd>= —(0.26GeV)® , < 3s>=—(0.26GeV)® . (105)
These are also close to the QCD sum rule determined value.

There are also other QCD sum rule determined values of < %u > corresponding
to different values of 7 1% which are rather diverse from each other. We know
that < 7 %u > is renormalization group invariant %, therefore we can compare
the theory with the experiments on < m #u >. Various QCD sum rule determined
< 7 Tu > range from —(0.093GeV)* to —(0.097GeV)* ¥, Our SPA predicted
< muu > (cf.(105)) is —(0.101GeV)*. The agreement is quite reasonable.

In view of the fact that the QCD sum rule determination of higher dimensional
condensates, e.g. the gluon condensate, the four-quark condensate, etc, is rather
uncertain *!, we are not going to consider the higher dimensional condensates in

this paper.
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5.Predictions for the Pion-Pion Scattering Amplitude

At low energies,the partial wave 7 — r scattering amplitudes ¢/ (p*) can be ex-
pressed in terms of the scattering lengths af and the slope parameters 4/, where [
and / are, respectively, the isospin and orbital angular momentum quantum num-

bers (. From the SU(2),xSU(2)x chiral Lagrangian, the formulae for a/ and b/

are 11
a = g:lz"){ 845 2':,23°(l;+21=~—73+28—1)} ,
b = W{l 1217r7 2mBO(21+3‘z—%%)} )
@ = f:;f.‘l{ - 121 ,2mB°(h +20; + z)} :
b = SKF’{ IZIW’ETF%( v +3h - I%)} ’
a = Wu_ép?—?zﬂ(ipiﬁ%} , (106)
by = 28811r3F‘( 11+12+1—9216) ,
@ = m(auz,—%‘?),
o = m(un,-%"g), "

The SPA predicted iy,l3, - - -,I7 are listed in TABLE II with which we obtain our
af and b/. The comparison of the predicted a/ and bf with the experimental values
taken from Ref.[1] is listed in TABLE IIL Some of them are in good agreement. All

the deviations are within 30%.

6.Predictions for the Pseudoscalar-Meson Form Factors

Various form factors of the pseudoscalar mesons have been systematically stud-
ied from the chiral Lagrangian in Ref.[1]. We just quote the related formulae here

and make our predictions.
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Let j, be the electromagnetic current of quarks. The vector form factors are
defined by
<mtlglwt>= (P, + P F(Y)
< K*|j|K* >= (9, + p)FF (1)
< K°\5,|K° >= (¢, + P ) (1)
< K*ams | 70 >= JH{(, +p) [F7(0) + (B - p)IF(0)}

where p, and p|, are the momenta of the initial- and final-state, respectively, and

(107)

t=(p'— p)?. For low space- like t, these vector form factors can be well approximated
by .
Ft)=1+i<rt>pt+--,
FE'y =14+ <r?>E e
FEM)=1<r>Ft+.--,
FrO) =IO+ s>y}

(108)

The square root of < r? >, measures the charge radius of the pseudoscalar meson.

The scalar form factor

fE(e) = f%n+;§§;;fwn, (109)

can also be approximated in terns of the scalar radius < r? >~ by
1 e ‘
(1) = ){1+6<r SETt+ -} . (110)
Furthermore there are also l’orm factors of the scalar densities
<7 |uu+dd—23s |t > = 6FF4(t)
<n'|uu+dd+3s |7t > = §*FOY) (111)

<n'|gu+dd|nt> S*FI(Y)

1t

and they can also be approximated by

Fs(t)=Fs(0){1+%<r2>gt+...} ,
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F(t) = FO(0){1 +é <%t (112)

- . 1 .
Fs(t)ZFS(O){1+(—S<r2 STt} .

In terms of the parameters in the chiral Lagrangian, the vector and scalar radii

can be expressed by (1

12L, 1 m2 mk
<rl>r o= 2 _i9p il
v 7 31r7F§[ - ln +3]
(] 1 m o
<f: >€'( = “I—GWIR——K‘ R < r? >5+=< r? >;+<f? >{,( ,
2 2 2
2 K~ 5 m 3 m
<> = <> ———={3h + 3hy +ln—% 4 Zip—2 6},
iy (O () 4 3k () + 2 R L )
Ke 6 FK 1 19m} +3m?  m?
<rls> = e (] — KT ‘et
s m}(—mi(F, ) 1927 2F2{ 5h1( K) m§(+m3, h?(m}()
6 Fy 1 1
<>t - - (K _ - 3ty K
s mf{—mf(Fx 1)+647r‘F02 mi s 2{6(2mK m:)in —~ +
+9m21n£—-2(m,{ m )(10+lm_)}
m2 3m,, ’
6 3 LS|
2.0 2.8 m
<> = <r?xd {121 t—i .
s = <rzstp{iale- gn "A2)+2387r2m3,} :
. 4 3 m} m? 1
<>t = <r?>% +— {121 1+ in—X ~
° st g+ ings ¥ gy
where
1(z® -3z -3z +1) 1,z+41 1
hi(z) = = Inz + - :_
i2) = 3 (z—1)° G s
1 1+z 3z(1 + z)
ho{z) = = ? :
2(z) 2(1—1) + -2p Inz . | (114)

With (93), we can predict all these radii up to O(1/¢%). They are listed in
TABLE IV together with the experimental values taken from Ref.[1} . (The ex-
perimental values of < r® >4 < r? >$and < r? >% are obtained from theoretical

relations with certain experimental inputs.). The agreement is reasonable.
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V1. Conclusions

To summarize, we have derived the effective Lagrangian for the low lying pseu-
doscalar mesons up to O(p*) in the framework of the effective field theory with a
physical cut-off A from the cut-off QCD Lagrangian Bgc),- p given in (5) which leads
to the gauge invariant form of the gluon effective Lagrangian after integrating out
the quark fields. We are working in the strong coupling region, so that we make
1/g? expansion. To leading order, the integration over gluon fields leads to a NJL
type four-fermion interaction between quarks. After introducing auxiliary fields for
mesons and expanding the action S,;; in power series of the external momentum,we
obtain a general effective Lagrangian (60) for the low lying pseudoscalar, scalar, vec-
tor, and axial-vector mesons up to O(p*) which contains 44 terms expressed in terms
of 29 coefficients a,,a3," - -,a29 given in (59). The exact WZW term is also included
in the imaginary part of S,s;. The coeflicients a4, a;, - - -, @29 can be calculated
order by order in 1/g? expansion as functions of the two fundamental parameters A
and g,. The gap equation (68) derived from the vacuum stabillity tondition leads
to chiral symmetry breaking provided 2N, > N; and e, > a, (<f.(70}), and the
quark condensates are calculable in this theory. We then take the SPA to integrate
out the scalar, vector, and axial-vector-meson fields,and an effective Lagrangian for
the low lying pseudoscalar mesons alone is obtained up tp O(p*). It is of the form
of (77) which contains the complete Gasser-Leutwyler chiral Lagrangian with the
coefficients given in (85), which are all calculable functions of A and g,. The main
theoretical uncertainty in this approach comes from: (a) neglecting the quantum
fluctuations beyond SPA, (b) neglecting the non-divergent terms in the momen-
tum integrations which diverge as A — co. The two parameters A and g, are then
determined by taking the well measured values of m, and my as inputs. The ob-
tained A = 830MeV is quite reasonable and the obtained g, is really larger than
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a. 5o that chiral symmetry breaking really takes place,and our approach is self-
consistent. With the determined A and g,,the predicted physical observables in low"
energy pseudoscalar-meson physics shown in Sec.V are all in reasonable agreement

with experiments.

Several improvements of the approach should be considered in the future inves-

tigations:

(a) To get a nonvanishing Ly,topologically nontrivial solutions should be further
taken into account. This will give rise to the n — n’ mass splitting, the correction

to the gap equation and will induce the tensor meson in the theory (2],

(b) To reduce the theoretical uncertainty, we should take into account the quantum
corrections to the SPA and keep more terns in the momentum integrations which
diverge as A — co. The latter requires a carefull investigation of the corresponding

terms in L3’ to preserve the local U(N;),xU(Ny)x symmetry.

The encouraging phenomenological results in this paper imply that the present
approa.ch may be generalized to the study of other interesting problems such as the
strongly interacting electro-weak symmetry breaking mechanisms. For instance,it
may be applied to study the dynamics of the technicolor, walking technicolor,and
even non-QCD-like technicolor type theories. It is known that when applying the
pure Gasser-Leutwyler Lagrangian to the study of the technicolor theory, unitar-
ity will be violated when the energy exceeds 17¢V U], In the published papers
17 certain phenomenological unitarization models imitating the techni-p-meson res-
onance is put in by hand to avoid the violation of unitarity.The advantage of the
present theory is that the low lying vector mesons are already included in the theory
and we should just keep them unintegrated to avoid unitarity violation. This kind



of investigattions will be presented in separate papers.

Acknowledgement

We are grateful to Y.-B.Dai, X.-Y.Li, R.N.Cahn, and I.Hinchliffe for interesting

discussions.

Appendix A

Consider a chiral transformation with the group elements gr(z) = g(z), go(=) =

g'(z), where g(z) is a unitary matrix. The quark field transforms as
¢—¢ =[9(2)Pr+¢'(D)Pelg , T-T =g(z)Pr+g"(2)Ps] - (41)

Then the functional measure becomes -

DgDT = D¢'DF{Detlgl(z)g'(z) P + 9(z)g(z) PLI}™
= D¢'DTezp{ — Trinlg(z)g(z) Pa + ¢'(z)g"(z) Pi]} - (42)

 To evaluate Tring(z)g(z) Pr+g'(z)g' (z) P] we consider further a variation g(z)—g(z)+

&g(z). Then
§Trin[g(z)g(z) P + g'(z)g' () PL] = 2Tr|g"(x)69(z) Pr + g(z)6g' (z) PL|
= 2T'r[g"(z)6g(z) Pr — b9(z)g' (z) P] = Tr{[¢"(z)69(z) + 69(z)g! (z)]s} .  (43)

This functional trace is actually not mathematically well-defined. We take Fu-

jikawa’s technique ['¥ to regularize it,i.e.

Tr{lg'(2)89(2) +50(2)g" ()} = STr{lo!(=)6ala) +a(a)o! (sl T +e~ )}

(A4)
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where
iD'=id+a(z)+¢(2)+ IV (@) + 4 (D) » (45)

in which a(z) is an arbitrary scalar function, Cy(z) is an N. x N. matrix, JY (z)
and J4'(z) are Nyx Ny matrices given in eq.(15) in the text. The evaluation of (A4)
has been given in Ref.[10], and we just quote their result. The difference between
our D' and the corresponding Dirac operator in Ref.[10] is that we have in_cluded
an extra term ¢ (z) in (A5). Therefore the corresponding result of (A4) is

Tr{[g"(2)b9(z) + b69(z)g' (2) 175} = Tr'{|g'(z)é9(z) + b9(2)¢! (x)|G (K, TV, J4)} ,

(A8)
where
G(K,JV',J*) = %e‘“””{%l;,‘.]{,‘.};‘.];‘ + %(Fy“va,a + %FAWFA,«)"‘
—%(J,:‘J:Fv,, + FyuJ2 T2 + TAFy,, I8 + El;;tr,(prC""") , (A7)
where
Fyu = 0udvy — 8udvy + ilJvuy Jvu ) + 8[Japs Jav)
Fa = 8ydaw — 8,0 ay + i ([Ivis Jas] + i Jvi]
Cyu =8,C, - 8,C, +1[C,,C,] - (A8)

Integrating (A3) over 6g(z), we can get Trin|g(z)g(z)Pr + ¢'(z)g!(z) P]. The

result has been given in Ref.[10], and the correspond result here is
Trin[g(z)g(z) Pr + ¢'(2)g' (2) PL] = :i/ tr'(u"'du)’+
24072 Jp,

. 1 -
+i [s Al J2, T7) - f d*zindet(u) T—tr(CuC™) , (49)

where u(z)=g(z)g(z), D; is a five-dimensional disc bounded by §4%,and A is given in
eq.(11) in the text. Substituting (A9) into (A2), and regarding C, as B, or M~%1,,
we get eq.(9) or eq.(41) in the text.
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Appendix B
We sketch here the evaluation of ReTrin(iD). In the Euclidean space- time,
ReTrin(iD) = %Trln{ — A (i0 + V= APgs)(i0” + VY — A%)
—[(10* + V} = A*45), (S +iP)]- + (S — iPw){(S + iP)} . (B1)
Using the technique in Ref.[24], (B1) can be written as
ReTrin(iD) = / &z / 2 trin{~ 7, (§0% +kH 4V — AR (i0 +K VY — A )

—{("3“+k"+vxp'A“’?s),’7p(s+iP’75)}~+(5—5P’Ys)(s+fp’¥s)} ' (32)’

in which tr is the trace in the space of color, flavor and Lorentz spinor, and the
derivative 9% operates only on the fields V}*,A*,S,P and the extemal source J¥. We

introduce the following covariant derivatives

D"(F) = g¥ IM S.P.Vr, AF '"‘l'(V“—“A“'ys) . Ny
DAI) =% |on 1n —iM-* . (B3)

In terms of these covariant derivatives, (B2) can be written as
ReTrin(iD) = / &'z [ argtrin{ v = kyk* +,7, D (1) D} (1) - 2ik DY (1) +
+Du(F)D"(F)+zDr(I)Du(F)—z:'k,D"(F)w} . (B4)
where

8= 37" DulF), 7 Dy (F)-=ilD*(F), 1(S+iPr)|-+(S—iP2)(S+iPa)—v* . (BY)

L K

The momentum integration in (B4) is understood to be taken below the cut-off A.
With the cut-off A, the invariance of ReTrin(iD) under the local U{N;).xU(N/)r
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transformation cannot be completely maintained. In this paper we take the ap-
proximations: (a) for momentum integrations which diverge as A — oo, we keep
only the divergent terms (For In(1 + 47),we keep its full expression without ex-
panding it in powers of ;’T’;), (b) for momentum integrations which converge as
A — oo, we simply take A — oo (This is equivalent to taking a finite A and tak-
ing account of the necessary terms in L3/ to preserve the local U(Ny),xU(Ny)g

(M2)

symmetry *1). In this case the only term contributing to S, 77 and violat-

ing the local U(Ny);xU(N;)r symmetry induced by the finite A is in the term
Wfd‘xtr(V V#+ A,A*) which will be cancelled by a corresponding term in £3J/

(211, 50 that the local U(N;).xU(Ny) symmetry is preserved.

Doing the low energy expansion up to O(p*),we obtain
1
ReTrin(iD) = Ez @&, (B6)

=0

where

Q= [ &'z / (:;l;‘tr In (v +k* 2,7, D (1) D (1)~ 2ik, DY (D)}
Ql-zjd‘x (2 )‘tr(Am)
Q:=2 f d'z / Wtr{A;(D;‘(I)—:’k“)D“(F)} ,

jd‘x[ ( —tr(ai4?

Q=- /d‘z B (AL DEI) k)DL (F)+Au(DHI) k") AuD, (F)6)

(2 )
Qs = [ d'z [ Wtr{[A,g“"—:%A;(D}‘(I)-ik“)Ab(D}'(I)—ik")]D,.(F)D,(F)} ,
Qe = /d‘x (2 )‘tr(A )

/ aizf & = )‘tr{A*(D“u) = ik*)$*D,(F) + AY(D}(I) - ik*) AssD,(F) g+
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TABLE 1 The predicted Gasser-Leutwyler coefficients Ly,
Ly, -, Lio (in 10~°) in SPA up to O(g;?) at the

scale 4 = m,.The experimental values are taken

from Ref.|1]
Ly L, Ls Ly Ly
Theory 0.8 1.6 -3.2 0.3 1.3
Expt. 0.9+0.3 17107 -4.4%25 005 2.2105
Lg L, Ly Lg Ly
Theory 0.2 0 0.5 5.1 -4.1

Expt. 040.3 -0.4+0.15 1.1£0.3 7.4+0.7 -6.0£0.7

TABLE II.  The predicted coefficients Iy, - -y in Ny = 2 theory in SPA up
to O(g;?) at the scale y = my, The experimental values are taken

from Ref.[1]

A Iy ie by
10.1 12.1 2x10™3

‘l ‘2 ts
Theory -0.25 5.7 3.0 3.8
Expt. -2.3£37 60+1.3 29+2.4 4309 139413 16.5:l1 O(5x107)
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TABLE 1Il. Comparison of the SPA predicted values of o/ and 5/ (up to
O(g; %)) with the experimental values taken from Ref.[1]. The di-

mensionful parameters b3,63,a},b1,63,and a2 are given in the unit

of Myt
ad 83 a 2a3 — 5a} 8
Theory 0.18 0.24 -0.035 0.53 -0.063
Expt.  0.26+0.05 0.25+0.03 0.614:£0.028 -0.082+0.008
al bl ag a?
Theory 0.033 0.0040 19x10~4 3.5%x10"

Expt.  0.038+0.002

(1743)x10™4

(1.3+3)x107*

TABLE IV. Comparison of the SPA predicted vector and
scalar radii (up to O(g?)) with the experimental
values taken from Ref.[1](in fm?).

<rt>y <r>K

3 Kt
<rt >y

<r?>Kx

Theory 0.32 . -0.037

0.28

0.26

Expt. 0.439+0.03 -0.054+0.026 0.281-0.07 0.36+0.02

< >¥ <r?>% <r?>§y  <ri>
Theory 0.076 0.47 0.46 0.47
Expt. 0.20+0.05°  0.7+0.3*  0.5510.10° 0.7+0.2

a. obtained from the low energy theorem with the experimental value

of Fx/Fy as input.

b. obtained from the experimental value of < r? >% and the theoret-

ical estimate of < 6r% >5.
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