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There has been a lot of interest in the study and application of low energy ef­

AN ATTEMPT TO CALCULATE THE EFFECTIVE fective Lagrangians in recent years. Effective Lagrangians provide powerful and 

LAGRANGIAN FOR LOW LYING convenient means for studying physics of low energy hadronslil-PII, heavy flavor 

PSEUDOSCALAR MESONS FROM QCD decaysl.l, precise tests of electroweak theory including possible contributions from 

STRONG COUPLING EXPANSION1 
new physics(6116), and strongly interacting electroweak symmetry breaking mechanisms f7J • 

Therefore it concerns most of the currently interesting problems in particle physics 
Qing Wang and Yu- Ping Kuang 

ranging from 102 MeV to TeV,
CCAST (World Laboratory), P.O.Box 8730, Beijing 100080, China. 

and The general form of the effective Lagrangian for low lying pseudoscalar mesons 

Institute of Modern Physics, Tsinghua University, Beijing 100084, China.2 was given by Gasser and Leutwyler{l) based on a symmetry argument.Up to p4 

and the non-anomalous chiral Lagrangian consists of fourteen terms and the coefficients 

Institute of Theoretical Physics, Academia. Sinica, Beijing 100080, China. Fo,Bo,Lh L2,' .. ,LlO,Hl and H2 are unknown parameters which should be determined 

by imposing certain number of low energy hadronic data as inputs!ll. Although this 
ABSTRACT 

chiral Lagrangian has been widely used, it is certainly interesting to investigate 
An attempt to derive the effective Lagrangian for low lying pseudoscalar mesons 

further the relation between the chiral Lagrangian and the underlying theory QCD. 
is given in QCD strong coupling expansion based on the idea of the effective field 

This is important not only for theoretical reasons but also for practical needs since 
theory with a physical cut-off A.This theory provides the information about chiral 

once the relation is known, the number of independent unknown parameters can be 
symmetry breaking, and the quark condensates are calculable. The obtained ef­

significantly reduced, and this will increase the predictability of the theory, More­
fective Lagrangian contains the exact Wess-Zumino-Witten term and the compl~te o 

....-;"\ over, once we can handle the nonperturbative dynamics of the underlying theory 
Gasser-Leutwyler chiral Lagrangian with all the coefficients Fo,Bo,Lh L2 ," .,LlO ,h1 r-:') 

.1. governing this relation,we can further generalize the study to the more interesting 
and H2 given analytically as functions of the two fundamental parameters A and g. 

up to date problems such as the strongly interacting electroweak symmetry breaking 
(effective coupling constant in the cut-off QCD theory). A and g, are then deter- \ (1:> mechanisms which are needed in the experimental study of clectroweak symmetry co.mined by taking the data of rn .. and rnA: as inputs. Up to order-1/g! contributions, ;::...J 

breaking mechanisms at SSC and LHC, 
the calculated rn,."F.. ,F",F", quark condensates, pion- pion scattering lengths,and 

pseudoscalar-meson form factors are all in reasonable agreement with experiments. There have been various attempts to derive the chiral Lagrangian from some 
t 

underlying theories, and most of them are cut-off theories looking like effective field 

theories {81161. In a series of papers, it is shown that the chiral Lagrangian can be ob­
1 Work supported by the National Natural Science Foundation of China. 

tained from the Nambu-Jona-Lasinio (NJL) type four-fermion theory 1911 101. In this 
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2 

http:argument.Up


kind of approach, there is a ca.lculable quark condensate breaking the chiral sym­

metry and Goldstone bon son fields are the auxiliary fields for the quark composite 

operators Q1&t,Q, where t, is the generator of the flavor group. Both the linear and 

the nonlinear realizations can be adopted in this approach and the low lying vector 

and axial-vector mesons can also be included. The obtained phenomenological re­

sults are encouraging(9J[1O). However, more work is needed for understanding further 

the precise relation between the NJL type Lagrangian and QeD from the point of 

view of the effective field theory 181151. Another approachllll starts from the cut-off 

QeD Lagrangian with u,d,and s quarks and taking the large Ne (number of colors) 

limit. The cut-off A is defined as the characteristic parameter in an exponential type 

regularization in which non-minimal chiral anomaly exists in the real part of the ef­

fective action. The Goldstone boson field U exp( -iA"1J"" / Ff() is formally introduced 

as a collective mode and the Lagrangian of U with external sources is determined 

from the requirement that the U-field theory gives the same non-minimal anomaly 

as that in the original theory. All the coefficients Fo,Bo,LltL2,' • ·,Llo,HI and H2 

are then expressed in terms of No A,and the gluon condensate. Unfortunately, the 

information about chiral symmetry breaking is not included in this approach.The 

obtained pion decay constant F.,; is proportional to A rather than proportional to the 

vacuum expectation value breaking the chiral symmetry as in the conventional un­

derstanding. To fit the experimental value of F.,;, the cut-off A should take a rather 

low value A =320MeV lu) which is even lower than the masses of kaons and 11 (the 

pseudo-Goldstone- bonsons contained in U ). In order to incorporate with chiral 

symmetry breaking, a phenomenological interaction MQ(qSUqL +qLUtqR ) is added 

to the QeD Lagrangian in this approa.ch,where MQ is a free parameter triggering 

the chiral symmetry breakingllll. Therefore the quark condensates are not calcula­

ble in this approach, There is also a different approach based on the consideration 

of the instanton induced chiral symmetry breakingl121. However, 'in the obtained 

meson spectrum, the lightest meson apart from the pseudo-Goldstone-bosons is the 
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tensor meson. Le. there is no p-meson in this theory. Owing to the above situation, 

further improved investigations on the derivation of chiral Lagrangian from QeD 

is really desired. 

In this paper, we will give an attempt to derive the chiral La.grangian based on 

the idea of the effective field theory from cut-off QeD with three light flavors in the 

approach of the strong coupling expansion. The physical cut-off is expected to be 

higher than mOl to include all the eight low lying pseudoscalar mesons in the chiral 

Lagrangian, and it should be still in the several hundred MeV region to have a large 

enough effective QeD coupling constant g, so that the strong coupling expansion 

works. Note that this finite g, should not be simply identified with the conventional 

scheme-dependent renormalized coupling constant in the full-range renormalizable 

QeD theoryisl. In an effective field theoryl8!151, all particles with masses heavier 

than A and the high momentum part of the light particles are integrated out which 

contribute a tower of extra terms .cif' in the total cut-off QeD Lagrangian. In 

.c~f', terms with higher dimensional operators (nonrenormalizable terms) are sup­

pressed in low energy processesl51 • Therefore we keep only dimension:=;4 operators in 

.ce,{'.With a certain consideration of gauge invariance of the final theory,we obtain 

a NJL type four- fermion interaction of the light quark fields after integrating over 

the gluon fields in the leading order part in l/g! expansion. Results similar to those 

in Ref.[9J-[1O] can then be obtained but with fewer free parameters.Furthermore, 

we also take into account, in this paper, the order-l/g! corrections which reflect the 

gluon self-interactions, so that our total results are different from those in Ref.[9]­

[lOJ. Apart from the pseudoscalar mesons, the NJL type four-fermion theory in­

cludes also the scalar,vector,and axial-vector mesons. Vacuum stability condition 

determines the nonvanishing vacuum expectational value (VEV) tI of the scalar 

field which breaks the chiral symmetry. Taking the nonlinear realizationll!1 and 

integrating out the scalar,vector,and axial-vector fields in the stationary phase ap­

proximation (semiclassical approximation), we get the effective Lagrangian for the 
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pseudoscalat mesone alone which contains the exact Wess-Zumino-Witten (WZW) 

termll4} and the complete Guser-Leutwyler chiraJ Lagrangianl!} with the coefficients 

Fo,Bo,LhL2,· .. ,LlO,Hl and H2 expressed in terms of NuN, (number of flavors),A,and 

g •. Fixing Nc = N, 3, there are only two fundamental parameters A and g. in 

this theory. They can be determined by taking the data of m.. and mAo as inputs. 

The determined g. is really large and the value of A. is A. = 830MtV which is really 

reasonable,therefore the present approach is self-consistent. The theory can then 

predict m",F.. ,F/c,F", the quark condensates, the 71" - 71" scattering lengths, and the 

pseudoscalar-meson form factors, etc, and they are all in reasonable agreement with 

experiments. 

This paper is organized as follows. In Sec.I1, we give the generating func­

tional in the cut-off QCD theory and derive the effective meson theory in the 

linear realization. Sec.III deals with the nonlinear realization,and the derivation 

of the WZ W term and the general form of the effective Lagrangian including 

scalar,pseudoscalar,vector and axial-vector mesons at low energies. The gap equa­

tion is also derived there from vacuum stability. Sec.IV is devoted to the deriva­

tion of the low energy effective Lagrangian for pselldoscalar mesons (chiral La­

grangian) from integrating out the scalar,vector,and axial-vector meson- fields 11SJ. 

The Gasser-Leutwyler coefficients are calculated up to next-to-the-Ieading order 

in l/g! expansion. In Sec.V, we present the determination of A. and g., and the 

phenomenological predictions of the obtained chiral Lagrangian for the low energy 

physics of the pseudoscalar mesons. Sec.VI contains a brief summary and some 

discussions on the present approximation and further investigations. Some of the 

technical details in the derivation of the etr.:tive Lagrangian are given in the Ap­

pendices. 
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II. The Generating Functional and the Linear Realization of Meson 

Fields 

l.The Generating Functional 

Consider the system of gluons B: and NJ flavors of light quarks q. The QCD 

Lagrangian formally including the 8-vacuum effect can be written a..c;!161 

.cQCD .cG{B)t fJ m)q, (I) 

where m is the current quark mass matrix, B,.::()"a/2)n: ' and 

CG(B):: ~tre(B,."B"") - ~trc{B"IB"") , (2)
2g. 1671" 

in which trc is the trace in the color space, B,," :: 8,.BII - 811 B,. + i[B,., Bill and 

H,." (,,.,,>,,.B>'''''. In (1) and (2), we have rescaled the gluon field g,B=-->8: for 

convenience. We then introduce a physical momentum cut-off A and consider the 

effective field theory for the light particles below A. Actually we shall take NJ -,-, 3, 

therefore A should be at least higher than twice of the constituent s-quark mass, 

roughly speaking 700MeV, to include all the eight pseudoscalar mesons in the 

effective theory. A natural value of A is about the c-quark mass. However, in 

practice we shall evolve the theory down to a lower value of A in the several hundred 

MeV region so that the effective coupling constant g. is large and the first term in 

(2) can be treated as a perturbation ( strong coupling expansion). The specific value 

of A will be determined later. According to the idea of the effective field theory, 

heavy quark fields (with masses greater than A) and the high momentum part of 

the light particles should be integrated out, and this will affect the physics below 

A, so that total Lagrangian .c~bD in the effective field theory is not merely (1}-(2). 

The effect of integrating out the physics above A may contribute two kinds of terms 

in C~JD' The first kind contains terms of the same form as those in (1)-(2), and 

this 'can be simply absorbed into {1}-{2} by redefining the fields and the coupling 
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constant g•• The second kind contains terms different from those in (1)-(2), and we 

shall call this l'J'. Therefore 

~(A) ~ ~e" (3)J...QCD J...QCD + J...H • 

It is l~JD that describes the complete physics in the cut-off theory and thus the 

finite effective coupling constant 9. in (3) ,which is directly physical, is not equivalent 

to the renormalized coupling constant in any of the conventional renormalization 

schemes in the full range renormalizable QCD theory/51. In principle, 9. can be 

determined from the "matching" condition a.t the scale! 151. However, the present 

problem is nonperturbative so that the "matching" condition is hard to realize. 

Therefore we take 9. as an unknown parameter and determine it from the low energy 

data of hadrons. We expect the determined g. to be large, otherwise the present 

approach will not be self-consistent. Terms in l~' may contain various kinds of 

field operators. From simple dimensional analysis, we infer that terms containing 

operators of dimension greater than 4 must have coefficients proportional to negative 

powers of A (or the heavy quark mass), so that these terms are suppressed in the 

,study of low energy processes. As an approximation, we neglect these terms in this 

paper. There can also be terms containing lower dimensional operators in l'J', and 

these should be kept in (3). It is known that introducing a momentum cut-off A 

will affect the manifest local gauge invariance of the Lagrangian Indeed, if we 

integrated out the light quark field in lQCD with a momentum cut-off A, a term 

-!M2B:Bel
I' with 

M2 = N,!' (4)
16'1'2 

will emerge in the effective Lagrangian for gluons which violates the gauge 

invariance. The above integration alao gives rise to dimension-4 operators (and 

higher dimensional operators) of gluon fielda. If we keep only the terms with lead­

ing powers of A in the coefficients of then operators, these dimension-4 operators 

do not violate gauge invariance. So that, in this approximation, the only gauge­
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noninvariant contribution which we have to consider is the -iM2B:Belloi term. On 

the other hand, the integration over the high momentum part of the light-quark­

field, belonging to l~', contributes a corresponding term 4M2B:Belloi. Taking into 

account this term, the two gauge-noninvariant terms just cancel each other which 

just reflects the gauge invariance of the original full-range QCD. In the effective 

field theory, the high momentum part of the Iight-quark-field is always integrated 

out, i.e. the term iM2 B:Belloi is always there in C'J' no matter how we treat the 

low momentum part of the Iight-quark-field in CQCD • Therefore the original gauge 

invariance is not guaranteed to be kept exactly at any step in the calculation if the 

low momentum part and the high momentum part are not treated on equal footing. 

In this paper, we only require that after integrating over the low momentum part of 

the Iight-quark-field in lQCD, the final effective Lagrangian for gluons contributed 

from the total C~JD takes the gauge invariant form. This is really the spirit of the 

original gauge invariance in the full-range theory, and thus we may regard this re­

quirement as a kind of "matching" condition which "matches" the gauge invariance 

in the two theories. Therefore the only dimension:::;4 operator that should be taken 

into account in leI! is 1M2Bel Bell' and our leA) is
H 2 1" QCD 

l~JD lG(B) + ~M2B;Bell' +q(ii! f3-m)q (5) 

The inclusion of the iM2B:BelI' term is formally similar to the discussion on QED 

in Ref.[17J, but the physical interpretation is different. In (5), the momentum cut­

off is understood to be expressed in terms of a cut-off function, say O(A2 p2), in 

the momentum representation of l~JD' 

Next we consider the generating functional for this system. Let [<II' be the exter­

nal source for the gluon field B;, and Js , Jp , J:. J~ be the external sources for the 

composite quark operators -qq, iq"Yr.q, q"Yl'q, and q"YI'''Ysq,respectively. Js , Jp , Jt. J~ 

are colorless N,xN, matrices. For the convenience of deriving the WZW term. we 

shall take the Euclidean space-time formulation with the metric gI'll -01'11 in the 
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following calculations. The generating functional Z[I, Jj can then be written as 

ZI1,Jj jJ)qJ)qJ)B;exPjcrx{£G(B) +~M2B:Bap +1;Bap+ 

+q(ii! - fJ- Js + iJp"Yli + Iv + 'A"Ys)q} , (6) 

where 

£c(B) - 2~: tre(B,..,BplI) i 1:11'2 trc(BpIIBplI) (7) 

Here we have put the current quark mass matrix m into the definition of Js , i.e. 

the physical case corresponds to Js m rather than Js O. 

The O-term violates CP, so that it plays a special role in £~J.D' We shall keep its 

complete contribution in our calculation. For this purpose, we make the following 

local chiral transformation 

B;(x) ~ B:(x) q(X)~[g(X)PR + gt(x)PL]q(x) , (8) 

where P~ :: !(1±"Ys) and g(x) is an N,xN, unitary matrix.We know that the 

functional measure J)qJ)q is not invariant under the chiral transformation (8)1181 

and we have (See Appendix A) 

J)qJ)q -+ J)qJ)q exp{i N e , r tr' (u-1du)S + i ( A(u, h, JR)
24011' JD" Js. 
1­

- j a'x[lndet(u))-,trc(BpIIBplI)} , 	 (9)
16,.­

where, tr' is the trace in the flavor space and the Lorentz spinor space, D5 is a 

five-dimensional disc bounded by S·, 

u(x)::g(x)g(x), J:::J:±J~, JR::=J:dx"" (10) 
L L L 

and 

Nc '{ I "( 	 S ')A(U,JL,JR) -,tr JL JRdJR + dJRJR + JR R JR48,.­

1 1]-u- JLU( -JRRJR + RdJR) + "1/LLhL (11) 

1
-(h+-+JR, u+-+u- I ) + -(JLuJRu- I)2} - (u = 1) ,

2 
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in which 

R::u-1du, L::duu- I , Jt::U-1 hu + R, JR::uJRu- 1 L. (12) 

The first term in (9) is just the WZW term. The second term in (9) is an anomaly 

term related to the external sources Jk and Jt [191 and it vanishes when Jk = Jt = 0, 

but it affects the topological baryon current 1101. We then take u to satisfy 

lndet(u) -iO , 	 (13) 

so that (6) becomes 

Z[I,J] 	 j J)qJ)qJ) B; exp{ja'x [£K(B) + ~M2B:Ba/l + [;Ba/l + 

q(ii! - fJ- J~ + iJ~"Ys + Iv' + IA'''Y5)q] + (14) 

+i Ne 2 r tr'(u-1du)S +i ( A(u,h,JR)} ,
24011' JD" Js. 

where 

-J~ + iJ~"Y5 (gPR + gtpL) (-J5 + iJp"Ys) (gPR + gtpL), 

Iv' + lA' gt(ii! g) + gt(lv + ,A)g, 
(15) 

Iv' lA' g(ii! gt) +g(lv 'A)gt, 

£K(B) £G(B) 18=0= -~g;'trc(B/lIIBplI). 

Treating £K(B) as a perturbation, the generating functional Z[JJ::=Z[O, Jj can be 

further written as 

1exp{+i2:a~2 jD5 tr'(u- du)5 +i is. A(u,h,JR)} x 


xexP(SK[:IJ) j J)qJ)qJ)B: expj d"x { iM2 B:Bap + [;Bal' + 


+q(ii! fJ- J~ + iJ~"Y5 + Iv' + IA'''Ys)q} 11=0, (16) 


where 

SK[B]::= j d"X£K(B). 	 (17) 
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The integrand under f DB: in (16) is simple. The gluon field is quadratic in the 

exponential. Therefore the f DB: integration can be carried out 1201 and we obtain 

exp{i Nc 2 { tr'(u- 1du)5 + i ( Jl(u, h, JR )} X 
24011" JD6 J5' 

6 / / '" . , , " xexp(SK[6/J) DqDq exp a-x {q(,~ - J 8 + iJpl6 + Iv + IA 
1 (I"'II _A

Q 
,.) (I'" _AQ )} I ( ) - 2M2 q2 q ,. - q2'l1q [=0 18 

' 

Here we arrive at a four-fermion interaction. Next we make an inverse chiral trans­

formation gt(x) to transform back to the original quark field, i.e. 

q(x)-+[gt(x)PR +g(x)PL]q(x). (19) 

Now 

DqDq -+ DqDq exp{ i Nc 2 { tr'(u- 1du)5 - i ( A(u, h,JR)
2401f JD6 J5' 

+!d·x[lndet(u)l~trc(F/IIIIFj"') }, (20)
167!' 

where 
_ AQ Q _ III I,. '[ I,.,. III 

F[IIII = 2 F[/Io'" = 0/10 M' - 0", M2 -, M" 

and F//Ioll ~f./Io"'bFt", in which 1/10 f'I;. With (13) the generating functional ca~ 

be written as 

ZP] eXP(SKI: ]) f DqDq expfd"x {q(iq - J 5 + iJpI5 + Iv + IAI6 + ~2)q
I 

1 (_A
Q 

/10 ) (_A
Q 

) 1 rIQ/Io ,fJ (F F/IoII)} 
- 2M2 q2 i q q2, ,.q - 2M' ,. '1611'2 tre 

[/loll [ 

(22) 

In (22) the fJ-term is completely expressed in terms of tre(F[,wFj"') after the gluon­

field integration, 

The four-fermion interaction in (22) is composed of two colored currents. It can 

be expressed in terms of color singlet operators through Fierz reordering and the 

11 

result is 

Z[J] eXP(SK[OOI Df DqDq exp f d·x {q(i~ J 5 + iJpI6 + Iv + IAI6 + ~2)q + 

+ 4~2I(qtjq)2 + (qt j i!6q)' t(qtj/llq)2 t(qtj/IIISq)2 + ~c (q'llq)2] 

__1_1"'1"'/10 . fJ ­
2M2 II '161f2tre(F[/IoIIFj"') } (23) 

where tjJ 0,1,2,,' ·,NrI, is the generator of the U(N,) flavor group, normalized 

as 

tj = { jN; , i 0 
(24) 

~, ii-O.12' 
Eq.(23) is to be compared with the NJL type four-fermion interactions considered 

in Ref.191-IIO]. We see that there is only one parameter A in the four-fermion in­

teractions in (23). This specific form comes from the color octet current-current 

interaction in (22) which is the characteristic of QeD. Furthermore, our ZP] in­

cludes also the corrections in 1/9: expansion through exp(SK[!JD which includes 

the self- interactions of gluons. Therefore (23) is different from the theory consid­

ered in Ref.[9]-[1O]. 

The coefficients of the four·fermion terms in (23) are of 0(M-')......,0(A.-2). One 

may question about our approximation in which the four-fermion terms in .c.'1' are 

not considered. The fact is that the four-fermion terms in .c.'1' can only come from 

integrating out the high momentum part of the gluon fields.Actually this part of 

integration has already been included in the way of doing the integration over B: in 

(16)1 201which leads to the four-fermion interaction in (18), Therefore, by definition, 

there is no O(A-2) four-fermion term left in .c.'1', Since there is still a cut-off func­

tion associated with .c.K(B), there can be 0(g;2A-2) four- fermion terms in .c.'1', 
However, as we shall see in See.V that g;2 is very small, so that we can neglect such IJ 

terms in .c.'1', In this paper, we only take account of 0(g;2) terms and neglect all 

the 0(g;2 A-2) terms through out the calculations. 
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Next we introduce auxiliary fields 5;, P;, vt, and Ai for the composite operators 

_~M-2qtiq, iM-2qtj/sq, _~M-2qt""Y"q , and _~M-2qt""Y""Y6q ,respectively,in the 

standard way. They are regarded as the meson fields. Eq.(23) can then be converted 

into 

o / ~ A .. 1A /-'"Z[J] = exp(SK[oIJ) DqDq DSDP DVDA exp ax { - 2M'J/;r"­,. 
8 - I ~ 	 AA 	 A 

-i 1611"2 trc(FI""Fr)+ q!i~+ M2 -(S+Js)+i(P+Jphs +(Y+lv) +(4+/Ahs]q+ 

+ M2[_S2 	 p2 + 2V2 + 2..121 + 2M2( 1~ - 1) V0
2} 1/=0 , (25) 

1 N. 

A A "2 .. " A " "2 A A

in which S=.t;S,. ,S =.SjS; , P=.t,.p; , P =PjP; , ... , etc. For convinience, we 

introduce the new variables S=.S + Js , P-=P + Js , V"-=V" + J: , A"'-=..1'" + J! . 

Carrying out the quark-field integration, we get 

Z[J] = eXP(SK[:IJ) f DSDPDVDA exp{lnDet(i~ - S + iP"Y6 + VI + .;\"r6)+ 

+fcrxl--\I:r" i~trc(FI""Fr) + 2M2(~ 1) (vo" J:J 2 

2M 1611" 	 1-~ 
N. 

+ M2(_(S JS)2 (P Jp)2 + 2(V" - J:)2 + 2(A" J!)2)J} 1/:0, (26) 

where Det is the functional determinant,and 

l" 
Vj=.V" + M2 	 (27) 

Eq.(26) is our generating fuctional for the meson fields in the linear realization. 

2. The Local U(N,)LXU(N,)n Symmetry 
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Let 9dx) and gR(X) be the group element of U(N,h and U(N,)R ,respec­

tively.Consider the following local U(N,)LXU(N,)R transformation 

S'(x) + iP'(x) 9R(X)!S(X) + iP(x)J91(x) 

S'(x) - iP'(x) gdx)[S(x) - iP(X)]91{x) 

V;(x) + A~(x) 9R(X)[V,,(x) + A,.{x)]gk(x) + igR(x}O,..9k(x) 

V;(x} A~(x) gd x}lV,.. (x) A,.(x)]91(x) + igdx)o,,91(x) 

J1(x) + iJj,(x) gR(X)[JS(x) + iJp(x)]gl{x) 	 (28) 

J~(x) - iJj,(x) gdx) Ps{x) iJp(X)]9k(x) 

J~,..(x) + J~,,(x) gR(X)[JV,..(x) +JA,,(x)]g1(x) + ig R (x)ajAg1(x) 

J~,..(x) - J~,..(x) 9dx) [Jv,,(x) JA,,(x)]gl(x) + igt{x)oJ'gl(x) 

I:'(x) I:(x) 

All terms in (26), except the fermion determinant term InDet(iiJ S + iP"Ys + 

VI + !hs) , are manifestly invariant under the local chiral transformation (28). The 

transformation property of InDet(iiJ S + iP1s + VI + !h5) can be examined as 

follows. The transformation of the covariant derivative 

iD(x, y) =. (i~ - S + iP15 + VI + .;\"rS)04(X - y) (29) 

is 

D'(x, y) 19R(X)PR + gdX)PLJV(x,y) Igt(y)PR + 9k(y)PL] , (30) 

hence 

InDet(iD') = InDet(iD) + InDet(9R91pR + gLg1PL) . (31) 

Now 

ttl ttl t tRelnDet(9R9LPR+9LgRPd zTrln (9RgLPR+gLgRPL) +zTrln (gLgRPR+gRgLPd 

1 
= -Trln(P

2 
L + PRJ = a , 	 (32) 

i.e. Det(gRgIPR+gLg1pL) is formally a unimodular phase factor. Therefore the real 

part of InDet(iD) is invariant under the transformation (28}[2lJ, Moreover, when 
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gR(X) = gL(.Z) g(x) , we have 

Trln(gRglPR + gLgkpL) l'Il=='L='= Trln(PL + PR) = 0 . 

Therefore the imaginary part of InDet(iD) i8 invariant under the diagonal transfor­

mation gdx) 9R(X) = g(x) but is not invariant under the chiral transformation 

(28). 

Thus, except for ImlnDet(iV) , all terms in (26) are invariant under the local 

chiral transformation (28). This symmetry has been considered in ReLII] as the 

basis of determining the form of the chira.l Lagrangian. 

III. 	The Nonlinear Realization and the General Form of the Low 

Energy Effective Lagrangian for Mesons 

l.Nonlinear Realization 

Instead of 8 and P, we introd uce a polar parametrization (nonlinear ~ealization) 

for 8 +iP (10! 

8(x) + iP(x) = O(x)[E(x) + vIO(x) , (33) 

where O(x) is a unitary matrix whose phase can be parametrized by the Goldstone 

boson fields, and E(x) + v is an hermitian matrix. Here we have formally separated 

out a possible VEV IJ of the E-field, i.e. E Js is the quantum fluctuation around 

v. Since 80 (x) is the auxiliary field for -~(qtoq) , we see from (33) that < qq > 

is related to tI by the simple relation 

< qq >= -2jii;M2 < So >= -2N,M'lv (34) 

The value of v is to be determined by the minimum of the effective potential, so that 

< qq > is calculable in this theory. If vlO , chiral symmetry is broken dynamically 

by < qq >. 
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It is also useful to introduce 

U(x) O(x)O(x) (35) 

which is also unitary. Under the transformation (28). the fields E(x) , O(x) , and 

U(x) transform as 

E'(x) = 

O'(x) 

U'(x) 

h(x)E(x)ht(x), 

h(x)O(x)gl(x) 

gR(x)U(x)gl(x) , 

gR(x)!l(x)ht(x) , (36) 

<'I 

where the unitary matrix hex) is the element of an extra hidden local U(Nf )" group 

111I1 coming from the freedom of introducing the nonlinear realization. 

2.The WZW Term 

Now we evaluate ImlnDet(iD) . For a given D , we make a chiral transformation 

with 9R(X) = O(x) , gL(x) = ot(x) . From (30) we have 

iD-+iDo = liq - (E(x) + v) - Ym(x) - ~o(xh6104(x - y) , (37) 

where Ym and ~o are given by (28).Consider a change of 0 ,0 0 + 00 . Then 

o(lnDetiDn) = Tr(DoloDo) = 

~TrlDol (ooot otoO) Dn DOl Do (000' otoO) + 
+DOI (ooot + 0 100) "Y5Dn + DOl Do (000' + otoO) 

= Tr[(oOOt + 0lo0hsl. 

(38) 

This functional trace is evaluated in Appendix A, and we get 

where 

o(lnDetiDn) = Tr[ (ooot + otoO) G(I, Vn,Ao)] , (39) 
II 

G(I, V, A) = N2c (.l'vp 
a [~AI'AvApAO' + ~(Vl'vVpa + ~Al'vApo)-

11" 3 32 3 
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- 112 (A",A.,Vpa + V",,,A,Aa + A"V."Aa)J + ~trC(Fl".,Fr") , (40)
161r 

with V",., == a",v., a., V'" iIV"" V.,]- i!A"" A.,J , A",., == a"A., - a.,A", - iIV"" A.,j ­

i[A"" V.,]. The difference between our G(I, V, A) and the function G(V, A) in Ref.llO] 

is only the term 16~,trc(Fl",.,j'f") in (40), which is independent of 0 . Therefore we 

can simply quote the result of integrating over 60 in Ref.\10j and get (see Appendix 

A) 

InDet(iDn) -lnDet(iD) = 

i Not: 2 f tr'(U- 1du)6 + i f A(U, AL, AR) + fd"x(lndetU) ~trC(Fl",.,F;") ,
24 11" lD6 ls' 	 1611" 

where A~ V'" + A'" , A~ = V'" - A'" ,and A(U,AL,AR) is given in (11) with Jy , 

lit. replaced by V, A , respectively. Since RelnDet(iD) is invariant under the O(x) 

transformation, the L.H.S. of (41) is simply iImlnDet(iDn) iImlnDet(iD). Thus 

we have 

ilmlnDet(iD) -i Nc 2 f tr'(U- 1dU)6 - i f A(U, AL, AR) ­
24011" 1Dr. 1s' 

-f~x(lndetU) ~trC(Fl",.,Fr") + iImlnDet(iDn) . (42)
16w­

From (37) and (28) we see that the integration constant iImlnDet(iDn) does not 

contain pure U terms. The first term on R.B.S. of (42) is just the WZW term. 

Therefore our iImlnDet(iD) contains the exact WZW term together with other 

anomaly terms. 

3.Effective Lagrangian for Mesons 

In terms of E and U , our generating functional (26) can be written as 

ZP] = exp[P(J)1 f Dp.(U,E)DVDA exp Sel![U,E, V,A,J,el, (43) 

in which Dp.(U, E) is the functional measure for the transformed variables in (33) , 

P(J) == M2 f d"x{ -f; - J~ + 2JJ + 2J! + 2( 1 1~ I)J~o}' (44) 
N. 
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SelllU,E, V,A,J,SJ fd"xlel!(U,E, V,A,J,e) 

(MJ)[ I 	 (MII[ I (M2)r IScI! U, E, V, A,J + Se!! U, E, V, A + Se!! U, E, V, A,e , 
(45) 


where P(J) is a pure external source term, and the three parts in Sel!lU, E, V, A, J, el 


are 


(MJI! I -	 f -'" ,,(MJI( )Sel! U,E,V,A,J = a-xJ.",el! U,E,V,A,J 

M2f ~x{Js/OEO + OlEO! + (U + ut)vl 

-iJp[OEO OlEO' + (U - ut)vl - (46) 

-4J:V", - 4J~Aj.I +4(1- ~)JyoVo},
1 ~ 

N. 

(Mil! 1Se!! U, E, V, A 	 f d"xl~7/)(U, E, V,A) 

M2f~x{ (E +V)2 +2V2 + 2A2 + 2( ~ I)Vo2}
1 ~ 

N. 

-i Nt: 2 f tr'(U- 1du)6 i f A(U,AL,AR) , (47)
2401r 1D6 1S' 


(M2)[ 1 (M2)
f -'" Sel! U, E, V, A,e _ axlell (U,E,V,A,S) 

In { eXP(SK[:ID exp[ Re Tr In(iD) + iIm Tr In(iDn) + 

+f~x [- (IM
a 

): - ~(i(J + Indet U)tre(F/",,, F;")J}
2 1611" 

(48) 

which are, respectively, the meson-source interaction part, the meson-field self­

interaction part independent of SK!bl , and the pure meson part containing SKlbl 

(non-leading orders of l/g! expansion). We see that the WZW term and the 

anomaly term Is. A(U, AL , AR ) are all in S~~l) , i.e. they do not receive any Cor­

rections in the 1/g! expansion. 

The symmetry of the effective action can be examined as follows. The term 

lndet U in S~~2) is not invariant under the chiral U(NI)LXU(N/)R transforma­

18 



tion.According to (35). detU transforms as 

detU' = (detgn)(detgd-1(detU) (49) 

For the SU(N,}L and SU(N,)R subgroups, we have detgL 1, detgR == 1 ; for the 

diagonal Uv(l) subgroup, we have detgn = detgL . Therefore IndetU is invariant 

under the transformation of the subgroup SU(N,)LXSU(N,)RXUv(l) . In other 

words,lndetU explicitly breaks the UA(l} subgroup of U(N')L x . However, 

IndetU appears together with ifJ in the combination 

i7h::.i8 + IndetU (50) 

in S;7t2
) • If we take the transformation of 9 to be 

8' = fJ + ilndetgR ilndetgL' (51) 

the combination i8 ca.n be made invariant under the complete U(N,)LXU(N,)R 

transformation. This is just what was mentionned in 

There is an extra hidden symmetry (cf.(36)) in the nonlinear realization 

due to the freedom of defining E and 0 . The present theory also respects this extra 

symmetry, 

Further evaluation of S!7t2
) includes: (a) the evaluation of ReTrln(iV) , and 

(b) the operation of exp(SK[bD (l/g: expansion). At low energies, we can expand 

ReTrln(iV) in power series of covariant derivatives of the meson fields. Formally 

we write it as 

ReTrln(iV) L Rn , (52) 

where R,. is the sum of terms containing dimension-n field operators. From dimen­

sional analysis,we infer that the coefficients in R,. for n > 4 must be proportional 

to negative powers of the fundamental scale parameter A, so that at low energies 

these terms are suppressed 1221, As an approximation, we shall keep only n~4 terms 
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in (52). The expansion can be carried out by using the technique in , and 

the details are given in Appendix B. The results of flo , Rl , ... , R.. are 

flo = !Trln (v 2 +l/hl/h) ,
2 

! ! d·k 
Rl = v d" X (211" ). tr( .6.41::) , 

., 
! d·k 1 v2 

R2 = d"x tr{ (-.6.I:-v2.6.i)E2+ -(.6.I:'Yv.6.4'YV)(DIJUt DIJUH! 2 16 

+ [.6. 4gI'V - 2.6.1: (iD7 + kP).6.4(iDj' +kv)I(VI' - JYI'HVP - JC) + (AI' - JAIJ)(AP 

! d"k v'
R3 - d·x (211"). tr{ v.6.:E3 + 4 (.6.I:'Yv.6. t '1v.6. t )(DPUt DIJU)OtEO+! 

+ lV (.6. 4'1v.6.4'1v)I(DPDIJUt)OEO + (DIJ DIJU)OtEOfJ} ,
6 

n.. = !d"x! d·k tr{ -(l.6.: + ~.6.~)E" + :;(.6.bp.6.4'1P)(DIJDvUt)(DIJDvU)+ 

1 1 p
+v·[( 288 .6. l:'Yp.6. I: 'Yo .6. t '1P.6.4'Y° 72 .6. t'Yp.6.4'Y .6..1:'Yo .6.1:'1°)(DI'Ut DIJ U DvUt DVU)+ 

1 5 p
+(288 .6.4'Yp.6. 4'YII .6.4'Yo .6.4'Yo 576 .6.1:'Yp.6. 4'1o.6. 4'Y .6.4'1°)( DIJUt DvUDIJUt DVU) J+ 


+( - :4.6.: - 1~2.6.4hll''Yol.6.4'1''Y° + 2\ .6.1: (iD: + kp).6.t(iD~ + kO).6.l:hp,'Yo]­


-~.6.4(iD~ + kp).6.4(iD/ p+ k,).6. 4{iDj + kO).6.I:(iDlo + ko))(Vl'vVI'V + AIJvAIJV)­

v2 v2 v2v. 
-(S.6.I:'Yv.6.I:'Yv.6.1:-2".6.!'Yv.6.I:'Yv+ 3.6.!)(DIJUtDpU)OtE20-3.6.~[Dp(OtEOt) ][DIJ{OEO)]­

_v2 
( l.6.4'1v.6.4'Yv.6.1: + ~ .6.i)([DP(OtEOt) J( DIJU)OtEO + [DIJ (ot EOt) ]OEOt (DIJU)) + 

• 
+ ~(.6.i'1v.6.bV)(DPUt)OEOt (DpU)OtEO­

4 

-iv2 
[- ~ .6.l:h" 'YoJ.6.I:'YP.6.1:'Y0 + 112 .6.1: (iDn +k>.).6.I:{iDTI<+klC) .6.1:'Yr.6. t (gltr '1>' _g>.r '11C) Ix 

x[(VIJV AIJV)DIJUt DvU + (VIJV + AIJV)DIJUDvUtj} , (53) *" 
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... 


where 

oP 1 . /PD'"I onlv on I -l MS 

D"'U O"'U - i(V'" + A"')U + iU(V'" - AP) 

D"'Ut o"'ut - i(V'" - A"')Ut + iUt(V'" + A"') , (54) 

D"'(OEO) == o"'(OEO) i(VP + A"')OEO + iOEO(VP - A"') 

DP(OtEOt) oP(OtEOt) - i(VP - A"')OtEOt + iOtEOt(V'" + A"') 

At (v' + k2+ 1/>1 f/JI - 2ik",D'j)-1 . 

We have checked that (52) and (53) are consistent with the formula obtained from 

using the Seeley-Dewitt expansion 1241 in Ref.IU]. 

Next we 	introduce the operator


° 6 /
1 	 (fa)2o[OJ]==exp(SKlo/J) . exp{2TrIn(v2 + //Jr I/Jr ) - d"x2M2} ' (55) 

and define 
6 

ao==OI6/] . 1 . (56) 

It can be shown that up to the next-to-the-leading order in 1/g; expansion, the 

anomalous part of S;~2) (imaginary part in the curly bracket in (48)) does not 

contribute. In this paper we only present the contribution of the normal part in 

S;~2) . Up to n ;$4 it is 

Self(M2) IU, E, V, A, 0Inorm = - I'" (M2) E, V, A, 0)-1n01"m - Inao +a x.cclf 	(Ut 

1 [6 J( 1 , 1 I 1 2 1 2 1 04)
ao 0 0/ RI + R2 + 2RI + Rs + RIR, + "6R1 + ~ + RIRI + 2~ + 2RIR2 + 24 RI ­

-{aolOI:/IRl}l=o{aoIOI:/](Rs + RIR2 + ~R:)} - ~{aOIOI:/](R' + ~R~)}2 + 

+{aoI01:/]RIH=0{aOlOI:/](R2 + ~Ri)} - ~{aoI01:/]RI}41/=0 . (57) 

Substituting (53) into (57) , we get 

S;~')[U, E, V, A, OJnerm I d"x.c~1/)(U, E, V, A, O)no,.". = 

= In ao + la'x[tr,{valE + (!al - v2a2)E' - va2Es (!a2 + ~ag)l:::4 + v
2 

as(D",UtD"U)
2 	 4 2 . 16 
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A2 	 v 2 

- 321r21 (Vp - Jvp)(V'" - J:) + (A", JAp)(A" - J~)l + 48as(D"'D"Ut)(D"D"U)+ 

+v,,(alS 	
_ a12 )(D UfD"'UD UtD"U) +v04(~ _ 5aIS )(D UtD UD"'UtD"U)+ 

288 72" " 288 576 '" " 
S 

( 5 	 1 1 1)( " ") v ( t ) t+ -al + -a, - -a8 - -aI' V V" +A A" - -n~ D U D"'U 0 EO­
24 192" 24 6" P" IA" 4""" '" 

2 v2v v" 	 v'
-(S~ - "2 alO + 3"a6)( Dp U tD"'U)OtE20 3"a6IDIA(OtEot)IID"'(OEO)J­

v 	 ~ 
--6asl(DIAD"'Ut)OEO + (DpD"U)OfEOt] + -all(DpUf)OEOf(DIAU)OtEO­
14. 

_v2(~ + ~)[(DIA(OtEOt))(DIAU)OtEO + (D",(OtEOt))OEOt(D"'U)]+ 

+iv2
(: - ~~)I(VIA" - A",,,)(D"'Ut)(D"U) + (V",,, + A",,,)(DIAU)(D"Uf)])+ 

2 2 
V 2 V	 a18"

+-aIS(trIE) --a17trl(o",Eo"'E)(tr,E) --[(tr,VIA,,)(tr,VIA )+(tr,A",,)(tr IA"''')!+ 
2 48 	 384 

1 	 ' " +C~a16 -	 vSall~)(tr,E)(tr/E2) + (-aIS ~a19 + ~a21)(tr,E2)2-
2 	 8 2 2 

2 	
VSv 1 

--(-alO v'a22)(tr,E2)tr,(D",UtD"U) + -a20(tr,E)tr,(D",UtDIAU)+
16 2 	 16 

v2 -« 
+Sa20( tr,E)trII (DpUt)(DP(OEO)) ]-v2a19(tr IE) (tr ,ES

) - ~a23(tr,E)tr,I(D",Ut) (D"'U) 

v-« 	 v" 
+ 1152 (5a2" - 2a2S)tr,(DIAUt D"'U)tr ,(D"Ut D"U) +576 (4a26 -a24)tr,(DIA Uf D"U)tr,(D"v 

v2 v4vI v" 	 v"+-6a26(tr,E)3+-2-a28(tr,E)2tr,( DIAUt DPU)+( -a2S--a27)(tr,E)2(tr,E2)+-a29(tr,E
3 	 8 2 24 

(58) 

where tr, is the trace in the flavor space,and 

-10[°	 / d"k II ( )1al ao OJ 1 (2",)4 tr At X, X 1=0, 

- -101 C II d"k 2( ) 1a2 = ao 0/ (2",)4 trII At x, X 1=0 I 

-IO[ C 1/ d"k,,( ")()as ao OJ (2",)" tr An"AIt.1 x, X 

a" == aoIO[:/I! (~:~.tr"(Ath"'1"IAn"1")(x,X) 
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-a6 = 

_as = 

aT 

as 	== 

-ag == 

alO 

au == 

an == 

au 

au 

au == 

a16 

an 

au == 

-all} = 

a20 

-

-I 	 16 1/ d 
4 
k "3( ) Iao 	 0 6/ (21r)4tr a" x, x 1=0, 

• 	 6 f d
4 

k "(2 "') ( ) Iao 01 (271")4 tr a""Y",a,,, x, x 1=0, 

aoI0[:/ 1/ (~:~4tr"(a"b"""Y"'la""Y"a""YII)(x,x) 1/=0, 

aolO! :[1/ (~:~4 tr"(a"(iD1"+k,,,).6.,, (iDI"+k",).6.,, b'","(IHx, x) 

4 
-10 [ 6 1/ d k ,,4 ( )ao 6[ (271")4 tr a" x, x 

4 

10[ 6 1/ d k "( Sao 6/ (27r)4tr a""Y",6.,,, 

-101 6 1/ d4k "( 2 2ao 6I (271")4 tr 6.""Y",A""Y 

"')()x,x 

"')( ) 1x, x 1=0, 

qa21 =ao 0 6/1 a'll (271")4tr A" X,X (21r)4tr 6.q y,1/ 
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aOI 
0[6 

6
/ 1/ (~:~4tr"(6.,,"Y"6.,,"Y"'6.."Y"'6."''')(x,x) 1/=0, 

ao10[:/1/ (~:~4 tr"(6.""Y".6.,,"Y,,,.6.,,"Y'" 6.","')(x, x) 

6 
aC;IO [6 / 1/ (~:~4 tr"(.6."(iD1,,+k,,,).6.,,(iDf+k"') 6."(iD1,,+k,,,)6.,,(iDI+k"')) (x, x) 1/=0 , 

l 
aoO[ :11/ (~~" tr"(6." (iD1",+k",) 6.,,(iDr"+k,,,)( 6.,,"Y" 6.,,"Y'" -6.,,"Y'" 6.n"') )(x, x) 

-I ,6 1/ '" / d4k " ( )/ d4q " ( )ao 0 6/ a'll (271")4 tr 6." x, x (271")4 tr 6.q 'II, 'II 


aoIO!:[l/tty(x-y)",(x- y)"/ (~:~4 tr" A,,(x, x) / (::)4 tr"6.q(y, 'II) I/=O,eonn , 


ao10':[I/tty / (~~4 tr"(A,,(x, x)b,.,"YIIJ) / (::)4 tr"(Aq(Y, Yh"'''Y''') 


-1 	 ,6 1/'" / d 
4 

k " ( )/ d 
4

q "2( ) Iao 0 6/ a'll (271")4 tr A" x, x (21')4 tr 6.q 'II, 'II I=O,eonn, 

aoIO':[I/tty/ (~~4tr"A"(x,X) / (::)4 tr"(Aq"Y,.6.q"Y")(y,y) I/=O,conn , 

4 
-I 	 [6 / '" / d4k "2( )/ d "2( ) 

• 

4 4q 
-	 -I I 6 / 4 / d k "2 )/ d ,,( "')(a22 = ao 0 6/1 dy (211")4tr 6.,,(x, x (211")4tr 6.q"Y",6.q"Y '11,'11) 

-I ! 6 1/'" / d
4

k" )/ d
4

q "( "')( I2a23 ao 0 61 a'll (271")"tr A,,(x,x (27r)4tr Aq"Y",Aq"Y '11,'11) l=O,conn, 

-	 -1 k,,([6 1/-'" / d
4 

a24 	= ao 0 61 a 'II (211")4 tr 

- -I I 6 1/ '" / d 
4 

k "(a26 = ao 0 61 a-y (211")4 tr 

"')()/ d"q,,(A""Y,,,a,,"Y x, x (271")4 tr 

4 

)()/ d q "(A""Y",6.,,"Y,,, x, x (271")4 tr 

d p " ( )a26 o[66/1/tty/ttz/ (~:~4tr"A"(x,X)/ (~)"tr"6.q(y, (27r)4 tr 6. p z, z 

-	 -I d"k " ( )/ d"q " ( )/ d"p "2( ) I[6 1/'" /d4 /a27 = ao 0 61 a-y z (271")4tr 6." x,x (27r)"tr 6.q '11,'11 (27r)4tr 6. p z,z l=O,conn, 

6la28 == ao01 1/d4y / ttz / (~~4 tr" 6.,,(x, x) / (~)4 tr" 6.q(y, 'II) X6/ 

X/ (~~"tr"(Ap"Y"'6.p"Y"')(Z'z) 
J4-	 -10[6 1/ /d4 /d4 / d

4
k " ( )/ d

4
q " ( )a29 = ao 61 a'll Z U (271")" tr 6." x, x (27r)4 tr Aq 'II, 'II x 

d"p " ( )/ d"r " ( ) 	 (59)X 	 (211")4 tr 6.p z, Z (271")" tr 6.r u, U Ir::o,conn ,/ 

in which tr" is the trace in the color and Lorentz spinor spaces (not including fla­

vors) , and the subscript conn means taking only the connected pieces in the terms 

with two or more h operations. We see that the non-Abelian self-interactions of 

the gluon fields in the underlying QeD theory reside now in the coefficients ao , a, 
,'" , a29 through the O[h] operation. 

Substituting (46),(47), and (58) into (45), we get a lengthy expression for the 

low energy effective Lagrangian 

('I (MJ) [ I (MI)[ I (M2) [ ICell!U, E, V, A, J, eI J..,e/l U, E, V, A, J +Cell U, E, V, A +CeJ/ U, E, V, A, e , '\, 

(60) 
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V) (Aq"Y",6.q "Y 'II, 'II) Ir=o,conn , 

'" "') )6.q"Y 	 6.q"Y ('II, 'II 

4 



which contain 44 terms. The constant term lnao is only relevant in the study of the 

physical vacuum. If we simply regard the coefficients ao , al ,... , as as free pa­

rameters, this effective Lagranaian is just a generalization of the Gasser-Leutwyler 

effective Lagrangian to the case including pseudoscalar, scalar, vector, and axial­

vector mesons. This general form is independent of the 1/g! expansion. 

The advantage of the present approach is that all the coefficients ao , a} ,'" , 

azg in C~'tt2)(U, E, V, A, J, 8) (cf.(S9)) are calculable order by order inl/g! expansion 

as functions of the two fundamental parameters A and g, (The VEV v can be 

calculated from the vacuum stability condition (cf.(68)).). In the following, we list 

the calculated al " .. , azg up to order-l/g! in the l/g! expansion. 

Nt: " 1 (N; - 1) {7 b" 2 b .. ,.. .. .. " b'l ( A')
al -2al + 2 ( 2M2)' 2 oa, - 4 lal +6v ala, 16xaiaS -24 oV n 1 + 2 +

411" g. 1611" 	 V 


24Nco'l [ A ( b 2A) 2( b 2A )1 ( A2)] 24N; 2ASA}
+(161r2M2) -al 4 o+v al +v 8 o+v al n 1+~ + 1",,_2.r2\2 V alaS, 

2

Nc I ( A ) 1 (N; - 1) { .. '" '" 2 [ b b 2", ("" ) I
a2 = -2 n 1 + 2 2 ( 2M2)2 + 12alaS+24a2- 144 0-48 1+12v al+32x al+a2 x

41r v g, 1611" 


A2) 16Nco'I (,,2 (2(" A ) J...)I ( A2)]
xIn (1 + v2 - (1611"2M2) 9a2 - 3v 411 + 3a2 + 6Ovo n 1 + ~ ­

24N;0'~ [2.. ,,2 2'" I ( A
2

)J}
(1611"2 M2)2 4v as - a2 + v al n 1 + ~ , 

Ne, ( A2) 1 (N;-I) { "'" ,,2 [7 b 2A ("" )11 ( A2)as = 2 n 1 + 2 2 ( 2M2)2 48alaS+24a2- S 6 0+48v al+32x a2+4al n 1 + 2

11" V g, 1611" v 


16Nco'l [ ,,2 ( 2(A ") J.._]I ( A2) 6N;0'~ I 2'" ,,2 2" ( A
2
)J}


(1611"2M2).9aj- 12v al+a2 +96"0 n 1 + v2 (1611"2M2)2 16v as-a2+16v alln 1 + ~ , 

2 	 2 
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X n + ~ + (1611"2M2) v2 lala2-al+6a2-192 0 - v" oa,-12 3al- 3al+2a2 In 1 + v2' 

I (1 A2)1 N; ,192 .... , (,,2 ".. ..2)1 2( A2)]}x n + v 2 - (1611"2M')2 ~ala2 + 48 a l + 8alaS - 16Cl2 n 1 + ~ , 

Nc 1 (N; 1) 16 .. 19.. 9.. 64 20 A' 80 A2 

alO = 2 .+ 2 (16 2M2)2{2(2al-- ,x2"-(2"x+S28In(1 + 2")) x
-6 	 2 as)+-.bo-­11" v g, 7r V 3 a2-- V 3V V V V 


A2) 8Ne ,I ( .., 21 A' 16 ...
A '" 

xln (1 + 2 - ( 2M2) 2" 4al Soola, - -a2 + S28bo) + -.boa2+ v 1611" v 2 v 


+(1040.1 (ooal + 42a2)ln(1 + A; ))In(1 + A;)1 + ( 3~; 2)2 [ I, (4a~a2 s2a:ad­
v v 1611" M v 


-(34a~ + 176ala 2 - 2S60..; 224v2alln(1 + A2 
v2 

))ln2(1 + A' 


26 


http:2as)+-.bo


Nc 1 (N;-I) 16 A 19 A A 64 20 A2 X A2 
all -2-.+ 2 ( 2M2)2{2"(2al--a2-3a3)+.bo--3IX2"-321"2+I21n(I + ,-)Jx

611" v g, 1611" V 3 'U V V , V v 
2

A ) 32Nc' [1 (A 2 A A 3 A 2 96b) 4 b AI (X n 1 + v2 - (I611"2M2) ;;i a l - 14ala2 - 2fli + 0 +;;.- Oa2+ 


2
 
A {A A )1 ( A2))1 ( A )J 4N; [2 (A2A A2A )+ (20al - gal + 002 n 1 +;2 n 1 + v2 + (1611"2M2)2 v 2 al a2 - 24a2al ­

-(3a~ + 24ala2 + 8a~ 96V2alln(I + A: ))ln2(1 + A:)]} , 
v v 

2Nc 1 (N: 1) 16 A lOA 9 A 64 144 A2 1440 A2 
an = -32 .+ 2 (16 2M2p{.,(2al--a2--a3)+.bo--zx,--[-z x+4321n(I + 2")]x

11" v g, 7r V 3 2 V 3V V V v 

A
2

) 16Nc I 1 ( A 2 A A 15"z J.) 32 J._ " 
XIn (1 +,- - ( 2M2) 2" Sal - 4oala2 - -a2 + 672vo + .VOa2+ 

v 1611" v 2 v 
2 

" (A A )1 ( A2))1 ( A )J 96N; [1 (A2A A2A )+ (I44al - IS0al + 3Oa2 n 1 + 2" n 1 +., + ( 2M2)" 2" a l a2 2a2al­
v v 1611" • v 

-(5a~ + 7a1a2 sa; - 13v2alln(I + A: ))In(1 + A:)I} , 
v v 

Nc 1 (N; - 1) 8 A 10 A 3 A 32 64 A2 64 A2 
alS 2 (16 2M2)2 {2"(2al--a2--2a3)+-.bo--32x ,-+S(2"x-9/n(1 + ,-))x311"2v· g, 7r v 3 V V V V V 

2 2
 

I ( A ) 32Nc 11 ( ,,2 A" 3A2 J.) S J. A (A A)/:I ( A ) 1 
x n 1 + v2 (1611"2M2) Vi 2al-lOala2+2fli-48vo +;;'-VOa2+6 6al+a2 n 1 +;2 + 

2 
4SN; 11 (AlA 2A2A) (A2 2" 4A2)1 2( A )J}A+ { 2M2)2 2" ala2 - a2al + 4 a l + alaS - a2 n 1 + ,- ,W1l" V v 

Nc I ( A2) 1 (N; -1) {6A I A " 2 A A 6 A2 "2 I b b b 2 2AA

al. -2 n 1 + ,- + 2 ( 2M2)2 a2a.--a2aS- 4ala,- a2-Sas+284 0+3 1-4 2+1 v al
411" v g, 1611" 2 

129AS3A 2A )Jl (1 A2) Nc 3,.. A2 12A A2 14A A2 17A2A 24"2A- 4 (6 x " as n +,- + ( 2M2) -a2+-ala2- a2al + ala3+ a2a3+al- a2+ ala.­
v 1611" .( 2 

-34ala2aS - 12ala 2a. + (426boa1 + 491 bOa2 + 63bla 1 + 2bl a 2 - 74v2a~+ 
4 

15 2",.. 6 2" A )1 (1 A
2

)J N; 16". I5 A,A 3A2A2 11 A A' 5 A.+ v alal- v ala, n +,- + ( 2M2)' a l ala2- ala2--ala2+-a2­
v 167r 4 8 


30A2,,2 39 A2A A 45 A A2A 6A2,.. A 6(I2A' 9A2A 20A2,..) 21 (1 A
2

)J}
- ala,+-a1a2a,+-ala2a.+ a1ala6+ al- a la2+ ala, v n +,- ,
2 4 v 

au = 12 /N;2- ~~2{2!(2bl+xa2)-24xln2(1 + A:) ( ~:V2) [42(25boal-114boa:l+9bla,) ­
g, 1611" M v V 1611" V 


2
- (72ai -15al a2+ I5a;+6ala,+ !!a,a,+6{V a1+20~0+16btJln(I + A: ))/n{1 + A:) J+ 
2 v v 

27 

AZN; AS A2A 63 A A2 2. A2A 

+ (1611"2M2)2[ISal - (lSalaz "2alfli - 27v ala21n{1 + ;2))/n(I + v2)J} , 

1 96(N; I)Ne "2"2
al6 g~ (I67r2M2). al a3 , 

1 768(N; I)N. A2 
a17 = g~ (1611"2M2). calasln(I+ V2 ) , 

alB = 0, 

all) 
_ 1 I92(N

c 
2 - I)N. 

A A2 '\ 
_ e A (. g~ (I67r2M2). ala3 al + a2)/n(I + vz ) , 

a20 _ 1 192(N; -'- I)Nc A A2A

g! (1611"2M2). ala3(4a l +a2)ln(I +.,) , 
. v 

a_I 3S4(N; - I)N A2 
21 - g~ (167r2M2). c (al+a2)2/n2(1+ v2 ) , 

1 3S4(N2 - I)N 2 
a22 = c I: (A A Ag; (167r2M2). al +a2)(4a. +a2)ln2(1 + 2") ,

v 

a2:! = _ 1 4S(N; - I)NcA A r 1 ( 2 2 A2g; (1611"2M2). ala31;;i 5al +4as+A )+121n (I + ,-)J , 

1 3S4(N2 _ I)N 2 v 
a2. == c I! ( .2 2 Ag! (1611"2 M2). (1+-)1001 +8ala2 +anln 2v ' 


1 192(N2 I)N
a25 _ I:(A2 A2I!g; (1611"2 M2). Sal + 4ala 2 a;)/n2(1 +,-) , 
v 

a26 == au = a2B = a29 = 0 , 

(61) 

in which 

A 2 21 ( A2)an == A - nv n 1 + 2" ' n 1,2, ... 
v 

v21 v· A2
bo == __A4 + _A2 - -In(1 +_) 

v2 

1 4 v
2 

2 3 4 ( A2) 

8 4 4 

bl == -A - -A + -v In 1 + -
v2 (62)

8 2 4· 
1 3v2 3v4 A2 

b2 -A· - _A2 + -In(I +-) 
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In the calculation of the A-dependent terms in the coefficients, we have kept 

only the parts which are divergent as A. -+ 00. In this approximation, the local 

U(N,)LXU(N,)R symmetry (28) is not violated, (for the logarithm function,we 

have kept the entire In(! + ~) without expanding it in powers of f, because the 

property of the vacuum is sensitive to this function (cf (69)) and we want to deter­

mine the physical vacuum as accurate as possible.). For convergent integrations we 

simply take A -+ 00 to preserve the local U(N,)LXU(N,)R symmetry (28) (This is 

equivalent to taking a finit A. together with the necessary terms in .c~' to preserve 

the chiralsymmetry 121J). 

4.The Physical Vacuum 

It is well-known that the physical vacuum is the state minimizing the effec­

tive potential, and the minimization concerns only the scalar field. Neglecting the 

meson-loop contributions (U-field loop corrections taken into account in Sec.V), the 

extremum condition for the effective potential is simply 

aSef/(U, E, V, A, J, 6) 1 _ ° (63)av voe. ­

where ScJf(U,E, V,A,J,6) is given in (45). Since U = 1 and E,V,A all vanish in 

the vacuum,eq.(63) simply reads (d. (46),(47),(48), and (58)) 

a ! lnao + / a'x (2M2 Jsv - M 2v2) ll..oc. = 0 (64) 

From (55),(56), and (59) we see that 

a 
av lnao /a'xa1v Ivoe, • (65) 

Therefore (64) reduces to 

12M2 Js + v(al - 2M2) J \"Ge, = 0 . (66) 


What we are interested in is the dynamical breaking of the chiral symmetry. 


So that, we will first turn off the current quark mass m and study chiral symmety 
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breaking from (66), and then turn on m and treat it as a perturbation (chiral 

perturbation). In this prescription, we should take Js I"Gc.= °instead of J s I"oe.:::o m 

in (66) so that, in the chirallimit, (66) is 

v(al - 2M2) ° . (67) 

The coefficient al is calculable order by order in l/g! expansion (cf.(59)). If al < 0, 

there is only a trivial solution v = °of (67), i.e. chiral symmetry is unbroken. If 

al > O,there is also a nontrivial solution v #0 provided 

al 2M2. (68) 

It is easy to see that the effective potential Vef/ = -Sef/(l,v,O,O,O,D) increases 

with v when v is very large. If al 111=6> 2M2, the solution v = °is a maximum 

of Ve,,, so that the physical vacuum is given by the nontrivial solution with v de­

termined by (68). Eq.(68) is just the gap equation in the present approach and it 

looks very simple. 

As an example, let us look at the specific form of (68) to leading order in l/g; 
expansion. al is given in (61) and (62) which is 

Nc _ Nc! 2 2 ( A
2 

) Ial = -al - A. - v In 1 + ­
411"2 411"2 v2 

therefore (68) reads 
2v A.2 N

J-2/n(1 + 2") = 1 2N (69)A v c 

For Nc = N, = 3, al JII:O is greater than 2M2 and (69) does have a v #0 solution 

which gives the chiral symmetry breaking in this theory. Note that (69) cannot 

be simply applied to the case of N, > 3 in QeD since when heavy quarks are in­

cluded.the current quark mass matrix m cannot be treated as a perturbation and 

thus the chirallimit form of vacuum stability condition (68) no longer makes sense, 
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Taking into account of the order-l/g! contributions with al given by (61) and 

(62), we can see from (68) that chiral symmetry breaking takes place only if Cl, == f 
is greater than a critical value 

24w(N; - 1) 
e (70)

Cl NJ(2Ne - NI ) 

For Ne = NI = 3, this critical value is 0:.:=22.3 . Therefore in the broken chiral 

symmetry phase Cl, is large, so that the strong coupling expansion really makes 

sense. 

IV. Low Energy Effective Lagrangian for Pseudoscalar Mesons 

The low energy effective Lagrangian for U can be obtained by carrying out the 

integration with respect to E,V,and A in (43). The U-field contains the pion, the 

kaon, the 1] and the 1]' mesons. Our present study does not include the physics 

related to the 1] - 1]' mixing, so that we cannot describe the 1] - rJ' system properly. 

In the following, we derive the effective Lagrangian for the low lying flavor octet 

pseudoscalar mesons by simply turning off the flavor singlet field, and we regard 

the 1]-meson as a member of the flavor octet. The integration over E, V ,and A can­

not be done exactly. We consider the following two commonly used approximations. 

1.The VEV Approximation (VEVA) 

This is the approximation taken in Ref.[9J-{1O]. In this approximation,instead 

of really doing the integration, the auxiliary fields are taken to be their VEV's, Le. 

E ilO(Js - iJp)O + ot(Js + iJp)Ot] , V" = J& , A" J~. Then the normal 

part of the effective Lagrangian for U is 

tcl/(U,J) = lnao + tr/{M2v{((Js iJp)U + (Js + iJp)UtJ+ 

+~(2M2 - v2a:l)[(Js + iJp)Ut(Js + iJp)Ut + (Js - iJp)U(Js - i~p)U]- v2}­
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1 :1:1 
--v:la:l(Js - iJp)(Js + iJp) + tr/{ ~a:tCV'pUt\:71~U) + ~a6(Vp V.,Ut)(VPV.,U)­

2 W. 

v· v· 

- 288 (4an - a13)(V"UtVPUV .,UtV"U) + 576 (2au - 5a13)(V"UtV.,UVPUtVIIU) + 

+~(a:5 2v2ae)(VpUtVPU)lUt(Js + iJp) + (Js - iJp)Uj+ 
(/ 

16 
v+ 1~2(40a:l + a. 8as 32aH)(FvpvF: + FAPvF!") + 

:I 

+i:S(a7 8alli)(FkVVpUvvut + FtVVpUtVvU)} + 

v· 
+ 1152 (5au 2a:l&)trl(V,.utV"U)tr/(VvUtVVU)+ 

v· 
+ 576 (4an au)tr/(V,.UtVII U)tr/(V"UtvVU)+ 

:I • 

+~au!tr/[(Js + iJp)Ut + (Js - iJp)Ujtr/[(Js + iJp)Ut + (Js - iJp)U]+ 
:5 . 

+ ;2a:lotrl(VpUtVPU)tr/[(Js + iJp)Ut + (Js iJp)UJ­

:~~[(tr/Fvpv)(tr/F;") + (tr/FApv)(tr/F!V)! (71)! 

where 

V" Dp IV"=Jc, A"=J~ , 

F:" a"Jv- avJ; + i[J;, Jv]+ i[J!, JA] 

F!" - aPJA - a"J~ + i[J;, JA]+ i[J~, Jv] (72) 

F:v F;V±F!V . 
" As has been mentioned in Ref.[l] that in the low energy expansion, we should regard 

U as O(pO), J; and J~ as O(pl),JS and Jp as O(p:l). Eq.(71) is just a low energy 

expansion up to O(p·). The O(p·) term with tr/[(V,.Vvut)(VPVVU)] can be further 

simplified.Differentiating by parts and dropping the total derivatives, we get 

tr/{(V,.Vvut)(V"V"U)] tr/[(V,.V,.ut)(VvVVU) - FL"vUtFkvU+ 
(73) 


+(Fv""F:
v + FA"vF~V) + iFR"vV"UV"ut + iFL""v"utVVU] . 


This O(p·) term can be further simplified by using the O(p:l) Euler-Lagrange equa­

tion of U which is 

V,.V"U -U(V"utv"U) _8M:I!U(Js iJp)U-(Js+iJp)] 
vas 
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V/J V/Jut = -(V /JutV/JU)ut 8~2 IUt(Js + iJp)Ut (Js - iJp)! (74) 

From (73) and (74),we have 

tr,[(V /J VIIUtHV/JVIIU)J = tr,IV",UtV/JUVIIUtVIIU+ 

8M2
+(-)2(2J; + 2ft - (Js - iJp)U(Js - iJp)U - (Js + iJp)Ut(Js + iJp)Ut)+ 


vas 

+ (FvPIIF:1I + F"/JIIF~II) - FL"'IIUt F:IIU +iFRpllV/JUVIlUt +iFLpll v"'utvIIU] . (7S) 

With (7S) and the 8U(3) identity (1] 

tr,(V/Jutv IIUVPUtVIIU) 	 -2tr,(VIIUtVPUV IIUtVIIU) + ~[tr,(VputV/JuW + 

+tr,(V /Jutv IIU)tr ,(V/JutvIIU) , (76) 

eq.(71) can be written a.s 

f..el/(U, J) ~F;{tr,(V/JutV/JU) + 2Botr,!((Js - iJp)U + (Js + iJp)utn + 

+L1[tr,(V"UtV/JUW + L2tr, (V",utvIIU)tr,(V"UtVIIU) + 


+Lstr,(V"UtV"UV.,UtVIIU) + 


+2BoL"tr,(V",UtV"'U)tr,!(Js + iJp)Ut + (Js iJp)U] + 


+2BoL6tr,IVputV/JU((Js + iJp)ut + (Js - iJp)U)] + 


+4B~L6[tr,((Js iJp)U + (Js + iJp)Ut)]2 + 


+4B5LT[tr,((Js - iJp)U (Js + iJp)Ut)J' + 


+4B~Latr,[(Js - iJp)U(Js - iJp)U + (Js + iJp)Ut(Js +iJp)UtJ­

-i£gtr,(FR"~VPuvllut + FLJIIIv"utV"U) 


+Llotr,(UtFR""UFtll) + H1tr,(FRpIIF:" +FLp.,Ft
ll 
) 


+4B~H2tr,[(Js - iJp)(Js + iJp)]­

(77)- ;~~[(tr,Fv".,)(tr,FCII) + (tr,F""'II)(tr,F~II)] , 

in which 

v2 	 2 v"Bo = 8M Ll = --(2a12 Sa13 +Sa2" a2s),F; = 4a3, vas ' 1152 
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2V" v

L2 = 576 (2a12 - 5al:! - ~" + 4au), Ls = 48 !ae - v 2(an aIS)!, 


2v2a3a20 v v2as :I a~al6 v" 

L" 5i:'2" M2' L6 2S6M2 (as 2vas), L6 = 2048 M'" L7 0, 


a2 v2 v2 2 	 21 v2 v	 v
Ls = _3 -(1- --a2) - -as Lg --(2as + aT - 8an) LIO = --as

512 M2 2 M2 192' 96 '48 ' 

1 (2 1 (16 :I v" 2)
HI 384 40a2 + a" + 8v a6 -	 8as - 32a14), H2 = 512 3 v as - M" a2 as . 

(78) 

Eq.(77) contains the complete Gasser-Leutwyler chiral Lagangian III up to O(p") 

with the coefficients given by (78). Fixing Nc = N, = 3,the VEV v can be solved 

from (68) for given A and g,. Therefore all the Gasser-Leutwyler coefficients are 

expressed in terms of the two fundamental parameters A and g, through the calcu­

lable.a~s (cf.(S9)) whose up to O(I/g;) formulae are given in (61) and (62). There is 

an extra term (the last term) in (77) containing only the Uv (l) and U,,(I) external 

sources. From (61) we see that al8 is at most of O(g;"). If we gauge the flavor degree 

of freedom and regard the sources JC and J~ as the corresponding gauge fields, the 

effect of this extra term is that they make the Uv (l) and U,,(I) effective coupling 

constants different from the 8U(N,) coupling constant. 

The explicit form of (78) to leading order in the 1/g; expansion can be easily 

read out from (61) and (62)'. With the relation (69), we have 

2 Nt; 2 ( A
2

) A
2 

( N,) 	 N,v Nt;
Fo = -v In 1 + - = -	 Nc - - ,41f2 v2 41f2 2 Bo 2Nt; - N,' Ll = 38411"2' 

L: = 2L1, 	 L3 = -4LI' L" 0, 
N N - !!.L A2 

L6 = 16;2T'n(1 + v2 )' L6 0, L7 = 0, (7 

Nt; Nt; ) N,) ( A
2

) )La = Ll [24- (1 - _N (1- -N In 1 + 2" 1 , Lg = 8L I L 10 = -4L1,
N , , 2 t; V 

A2 (Nc f)2 All 
HI = Laln(1 + 2"), 	 H2 = L2[1 - 24 lH2 In(1 + 2" 

v , v 

It is interesting to see that, in the present approximation, LI ,Lz,Ls,L",Ls,LT,Lg, and 

L10 , all coinside with the corresponding large-Nt; and chiral limit results in Ref.[U]. 
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In the Ne -+ 00 limit our FJ also coinsides with the corresponding chirallimit result 

in Ref.[ll]. However, the physical origin of our FJ is different. Our Fo is scaled by 

v rather than directly by A (Note that Fo vanishes if v = 0.). This is consistent 

with the conventional understanding of Fo which leads to the Goldberger-'I'reiman 

relation. Different from the result in Ref.lll], chira! symmetry breaking (cf.(69)) 

makes our FJ proportional to Ne - ~ rather than simply to Ne. This difference is 

significant for Nc = 3 since it makes our cut-off A larger than that in Ref.[ll]Nf 

by a factor of J2, ie. A=453MeV, if one requires FJ to fit the experiment. However, 

this value of A is still lower than mK and m". For Ne 3 the coefficientsNf 

L),L2,Ls,L9 ,and L10 in (78) are in reasonable agreement with experiments 1111, but 

La in (78) has a wrong sign as compared with the experiment [II. In the following,we 

consider a better approximation. 

2.The Stationary Phase Approximation (SPA) 

In this approximation, the functional integration with respect to E,V and A is 

approximately represented by the contribution of the classical orbit (the solution of 

the Euler-Lagrange equations for E, V" and A"). This is the leading term in the 

semiclassical expansion, and thus further quantum corrections can be calculated 

in the standard way. The SPA reflects more about the path-integration than the 

simple VEVA does. 

The Euler-Lagrange equations for E,V",and A" are 

8StJl/[U, E, V, A, J,8] eSStJfflu, E, V, A,J,8j eSstJlllU, E, V, A, J,8j 
O.eSE =0 eSv =0 

" " (80)' 

The classical solutions needed for calculating the effective Lagrangian up to O(p() 

are 

M2 ~~ 
E = -2-IO(Js iJp)O + ot(Js + iJp)Ot] +_12-(as 2v2a6)O(V"Utv"U)ot+ 

~~ ~~ 
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+(2a2 - Nfal6tl{M222al(;trf!U(JS - iJp) +Ut(Js + iJp)j+ 
v a2 

cic~ 2 2+ --[alS(aS - 2v as) + v a21trl('~1I'UtV"U)} , (81)
16va2 

V: = Jt + i
v2 

aSc2[U(V"Ut) - (V"Ut)U] , g 
2v

A~ = J;' + i g aSc2IU(V"Ut ) + (V"Ut)U] , 

where 
(2N, Ne)A2 (2Nf Ne)A2 + ~v2a31-1 (82)cl 871'2 c2=1 871'2 2 

Then the normal part of the effective Lagrangian for U is 

2 

Cel/(U, J) = InaO+trf{ ~6a3clc2(V"UtV"U)+M2v[(JS - iJp)U +(JS + iJp)UtJ)+ 

2 • 2 

+trf{~~eicHV"V"ut)(VIIVIIU) ~[asc~(1 ~asc2){cic2(as + a7 - 4als)+
48 96 4 

+2-as(I-~42a3c2)(40a2+a.-8as-32aH)}+~c1cH2a12-5a13)](V"UtVIIUVI'UtVIIU)­
16 6 

v2 v2V2 1 
--lasc~(1- -aSc2){cic2(2~+a7-8a16) - -as(l- -aSC2) (8a2+a. -8as-32aH)}+

192 4 8 4 


4 • (( 32 ( 8 ( • 2 2 2)] ( t )2

+-C1C2 -v a2aU - -v a2a13 - 4v as + 4v asas as V"U VI'U +
399 

M 2c2
1C

2 

+-62 (as - 2v2as)(V"Utv"U)[(Js - iJp)U + ut(Js + 
1 a2 
M2 

+-2-[(JS - iJp)U(Js iJp)U + (Js + iJp)Ut(Js + iJp)Ut]+
4va2 

2 2. v 2 2 v
+l-[4cIC2(2~ + a7 - 8au) + asc2(1 -asc2)(40a2 +a. 8as 32aH)]x

384 4 


X [(Ftll +F,r)(V"UV IIUt) + (Ftll - F;II)(V"UtV"U)]­
2 2 

- 3~4 [8~c~ci-asc2(1- : asc2)(40a2+a.-8as-32aH)](Fv"II+FA"II)U(Ftll -F;II)Ut+ 

2
1 2 2 2 v v· 2 2 "II 1.11/+192[4v ~CIC2+(1-2asc2+gaSc2)(40a2+a.-8aa-32aH)](Fv"IIFv +FA"IIFA ) ­

-M2(1 2~2 )(Js - iJp)(Js + iJp)}+ 
v a2 
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•• v· v', N,v" 2 a18 , 2 2 
+C1C2[ 1152 (5au-2au)+{ 128 am(a:s-2v ae)+ 512 am+ 32a, (a:s-2v as) }coJltr,(V"UfVPU)] 

" f IoI
+ 5v76c~c:(4a26 - a2.)tr,(V"UtV IoI U)tr,(V"U V U) + 


M2COC~C~ a:saus 2vaea15 .,

+ [va20+ --- --ltr,(V"utV"U)tr,[(Js dp)U + (Js + ,Jp)UtJ+

16 va2 a2 

+ M·~oaus {tr,[(Js iJp)U + (Js + iJp)UtJP 3
al8 

(tr,Fv I'IoI)(tr,Fr')­
4v a2 84 

_ al8 V
2 

2 
384 (1 - 2aS(2) (tr,FA"IoI)(tr,F~IoI) , (83) 

where 

Co=(2a2 - N,au.,t l . (84) 
After using the O(p2) Euler-Lagrange equation (74) and the SU(3) identity 

(76),eq.(83) can also be reduced to the standard form (77) with 

2v Bo = 8A1'Fg == 4a:sclc2 
V4:SCIC' • 

• 2 


L1 = 1;52 {c1c~(2aI2 - SallS + 5a2. 2(25) - 3a3c~(1 ':'as(2)!cic2(2a6 + a, - 8aI5)+ 


21 v
+8as(1 4a3(2)(40a2 + a" 8a8 - 32al.)]}+ 

Coc1c~ al6 2 2. • 2 2 2+--{2-(as - 2v as) + N,v <J.io + 4v a20(aS - 2v as)}
512 a2 


v· •• 2 v
2 

2

L2 = -{C1c2(2a12 - 5a13 - a2. + 4(26) - 3a:sc2(1 -as(2)[c1C2(2as + a7 - 8aI5)+

576 4 

1 ",2 


+8as(1 4a:s(2)(40a2 + a. 8a8 - 32(14)]} , 

c1c~ 2 2 16 v· 2 v2 
2 3

Ls = --[(a:s-2v as) --3 (a12-a13)]+-a3c2(1--asc2)1clc2(a6+-a7-12a15)­
256a2 96 4 2 

2 23 v v
- a:s(1 "'4as(2)(-40a, a.+8a8+32al.)] + 48ascici ,

16
 

a:scoc~ci 2· 2 :Sc
3 

2)
a:scl 2(a3- 2v as •L. ---[(a:s-2v as)ale+V a2a201 , L5 256a2256a2 
(85) 

2 VI 

L, = 0 , 2 2(~_-as)
L8 = c1c2 1024a2 192 
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v2 2V 
L9 --3[4c~c~(2ae+a7-8alli)+a3c2(1--a3c2)(40a2+a,,-8a8-32al,,)1 •

84 4 

v2 v2 

L 10 = - 384[8a6c~c~-a3c2(1-4asc2)(40a2+a,,-8a8-32aH)1 • 

V
2 

2 2 1 v2 v" 2 2
HI = -aecIC2+-(I--a:sc2+-aSc2)(40a2+a4-8a8-32a14)

96 384 2 8 


c~c~ [ 2 2v2 16 2

H2 = -- as(I- -(2) + -V a2asl . 

512a2 AI' 3 
Thus we have also obtained the Gasser-Leutwyler chiral Lagrangian in the SPA, 

but the coefficients given in (85) are different from those in the VEVA (cf.(78)). To 

leading order in the strong coupling expansion, we see from (61) and (62) that the 

explicit from of (85) is 

F,2 = (2N, - N e ) v2ln(1 + A2) ~(2N -N )(1- N, ) B 3N,v 
o 1211"2 v2 1211"2 , e 2N' 0 2(2N N )(1 _ !iL)'

e J e 2N. 

Ne { ( N, )2 N, 2 A2) N, N, 2N, 2 2N, 4LI = --2 32 1---- (1+-) in(1 + 2 +16(1--)(1+-)(--1) +(--1) }.
3110411" 2Nc Nc v 2Ne Nc Nc Ne 

L2 = 2L., 

Nc {[ ( N, )2( NJ 2 (2NJ 4] A2 N, N, 2N, 2Ls = --2 -32 1-- 1+-) + --1) In(1 + 2)-24(1--)(1+-)(--1) 1
518411" 2Nc Ne Nc v 2Nc Nc Ne 

+8(1 N, )(1- 2N')2 _ 16(1_ N, )2(1 2N')2 +6(1- 2N')2}. 

2Nc Nt: 3 2Ne Nt: Ne 


L. 0, 

Ls == ~(2N, S A2
172871"2 -N -1) In(1 + -)v2c ' 

(86) 

L6 L, =0, 

Nt: (2N, 2 ( A2)
L8 230411"2 Ii; -1) In 1 + VI • 

Ne N, N, Al 2N, 2 
L9 --2{4(1--)(I+-)ln(1 + 2)+(--1) },

43211' 2Nc Ne v Nc 


Nc N, N, A2 1 2N, 2

L 10 == ---2{4(1--)(I+-)ln(1 + 2)+-(--1) },

43211" 2Nc Ne v 2 Nt: 


Nt: N, NJ A2 2N, 2

HI ---{2(5-2-+2-)/n(1 +-)-(--1) } 

v21728,..2 Nt: N: Nt: • 

38 



H = _~(2NI _1)2 (8Ne - SN')1 ( A,2) 
2 11521r2 N N n 1 + :I • 

e f v 

Several remarks are in order: 

i. Compared with (78), there ia an extra factor H~ 1) in the formula for 

FJ in (86). The positivity of FJ requires that 2Nf > Nc• This condition is only due 

to the SPA and will be modified by the quantum corrections. For Ne = 3,N f 

the requirement is satisfied and this extra factor further increases AIFo by a factor 

of J3 which makes A just greater than twice of the constituent a-quark mass if one 

requires FJ to fit the experiment. Therefore this result is quite reasonable. 

ii. Different from (78),the positive term in Ls in eq.(86) does not vanish at Nf N c• 

Therefore the SPA result of L8 has a correct sign as compared with the experiment ill . 

iii. In both VEVA and SPA, the obtained L7 is zero even with 0(g;2) correc­

tions. This is not surprising because it can be shown that L7 is related to the '1' - '1 

mass difference, 

m:. - m: 16NfFo-2m~L7' (87) 

The '1' - '1 mass difference is related to the UA (I) breaking mechanism, say the topo­

logical nontrivial solution 1251, which is not considered in the present calculation. 

Therefore L7 should be calculated by further taking into account the topological 

nontrivial solution. 

V. Phenomenological Predictions 

We shall first determine the two fundamental parameters A and g. in the theory 

by taking two suitable experimental data as inputs, and then make phenomenolog­

ical predictions from the obtained effective Lagrangian. Since the SPA is a better 
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approximation than the simple VEVA, we shall take the SPA formulae through out 

this section. 

I.Determination of A and g. 

The present theory considers three flavors of quarks. Thus it is better to chose 

two well measured quantities concerning all the three flavors as the inputs. In this 

paper we take the well measured pion and kaon masses as the inputs. We neglect 

the small isospin breaking effect so that we take the isospin averaged m,.. and mK 

which are 1261 

1 
m,.. 3(2m,..± + m,..o) 138.0367±0.OOO7MeV 

1 
mK 2(mK± + mKO) 495.659±0.020MeV. (88) 

The theoretical formulae for m,.. and mK obtained from the chiral Lagrangian in­

cluding the pseudoscalar meson loop corrections have been given in Ref.[lJ. Our 

present theory is an effective field theory so that the obtained quantities are at the 

scale Il = A [5/. Therefore the formulae for m,.. and mK in Ref.[lJ read 

2 1 m,.. 2mBo(1 + Il,.. - all" + 2mK3 + K.) , 

2 2mK (m +m.)Bo(1 + all" + (m + m.)K3 + K.) (89) 

where 

m I 
i(m" + md) I 

Il,.. 2mBo I 2mBo 
321r2Fo2 n-:A2 

Il" 
Hm + +2m.)Bol Hm + 2m.)Bo 

321r2FJ n A2 (90) 

K3 
8Bo
F(2Ls ­ L5) I 

o 

K. I6BoFJ (2m + m.) (2L6 L5) 

40 



The current quark masses have been determined from the current algebra by Wein­

berg [27J which are mu = 4.2MeV, md 7.5MeV, m, = 150MeV. Taking our 

SPA formula for Fo,Bo,L5,L6,and Ls up to O(I/g;) on the right hand side of (89) 

together with eq.(68) with the same accuracy, we obtain from the input data 

A. 830MeV , 
2 

a, ~ 
411" 

2.13xl0" (91) 

tl 2 

A.2 0.398 . 

This value of A is quite reasonable since it is just higher than twice of the 

constituent s-quark mass and is still in the few hundred MeV region in which the 

QCD coupling is strong. Furthermore, as a rough estimate, the tree level 

averaged vector meson mass mv in our theory can be read out from and 

(58), which is 
-2 M2_~ 

(92)mv (1 5 1 1)
ial" fia2 - 192 a" + f,ias 

With the values (91) we get mv 946MeV which is higher than A. This is con­

sistent with the idea that the vector meson field should be integrated out in the 

effective field theory with the cut-off A. (The value mv = 946MeV is not far from 
. . ( 3m.'+4m'.+m!+m.'the correspondmg experimental value 26) mv = ( , KI) +)1/2 837MeV.). 

The determined a, in is much larger than the critical value a, 

thus chiral symmetry breaking really takes place, and the l/g; expansion converges 

rather quickly, so that our formalism is self-consistent. The largeness of a, is due 

to the fact th\t to leading order (g, ...... 00) the predicted values of m,.. and mK from 

(89) are already very close to the experimental values (88). We would like to em­

phasize again that this g, should not be identified with the renormalized coupling 

constant in any of the conventional renormalization schemes in the full- range QCD 

theory {51. It is also different from the effective coupling constant in the chiral quark 

model (41 in which the quark and gluon fields are not integrated out. 
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2.Predictions for the Gasser-Leutwyler Coefficients 

With (91), the values of the Gasser-Leutwyler coefficients obtained from (85) up 

to O(I/g;) are 

Fo 92.1MeV, Bo = 1614MeV , L1 0.561xl0-3 

L2 l.12x 10-3 , L3 = -3.15x1O- 3 L" l.38x 10-6 

L6 0.272 x 10-:1 L6 = -5.77x1O-7 L7 0, 

L8 0.233x 10-:1, L9 = 4,46x 10-3 , LIO = -3.45x 10- 3 , 

HI -l.90x1O-3 , H2 = -0.955 x 10-3 

In the sense of the effective field theory, these numbers should be understood as the 

values evaluated at the scale J.I. = A, therefore should not be compared directly 

with the experimental values given in in which the scale is J.I. m'1' The 

evaluation of the L~s considering the U-field loop contributions has been calculated 

in Ref.[l] which is 

LHJ.l.2) = L~(J.l.d + r, 2lnJ.l.I, i = 1,2, ... ,10, 
1611" J.l.2 

where Li is the renormalized coefficient in the minimal subtraction (MS) scheme 

in dimensional regularization, and the values of ns are given in Reell]. It is known 

that, up to I-loop, if we replace A by J.I. in the momentum cut- off regularization, 

the obtained results are the same as those in the modified minimal subtraction 

scheme [2sl. In our present approximation, we keep only the divergent part 

(as A ...... 00) in the A-dependent terms in the coefficients a~s. Therefore there is 

no distinction between the M S scheme and the MS scheme in the present approx­

imation. Thus the values in (93) can be regarded as Li's at the scale J.I. = A, and 

hence we can used (94) to evolve them down to the scale J.I. = m'1' These are 

listed in TABLE I together with the experimental values given in Ref.[I]. We see 

that L1 ,L2, L3 ,L",L6 are in good agreement with experiment; Ls,Ls,Lg,and LIO are 

smaller than the experimental values but are still reasonable. The problem of L7 

has been discussed in the last section. Although some of the predicted coefficients 
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lie outside the experimental error bars, this deviation does not cause much effect on 

the predictions for most of the physical observables since the L~s are coefficients of 

the O(pC) terms which contribute only a small portion to the physical observables. 

In the following subsections, we shall calculate the main physical observables from 

our theory and compare them directly with the experiments. In the calculation of 

the low energy pion properties, the coefficients 1.,12 ,' • ·,11 in the Nt = 2 theory are 

usually used !ll. The relation between these coefficients and the L~s has been given 

in Ref.[I]. In TABLE II, we list our predicted lit 12,' . ·,11 and the corresponding 

experimental values Ill. We see that the agreement is also nice. 

3. Predictions for m",F,..,FK,and F., 

In this paper, we simply regard the '7-meson as a member of the flavor SU(3) 

octet 0- mesons and denote its mass and decay constant by ml'/8 and F"I8 , respec­

tively. 

At tree level, the formulae for m,,8,F,..,FK, FI'/8 are simply [11 

22
ml'/8 3(m+ 2m.)Bo 

F,.. FK FI'/8 = Fa 	 (95) 

With (93),we obtain 

m.,s = 574MeV, F,.. = FK F,,8 = 92.1MeV . (96) 

Taking into account of the U-field loop contribution, the forr.nulae become [II 

2 4 2 	 2 12
m'l8 3(m +2m.)BoI1 + 2J.LK - 3J.L., + 3('m; +2m,)K3 + KcJ + 2mBo[-J.L,.. + 3J.LK + 3J.LI'/J 

F,.. 	 2J.L,.. - J.LK +2mKs + K1J 

3 3 3 


FK Fall -	 -J.L,.. - -J.LK - -J.L" + (m + m.)Ks + K11
4 	 2 4 


2 

F.,s Fall -	 3J.LK +3(m + 2m.)Ke + K1J (97) 

43 

where m,J.L,..,J.L",K3 and Kc are defined in (90), and 

Bo _ (m + m.)Bo
J.LK = 3271'2FJ(m + m.)ln .~ , 

128 Bg _ 	 2 4Bo 8Bo __
K6 = - 1:"2 (m.-m) (3L1+L8) • K6 fj2Ls • K1 ~(2m+m.)L4' (98)

9 I'o I'o I'o 

Up to O(l/g;),our SPA predicted values are 

ml'/8 = 580MeV , F,.. 107MeV. 
(99) 

FK = 116MeV, F,,8 = 122M eV . 

Thus the U-field loop contribution increases all these quantities and makes F"s > 

FK > F,...The predicted F,.. and FK can be compared directly to the experimental 

values [261 F,..± 92.5±0.2MeV and FK± 113.0±1.0MeV (We have multiplied 

the values in Ref. [27] by 1/../2 according to the present definition).They are in 

reasonable agreement.Our predicted m,,1 is higher than the experimental value of 

the physical '1-meson mass m" = 547,45±0.19M eV 1261.The deviation is 6X.There is 

a model-independent relation between FI'/8,F,.., and FK• 

F'l8 1 = ~ ( F K 1), (100)
F,.. 3 F,.. 

derived from the SU(3hxSU(3)R chiral perturbation 1291.The numberrs in (99) sat­

isfy this relation with a deviation ......20X.Recently there have been new experimental 

data for the physical F,,: F" 94±7MeV 1301 and F" 91±6MeV 1311.These are 

considerably smaller than the predicted F.,a.The conventional interpretation is that 

there is a significant '7 '7' mixing with which the theoretical values 1)f the physical 

m" and F" are all dose to the experimental values 111[311. 

4.Predictions for the Quark Condensates 

The formula for < qq > is given in (34).In the chiral limit, at tree level, 

- 1 	 2< UtL >=< dd >=< ss >= - < qq >= -2M2v -FoBo (101)
Nt 
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where Fo and Bo are given in (85).With (93),our SPA predicts 

< uu >=< dd >=< is >= - (0.24GeV)3 . (102) 

This is very close to the original QeD sum rule determined value -(0.2SGeV)3 

{321. Taking into account the U-field loop corredion {II and neglecting the isospin 

breaking effect,we have 

< uu >=< dd > -F~Bo!l- 3s.t... - 2s.tK ~s.t'l +mKI + K2J 

< is > -F;Bo!l - 4s.t'Jl" - js.t'l + m.K1 + K2J , (103) 

where 
8Bo 32Bo _ 

KI = FJ (2Ls + H2) ,K, FJ (2m + m.)Ls , (104) 

and we have ignored the 'lr0 11 mixing in (103). With (93), the SPA predicts 

< uu >=< dd >= -(0.26GeV)3 < is >= -(0.26GeV)3 (lOS) 

These are also close to the QeD sum rule determined value. 

There are also other QeD sum rule determined values of < uu > corresponding 

to different values of m 133
J which are rather diverse from each other. We know 

that < m uu > is renormalization group invariant 132J, therefore we can compare 

the theory with the experiments on < m uu >. Various QeD sum rule determined 

< m uu > range from -(0.093GeV)" to -(0.097GeV)4 IS3!. Our SPA predicted 

< m uu > (cf.(lOS)) is -(0.101GeV)". The agreement is quite reasonable. 

In view of the fact that the QeD sum rule determination of higher dimensional 

condensates, e.g. the gluon condensate, the four-quark condensate, etc, is rather 

uncertain 13sl, we are not going to consider the higher dimensional condensates in 

this paper. 
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5.Predictions for the Pion-Pion Scattering Amplitude 

At low energies,the partial wave 11" 11" scattering amplitudes tf (p2) can be ex­

pressed in terms of the scattering lengths af and the slope parameters bf, where I 

and 1 are, respectively, the isospin and orbital angular momentum quantum num­

bers {II. From the SU(2hxSU(2)R chiral Lagrangian, the formulae for af and bf 

bl 

are (I] 

ag 7( 2mBo) {I _S_ 2mBO(1 2i _ 
3211" FJ + 8411"2 F~ 1 + 2 

~l 2I)}
10 3 + 8 

bO 
° 

1 1 2mBo - - 13
--{I + ---(211 + 31, --)}
411" F~ 1211"2 F~ 16 

2ao 
2mBo

---{I
1611" FJ 

1 2mBo - - 3
---(11 + 212 + -)}
1211"2 FJ 8 

b
° 
2 1 1 2mBo 1 ­---{I - ---( 1 + 312811" FJ 1211"2 FJ 

S 
-)}
16 

a~ 
1 

2411"FJ{1 
1 2mBo ­

121r2 FJ (It 
- 6S 
12 + 48} (106) 

1 - - 97 
1 28811"3 FJ (-II + 12 + 120) 

1 - - 53aO z 11I"3FJ (11 + 412 - 8) 
2 1 - - 103 

a2 14401l"3FJ (11 + 12 40) 

The SPA predicted 11,1", .. ,,17 are listed in TABLE II with which we obtain our 

a{ and b{. The comparison of the predicted a{ and b{ with the experimental values 

taken from Ref.[IJ is listed in TABLE III. Some of them are in good agreement. All 

the deviations are within 30~. 

6.Predictions for the Pseudoscalar-Meson Form Factors 

Various form factors of the pseudoscalar mesons have been systematically stud­

ied from the chiral Lagrangian in Ref.[lJ. We just quote the related formulae here 

and make our predictions. 
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Let i,.,. be the electromagnetic current of quarks. The vector form factors are 

defined by 

< 1r+ Ii" 1:Ir+ >= (p~ + p,,)F~(t) , 


< K+li"IK+ >= (,I" + p,,)Ff+(t) , 

(107) 

< KOlilliKo >= (p~ + p,.,.)FfO(t) , 

< K+lu,,,s l:lr° >= JI{(p~ + p,,)ff..r(t) + (,II' - pl')f~..r(t)} 

where PI' and P~ are the momenta of the initial- and final-state, respectively, and 

t=(p' - p)2. For low space- like t, these vector form factors can be well approximated 

by 

F;(t) = 1 + ~ < r2 >v t + ... , 

FK+(t) = 1 + 1< r' >C'+ t + ... 
(108) 

FKo(t) = ~ < r2 >f t+· .. , 

Ifr(t) l!,r(O){1 + ~ < r2 >C'r t + ... } 
The square root of < r2 >v measures the charge radius of the pseudoscalar meson. 

The scalar form factor 

Itr(t) = I~r(t) + :I 1 ,/~r(t), (109)
mK-m... 

can also be approximated in terns of the scalar radius < r:l >~r by 

1
Itr(t) = ff"(O){1 + - < r2 >:" t + ... } . (110)

6 
Furthermore there are also form factors of the scalar densities 

< 1r' IUti + dd 288 I ?r 
k > Oii F8(t) 

< 1r' IUti + dd + 88 l1rk > Oik FO(t) (111) 

< 1ri IUti +dd I :Irk > Oii F;(t) 

and they can also be approximated by 

p8(t) = p8(0){1 + ~ < r2 >~ t + ... } , 
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~(t) = F>(O){I + 1 < r2 >~ t + ...} , (112)
6 
1

F;(t) = F;(O){I + < r2 >~ t + ... } 
6 

In terms of the parameters in the chiral Lagrangian, the vector and scalar radii 


can be expressed by [IJ 


12L9 1 m; m~< r2 >~ 
F,2 ~[21n2 -f In- + 3]2o 31r £0 A A 

< r2 >:-0 ___I_lnmK 
< r2 >:+ =< r2 >~ + < r2 >:"

16?r:lFJ m,! 

:I... 1 m; m! 5 m~ 3 m!< r2 >:-..r < r >v ----{3ht (-) + 3ht (-) + -In- + -In- - 6}
641r:lFe? mi<- mi<- 2 m; 2 mi<­

< r2 >:r _6__ (FK 1) _ __I_{15h ( m;) + 19mk + 3m! h (m;tG) _ 18}
2 2~ - m; F..r 192?r2Fe? mi<- mi<- + m~ mi<­

6 (FK ) 1 1 (:I :I mK< r2 >~ -2--2 -F, -I +6 2D' 2 ,{62mK -m... )ln-+ (U3)
mK - m...... 41r £0 m K mr m ... 

, m! 21m;2
+9m,!in2" - 2(mK - m... )(10 + -2")} , 

m... 3m,! 


< r2 >~ 2 8 6 { 3 ( mk m; 1
< r >s +- 12L. - -- 1 +in-) + ---}
Fe? 641r 2 A2 2881r2 m; 

2 8 4 3 ( mk m; 1< r2 >s < r >s +-{12L. - -- 1 + in-) + ---}
Fe? 641r 2 A2 2881r' m; 

where 

l(x
3 
-3x' 3x+I)'nx I(X+ 1)2 _ 1h1(x) 

- 2 (x 1)3 + 2 x 1 3' 

I( 1 +X)2 3x(1 + X)ih2(X) - -- + nx (114)- 2 1 x (I - x)3 

With (93), we can predict all these radii up to O(1/g;). They are listed in 

TABLE N together with the experimental values taken from ReLlI). (The ex­
"I 

perimental values of < r2 >~..r,< r2 >~,and < r2 >~ are obtained from theoretical 

relations with certain experimental inputs.). The agreement is reasonable. 
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VI. Conclusions 

To summarize, we have derived the effective Lagrangian for the low lying pseu­

doecalar mesons up to O(P4) in the framework of the effective field theory with a 

physical cut-off A from the cut-off QCD Lagrangian .c~JD given in (5) which leads 

to the gauge invariant form of the gluon effective Lagrangian after integrating out 

the quark fields. We are working in the strong coupling regioa, so that we make 

l!g! expansion. To leading order, the inte&ration over gluon fields leads to a NJL 

type four-fermion interaction between quarks. After introducing auxiliary fields for 

mesons and expanding the action Sell in power series of the external momentum,we 

obtain a general effective Lagrangian (60) for the low lying pseudoscalar, scalar, vec­

tor, and axial-vector mesons up to O(p4) which cODtains 44 terms expressed in terms 

of 29 coefficients "1,"2," ',,,~ given in (59). The exact WZW term is also included 

in the imaginary part of S.". The coefficients "'1, CI2, •• " "28 can be calculated 

order by order in l!lI! expansion as functions of the two fundamental parameters A 

and g,. The gap equation (68) derived from the vacuum stabillity "Condition leads 

to chiral symmetry breaking provided 2N. > N, and iX, > a.: (cf.(70)), and the 

quark condensates are calculable in this theory. We then take the SPA to integrate 

out the scalar, vector I and axial-vector-meson fields,and an effective Lagrangian for 

the low lyilli pseudoscalar mesons alone is obtained up tp 0 (P4). It is of the form 

of (77) which contains the complete Ga.sser-Leutwyler chiral Lagrangian with the 

coefficients given in (85) I which are all calculable functions of A and II •. The main 

theoretical uncertainty in this approach comes from: (a) neglecting the quantum 

fluctuations beyond SPA, .(b) neglecting the non-divergent terms in the momen­

tum integrations which diverge as A -+ 00. The two parameters A and g, are then 

determined by takilli the well measured values of m .. and mK as inputs. The ob­

tained A = 830MeV is quite reasonable and the obtained g. is really larger than 
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a.: so that chiral symmetry breaking really takes place,and our appro~h is self­

consistent. With the determined A and g"the predicted physical observables in low' 

energy paeudoscalar-meson physics shown in Sec. V are all in reasonable agreement 

with experiments. 

Several improvements of the approach should be considered in the future inves­

tigations: 

(a) To get a nonvanishing L"topologically nontrivial solutions should be further 

taken into account. This will give rise to the '7 - '7' mass splitting, the correction 

to the gap equation and will induce the tensor meson in the theory 

(b) To reduce the theoretical uncertainty, we should take into account the quantum 

corrections to the SPA and keep more terns in the momentum integrations which 

diverge as A -+ 00. The latter requires a carefull investigation of the corresponding 

terms in .c~1 to preserve the'local U(N,)LXU(N,)R symmetry. 

The encouraging phenomenological results in this paper imply that the present 

approach may be generalized to the study of other interesting problems such as the 

strongly interacting electro-weak aymmetry breaking mechanisms. For instance,it 

m., be applied to study the dynamics of the technicolor, walking technicolor ,and 

even non-QCD-like technicolor type theories. It is known that when applying the 

pure Guser-Leutwyler Lagrangian to the study of the technicolor theory, unitar­

ity will be violated when the energy exceeds lTeV 111. In the published papers 

(1I,ceJ1.&iR phenomenological unitarization models imitating the techni-p-meson res­

onance is put in by hand to avoid the violation of unitarity.The advantage of the 

present theory is that the low lying vector mesons are already included in the theory 

and we mould just keep them unintegrated to avoid unitarity violation. This kind 
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of investigattionswill be presented in separate papers. 
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Appendix A 

Consider a chiral transformation with the group elements gR(X) = g(:t), gL(X) = 
gt (x), where g(x) is a unitary matrix. The quark field transforms as 

q-+q' [g(x)PR+ gt(x)PL]q , 11 -+ 7/ = ij"[g(:t)PR+ gt(x)PL] (AI) 

Then the functional measure becomes 

DqDij" Dq'Dq'{Det[gl,x)gt(x)PR + g(x)g(x)PLJ}N. 

Dq'Dq'exp{ - Trln[g(x)g(x)PR+gt(x)gt(x)PLJ} . (A2) 

To evaluate Trln[g(x)g(x)PR+gt(x)gt(x)PLI ,we consider further a variation g(x)-+g(x)+ 

6g(x). Then 

6Trln[g(x)g(x)PR+ gt(x)gt(X)PLJ = 2Tr[gt(x)6g(x)PR + g(x)6gt(X)PLJ 

=2Tr[gt(x)6g(x)PR - 6g(x)gt(X)PL] = Tr{[gt(x)6g(x) + 6g(x)gt(x)hs}. (A3) 

This functional trace is actually not mathematically well-defined. We take Fu­

jikawa's technique 118] to regularize it,Le. 

1· r{; (D112 
Tr{[gt(x)6g(x)+6g(x)gt(x)b6} = iTr{[gt(x)6g(x)+6g(x)gt(x)hs(e-, +e-' n, 

(A4) 
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where 

iD' i~+a(x)+<;t'(x)+,V'(x)+,A'(xhs, (AS) 

in which a(x) is an arbitrary scalar function, C",(x) is an Nc x Nc matrix, J:'(x) 

and J:' (x) are N, xN, matrices given in eq.(15) in the text. The evaluation of (A4) 

has been given in Ref.110], and we just quote their result. The difference between 

our D' and the corresponding Dirac operator in Ref.[IO] is that we have included 

an extra term <;t' (x) in (AS). Therefore the corresponding result of (A4) is 

Tr{[gt(x)6g(x) + 6g(x)gt(x)h6} = Tr'{[gf(x)6g(x) + 6g(x)gf(x)]G(K,Jv' ,JA'n , 

(A6) 

where 

V' A') Nc ,w1JU[1 A A A A 1 ( 1 F)G(K,J,J ,..2 E '3 J", J" J, Jt,1 + 32 Fv",,,FvlJU + '3FA,w AIJU ­

1-~(J:J:FvlJU + Fv,wJ:J: + J:Fv",J:)] + 16 2trC(C",,,C"''') , (A7)U . ~ 

where 

Fv,w == o",Jv" - o"Jv", + i[Jv""Jv,,] + i[JA", , JAIl] 

FA",,, == o",JAII o"JA", + i[Jv""JAIl] + i[JAI.I,Jv,,1 

C"", o",C" - o"c", +i(C",C"l . (A8) 

Integratina (AS) over 6g(x), we can get Trln[g(x)g(x)PR + gf(x)gt(x)PL1. The 


result has been given in Ref.[10], and the correspond result here is 

Trln[g(x)g(x)PR + gt(x)gt(X)PLJ = i Nc 2 r tr'(u-1du)s+
240,.. JD6 

+i f A(U,JL,JR) /crxlndet(u) ~trc(C",,,C"''') , (A9)ls· 16,.. 

where u(x)=g(x)g(x), D6 is a five-dimensional disc bounded by 8· ,and A is given in 

eq.(ll) in the text. Substituting (A9) into (A2), and regarding CI.I as B", or M-211.1' 

we get eq.(9) or eq.(41) in the text. 
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Appendix B 


We sketch here the evaluation of ReTrln(iD). In the Euclidean space- time, 


ReTrln(iD) = iTr1n{ i"iy(ia" +VI - A"ili)(iaV+Vr - AVili) 

-[(ia" +VI - A"ili)' i,,(S + iPili)]- + (S - iPis)(S + iPis)} . (Bl) 

Using the technique in Ref.[24], (Bl) can be written as 

ReTrln(iD) = if0:'%f (~~"trln{ -i"iy(ia"+k"+V/,-A"i5)(iav+kv+Vr - AVi5) 

-[(ia"+k"+vI-A"ili),i,,(S+iPi6)!-+(S-iPili)(S+iPi5)} , (B2) 

in which tr is the trace in the space of color, flavor and Lorentz spinor, and the 

derivative a" operates only on the fields Vf ,A" ,S ,P and the external source I". We 

introduce the following covariant derivatives 

D"(F) = a" Ion S ,P, v" ,A" -i(V" - A"i5) , 

Di(I) == a" Ion 1" -iM-2I" . (B3) 

In terms of these covariant derivatives, (B2) can be written as 

ReTrln(iD) = if0:'%f (~~" trln{ v2 k"k" +i"iyDf(I)D1(I) 2ik"Df(I)+ 

+D,,(F)D"(F)+2Df{I)D,,(F) -2ik"D"(F) +<p} , (B4) 

where 

<P == ib"D,,(F),iVD.. (F)I_-i[D"(F)'i,,(S+iPi,i)I~+(S-iPi,i)(S+iPi5)-v2 . (B5) 

The momentum inte&ration in (B4) is understood to be taken below the cut-off A. 

With the cut-off A, the invariance of ReTrln(iD) under the local U(N,)LXU(N,)R 
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transformation cannot be completely maintained. In this paper we take the ap.­

proximations: (a) for momentum integrations which diverge as A - 00, we keep 

only the divergent terms (For In(l + ~),we keep its full expression without ex­

pandinl it in powers of X;.); (b) for momentum integrations which converge as 

A -- 00, we simply take A -- 00 (This is equivalent to taking a finite A and tak­

ing account of the necessary terms in .c~' to preserve the local U(N,)LXU(N,)R 

symmetry [211.). In this case the only term contributing to S~~2) and violat­

ing the local U(N,)LXU(N,)n symmetry induced by the finite A is in the term 

-~Jd'ztr(V" V" +A"A") which will be cancelled by a corresponding term in .c~' 

(211, so that the local U(N,)LXU(N,)n symmetry is preserved. 

Doing the low energy expansion up to O(p"),we obtain 

ReTrln(iD) = 2
1 L14 

QI , (B6) 
1=0 

where 

00 =/0:'%/ (~~"tr In {v2+k2+i"ivDf(I)D[(I)-2ik"Df(I)} , 

01 /0:'%/ (~~"tr(~&<P) , 


02=2/0:'%/ (~~" tr{~&(Dr(I)-ik")D,,(F)} , 


i/o:'%/ (~~4tr(~:<p2) , 

04=-/0:'%/ (~~"tr{~:(Dr(I)-ik")<PD,,(F)+~&(Dr(I)-ik")~&D,,(F)<P} 

05 =/0:'%/ (~~"tr{j~&g"V-2~I:(Dr(I)-ik")~&(Di(I)-ikV)ID,,(F)Dv(F)} , 

- 1/ -" f d'k (a II)00 = i a -% (2",)"tr ~I:<P , 

01 =¥ i/0:'%/ (~~" tr{~:(Df(I) - ik") 4>2 D,,(F) + ~!(Df(I) - ik")~&<PD,,(F)<p+ 
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L. L6 
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Theory 0.8 1.6 -3.2 0.3 1.3 


0.9±0.3 1.7±0.7 -4,4±2.5 0±0.5 2.2±0.5 


L6 L7 L8 L9 L10 

TABLE IV. 	 Comparison of the SPA predicted vector and
Theory 	 0.2 0 0.5 5.1 -4.1 

scalar radii (up t.o O(~» with the experimental 
Expt. 0±0.3 -0,4±0.15 1.1±0.3 7.4±0.7 -6.0±0.7 

values taken from Ref.llj(in 1m2 ). 

< r2 

Theory 0.32 -0.037 0.28 0.26 
TABLE II. 	 The predicted coefficients I., . .,1., in NI 2 theory in SPA up 

Expt. 0.439±0.03 -O.054±0.026 0.28±0.07 0.36±0.02to O(g;2) at tbe teale ~ = m".The experimental values are taken 


<,,2 >fll' < r2
from Ref.lll < r' >5 
Theory 0.076 0.47 0.46 0.4711 12 '3 1. 16 16 17 

2xlO-s 	 Expt. 0.20±0.05Q 0.7±0.3· 0.55±0.lOQ 0.7±0.25.7 	 3.0 3.8 10.1 12.1 


O(5xlO-3) 


Theory 	 -0.25 

Expt. -2.3±3.7 6.0±1.3 2.9±2,4 4.3±0.9 13.9±1.3 16.5±1.1 a. 	 obtained from t.he low energy theorem with the experimental value 


of FK IF" aa input. 


b. 	 obt.ained from the experimental value of < ,.2 >; and the theoret­

ical estimate of < 6,.2 >s. 
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