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Entirely new physics is possible in the 2-dimensional space due to its intrinsic topologi. 

structure [1,2]. For instance, an electron may tum into a boson by making a charge-fl 
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ABSTRACT 

We analyze quantum coherence in a bilayer quantum Hall system. We use a bosonic 

Chern-Simons gauge theory with the lowest Landau level projection taken into account. 

Although the kinetic energy term is quenched in the Hamiltonian, the dynamics arises since 

the X and Y components of the guiding center X = (X, Y) do not commute. In the case of 

the bilayer system the dynamics is governed by the W", xSU(2) algebra. We emphasize that 

the fractional quantum Hall state is a condensed but not a coherent phase of composite 

bosons. It follows from this ground state property and the W", algebra that the fractional 

quantum Hall system is incompressible. In a certain bilayer quantum Hall system the 

ground state is a coherent state of the SU(2) component of the composite boson field, which 

is the Cpl field. Skyrmions are topological excitations in this coherent mode. A systematic 

method is presented to calculate the current and static correlation functions. It is argued 

that Skyrmion excitations are detectable by measuring the Hall current distribution. We 

construct the Landau-Ginzburg theory of the coherent mode. The coherent mode is a 

superfluid mode in the vanishing limit of the tunneling interaction. 
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composite in external magetic field, which we call composite boson. As a result electrons m 

condense into an incompressible fluid without making Cooper pairs. This is the fractiOJ 

quantum Hall (QH) state [3]. In a certain bilayer QH system, an interlayer coherer 

develops spontaneously [4] and Josephson-like phenomena occur [4,5]. Skyrmions [6] , 

topological solitons in this coherent mode [7,8]. It is most convenient to use the bosol 

Chern-Simons (CS) gauge theory to formulate the composite-boson picture. 

However, to make a consistent theory of the QH effect it is necessary to make 1 

lowest-landau-level (LLL) projection [9], which has so far been used in the single-moe 

approximation (SMA) of the first quantized theory of electrons [9,8]. It is our aim to anal} 

the quantum coherence in a bilayer QH system based on a bosonic CS gauge theory w 

the LLL projection made. We have presented elsewhere a brief report of this work [10]. 

the present paper we provide a full account of our results, which we summarize as follO\ 

(a) The dynamics of the bilayer system is governed by the W",xSU(2) algebra. (b) 1 

ground state is an eigenstate of the in-phase density operator. (c) The incompressibility 

the fractional QH state follows from this ground state property and the Woo algebra. (d) 1 

U(I) phase symmetry is not broken spontaneously in spite of bose condensation since 1 

QH state is not a coherent state of composite bosons. (e) In the so-called Halperin (m, m, 

phase the QH state is a coherent state of the SU(2) component of the composite boson fie 

which is the Cpl field. (f) Skyrmions are coherent excitations of the Cpl field in this pha 

(g) A systematic method is presented to calculate the current and the static correlati 

functions. (h) Skyrmions are detectable by measuring the Hall current distribution. (i) 1 

coherent mode is a superfluid mode in the vanishing limit of the tunneling interacti( 

Almost all these results can be taken over to the monolayer QH system with spin degn 

of freedom by replacing the capacitance energy with the Zeemann energy. In this c< 
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r analysis presents a field theoretical proof that the monolayer QH system is a quantum 

romagnet with Skyrmions as topological excitations in spin texture. 

Thls paper is composed as follows. In section II we start with the Hamiltonian of the 

ayer QH system. Assigning "up" and "down" pseudospins to the electrons belonging 

the upper and lower layers, respectively, we introduce the pseudospin SU(2) structure 

o the bilayer system. Low-energy excitations are described in terms of the pseudospin 

ture. We then formulate the LLL projection in the electron field theory. We consider 

case in whlch the magnetic energy greatly exceeds thermal and potential energies. It 

reasonable to assume that all electrons are confined within the lowest Landau level if 

y can be accommodated there. However, in order to make a consistent theory, it is 

cessary to suppress level mixings by making the LLL projection. Indeed, without the 

L projection the potentials kick out electrons out of the lowest Landau level however 

all its probability is. The LLL projection is achieved by quenching the kinetic term and 

'ezing out the relative coordinate in the potential. Although the kinetic energy term is 

sent in the projected system, the dynamics arises because the X and Y coordinates of the 

iding center X = (X, Y) do not commute. Thls noncommutativity leads to the magnetic 

slation group. It generates Woo group in the monolayer system and the Wex> xSU(2) 

'oup in the bilayer system. 

In section III we introduce composite bosons based on theCS gauge theory. A composite 

)son is obtained by attaching an odd number of flux to an electron. It is a peculiar feature 

the 2-dimensional system that the statistics of a particle can be altered by attaching a 

lX to it [2] . Thus, an electron bound to an odd number of flux turns into a boson and 

ldergoes bose condensation in an appropriate circumstance, as makes the fractional QH 

lte [3]. However, they are not genuine bosons; they are hardcore bosol1s with the exclusion 

inciple implemented. In the bilayer system, physics is very different in the so-called 

alperin (ml, m2, n) phase and the (m, m, m) phase [4J. In this paper we are concerned 

Ily about the (m, m, m) phase, since this is the phase where the interlayer coherence 

~velops spontaneously. In this phase the composite boson field is naturally decomposed 
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into two fields : The U(1) field is associated with the total density (in-field denSity), and the 

Cpl field with the density difference (out-of-phase density). The Skyrmion excitation is a 

coherent excitation of the Cpl field carrying the Pontryagin number [6]. We also formulate 

the LLL projection in the composite boson theory. 

In section IV we analyze the (m. m. m) phase of the bilayer QH system in a semiclassical 

approximation of the bosonic CS theory. We first determine the classical ground state by 

minimizing the energy of the classical Hamiltonian. It describes a uniform distribution of 

electrons, which is realized only at the magic filling factor v = 1/ m. We then determine the 

ground state by considering quantum corrections due to perturbative fluctuations around 

it. In thls paper we ignore nonperturbative fluctuations generating topological vortices. 

Then, there exist no in-phase density fluctuations in the lowest Landau level, as implies 

the incompressibility of the system [4]. However, the out-of-phase density fluctuation has 

a gapless mode confined within the lowest Landau level, which leads to a spontaneous 

development of a novel interlayer coherence. We also study the Skyrmion classical field. 

In section V we analyze the bilayer QH system by using the algebraic structure of the 

LLL-projected operators and a few additional properties of the ground state. The key 

properties of the ground state are the following: (A) It is an eigenstate of the in-phase 

density mode. (B) It is a coherent state of the out-of-phase density mode. The property 

(A) makes the QH system very unique. Its origin is the LLL projection because such a 

ground state is realized only in the absence of the kinetic term. It is remarkable that the 

Woo algebra with no central extension has only the trivial vacuum sector [111 leading to 

the incompressibility of the system, as is consistent with the above perturbative result. We 

also present a systematic method to calculate static correlation functions. Then, evaluating 

the Coulomb energy of the pseudospin texture, we derive the effective Hamiltonian for the 

interlayer coherent mode. The mode is shown to be a superfluid mode in the vanishing 

limit of the tunneling strength. 

In section VI we evaluate the Hall current, the supercurrent and the tunneling current 

in the pseudospin texture. A special care is needed for the analysis of the Hall current. 
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This is because the electric current vanishes identically, when it acts on any state in the 

lowest Landau level. Actually the current flows via a Landau level mixing [9] . We present 

a systematic way to evaluate electric currents on the QH state. We point out that 5kyrmion 

excitations would be detectable by measuring the Hall current distribution. We also show 

that the interlayer coherent mode is a superfluid mode in the vanishing limit of the tunneling 

interaction. 

Section VII is devoted for discussions. 

2. BILAYER QUANTUM HALL SYSTEM 

A. Pseudospin Texture 

We consider a bilayer electron system in strong magnetic field. We denote the electron 

field at the layer £x(= 1,2) by (jJa(x) . The field theoretical Hamiltonian is given by 

z 
(2.1)H = 2~ I f dZX (jJ~(x)(p1 + P~)(jJ",(X) + He + H r , 

a=l 

where Px and Py are the covariant derivative, Pk = - ihok + (e/c)A~xt, with the external 

magnetic field taken in the symmetric gauge, Akxt = ~BEkjXj. The Coulomb interaction 

term He is 

He =21 I2 fd2xd2yV",~(x - y)pa(x)p~(y), (2.2) 

".~=I 

with pa(x) '" (jJa(x)t(jJ",(x) and 


eZ 
 1 
Va~(x - y) = ---- (2.3) 

E ~Iz+d~~ 


where dll =du =0 and dl2 =d is the interlayer distance. We may rewrite it as 


(2.4)He = ~ fd2xd2 yV+(x - y )p(x)p(y) + 2 fdZxd2yV_(x - y)S\x)S3(y), 

where V= = ~(Vll ± V12)' The tunneling term Hr is 

(2.5)Hr = -i\ fd2x«(jJr (jJ2 + (jJ~(jJil. 

5 

The tunneling interaction induces the energy gap 6 sAs = 2i\ between the symmetric al 

antisymmetric states. The bilayer system has a much richer phase structure than the mor 

layer system because we can control the interlayer distance d and the tunneling streng 

i\. 

We assign "up" and "down" pseudospins to the electrons belonging to the upper al 

lower layers, respectively. The pseudospin densities are sa(x) = ~'¥tTa,¥, where TQ is t 

Pauli matrix and '¥ is the SU(2) field, ,¥T =«(jJI, (jJz). In particular, S3(x) = ~(pl - p2) w: 

p'" = (jJ~(jJ",. The total density is p(x) = pi + p2 They satisfy the commutation relatiol 

[SQ(x), Sb(y)] = io(x - Y)EQbcSC(X) and [p(x),sa(y)] = O. We call p the in-phase density, a 

S3 the out-oj-phase density. The pseudospin operator generates a local 5U(2) transformatic 

e- ilJ , with 

3 

<9 =I fd2xra(x)Sa(x), (2 
a=1 

where (Q(x) is a real function. It acts on the SU(2) field as 

a 
,¥(x) - e-·o'¥(x)e i19 =exp[i L ( a(x) T ]'¥(x). (2

2 

5ince it is not a symmetry of the system (2.1), the state 1<1» =e iIJ Ig) is an excited state w 

Ig) the ground state. In this paper we mainly consider the pseudospin texture describ 

by this state. 

The monolayer system with spin degrees of freedom has the global SU(2) symme1 

as well as the U(1) symmetry, where the SU(2) symmetry is broken down to the 50 

symmetry by the Zeemann energy. On the other hand, the bilayer case has the sal 

symmetry structure, where the SU(2) symmetry is broken down to the 50(2) symme1 

by the capacitance energy. This is seen in the Coulomb term (2.4), where the potent 

V+ part has the global SU(2) invariance and the V_ part (capacitance term) has the glol 

50(2) invariance. The bilayer system has the tunneling interaction (2.5) additionally, whi 

may be rewritten as Hr = -2i\ f d 2xSI (X) . It breaks the 50(2) symmetry explicitly but or 

weakly provided that i\ is sufficiently small. 
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B. LLL Projection and W", x SU(2) Density Algebra 

When the magnetic field is strong enough, the magnetic energy greatly exceeds thermal 

d potential energies. It is reasonable to assume that electrons are confined within the 

Nest Landau level. To make a consistent theory, it is necessary to make the LLL projection 

. quenching the kinetic term (9). 

For this purpose we decompose the electron coordinate x = (x, y) into the center-of-mass 

ordinate X called the guiding center and the relative coordinate R, where x =X + R with 

= (- .e~Pyl h, .e~Pxlh);.eB ;: .Jhc leB is the magneticlength. They satisfy [X, Y) = -i.e~ and 

x , Ry) = if~. We may define two sets of independent harmonic oscillators, 

fB . i ( 0) t.eB . i ( . a ) 
a;: v'2h(Px +1Py )=- J2 z+oz* ' a ;: J2h (Px - lPy) = J2 z· - oz ' (2.8) 

Id 

b;: _l_(X-iY) =2..(z*+~) bt == _l_(X + iY) =2..(z _ _0_). (2.9)
J2.eB J2 oz ' J2.eB J2 oz* 

ley satisfy [a,a t ] = [b ,bt ] = 1 and [a,b] = [at , b] = 0. We have introduced the complex 

Imber Z by 

z-
_ 

2f 
1 

(X+i y ), ~ =.eB(~ - i~). (2.10) 
B OZ ox oy 

nce the excitation of the relative coordinate causes a transition to an upper Landau level, 

is necessary to freeze out this degree of freedom. 

The LLL projection is to quench the kinetic energy term in the Hamiltonian, which is 

written as 

(2.11)HK = hWe ±fd2x!fJtata!fJ« + ~hWe , 
«=1 

lere N is the number of electrons in the system, Jd 2xp(x) =N, and We ;: eB IMc is the 

elotron frequency. In order to confine all the electrons in the lowest Landau leveL we 

iuire the LLL condition, 
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a(x)!fJ«(x)I'Y) ex (Px + iPy)!fJ«(x)I'Y) = 0, (2.1 2) 

for the states I'Y). All the states satisfying this condition constitute a Hilbert space. 

After the LLL projection, although the kinetic term does not exist in the Hamiltonian, 

the system develops dynamically because the X and Y coordinates of the guiding center 

X = (X, Y) do not commute, [X, n = -i.e~ . It is easy to verify (9), 

[e,qX, e iPX ) = 2ie i(q+P)X sin(.e2 q /\ p] (2.13)
B 2 ' 

which is called the magnetic translation algebra . Due to this algebra the dynamics arises 

even in the absence of the kinetic term. 

The smeared density operator is 0 =Jd 2!1f (x)p(x). The state OI'Y ) does not belong to 

the lowest Landau level even if I'Y) does, because 

a!fJ«(x)O I'Y) =a{(x)!fJ«(x)I'Y ) -=f. 0. (2.14) 

We denote the LLL projection of the operator 0 and the c-number function ((x) by 0 and 

(x), respectively. Since the projected quantity does not involve the operator at , we have 

a!fJ,,(x)OI'Y) =(x )a !fJ«(x) I'Y ) =O. (2.15) 

It is clear that the state 0 !'Y) belongs to the lowest Landau level. 

We make the LLL projection in a systematic way. We first make a Fourier transformation 

of {(x) , 

{(x) = f~: eixq{q. (2.16) 

The problem of the LLL projection is reduced to that of the plane wave e,xq. We make 

normal ordering with respect to a and at as 

. .e~? [ .eB t 'qX [.eB .e,qx = exp[--q-]exp -qa )e' exp - - q" a) (2.17)
4 J2 J2' 

where q = qx + iqy. The LLL projection is to quench the operators a and at . Hence, 
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d2 f2 iqX (2.18)(x) = _ 2: exp[ - ; q2)e fq,r 
and 

(2.19)0= Jd2x(x)p(x) =Jd2qf_qpq. 

Here, we have defined the LLL projected density operator by 

XP fd 2 
(2.20)pq = exp[ - ; q2] 2rr e- iqX p(x) . 

We define similarly the LLL projection of SQ, 

~ f2 xfd2

S~ = exp[ - ; q2] 2rr e- iqX SQ(x). (2.21) 

These operators satisfy the algebra, 

~ ~ i ~ . 2 P I\ q f~ 
[pp, pqJ = :rr Pp +q sm[fB -

2
- J exp[2 Pq ], (2.22) 

~Q ~ i ~Q • 2 P 1\ q f1
[Sp' pq) = :rr Sp+q sm[fB- 2-] exp[2pq ), (2.23) 

~Q ~b i abc ~c 2 P 1\ q f~
[Sp,Sq) = 2rrE Sp+q cos[fB--) exp[2pq ]2

i ab ~ . 2 P 1\ q f~ 
+4rr 6 pp+qsm[fB-

2
-]exp[2pq ], (2.24) 

which is isomorphic to the Woo x SU(2) algebra. We call it the density algebra. 

The algebra follows from the following operator products, 

p(x)p(y) =p(x)6(x - y )+ : p(x )p(y) :, (2.25) 

Sa(x)p(y) =Sa(x)6(x - y)+ : SQ(x)p(y) :, (2.26) 

. 1 
sa(x)sb(y) = ~EQbCSC(x)6(X - y) + 46abp (x)6(x - y)+ : Sa(x)Sb(y):, (2.27) 

and the magnetic translation algebra (2.13). In the derivation we required the normal

ordered terms to vanish for x = y. The Pauli exclusion principle (!jJ",(X)2 = 0) implies that 

: p(x)p(x) := 2!jJ; (x)!jJ~ (x)!jJJ(X)!jJ2(X). Here, the product !jJJ(X)!jJ2(X) needs not vanish since 

two electrons belong to different layers. However, we have required it to vanish as well. 
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This is certainly the case in the vanishing limit of the interlayer distance (d =0), where t 

two layers collapse into a single layer and the layer index loses its meaning. When d '* 
although this "hardcore" condition is not required, it is realized dynamically due to t 

strong Coulomb repulsive force between the electrons. Indeed, the wave function of t 

bilayer QH state has this hardcore property; see the wave function (3.3) 

III. COMPOSITE BOSONS 

A. Chern-Simons Gauge Theory 

To reveal the existence of various phases in the bilayer system it is convenient to use t 

Chern-Simons gauge theory na. It is a field theory of composite electrons. We define t 

composite-electron field <Pa by an operator phase transformation, 

cp",(X) = eiEJcr(X)!jJa(x). (3 

The phase field 0" are defined in the basis 1 (x~); (x~)) with the electron positions dia~ 

nalized as 

0J(x)1 (x~); (x~)) = (mJ I 8(x - x~) + n I 8(x - x~))1 (x~); (x~}), 


02(X)1 {X~}; (x~)) = (n I 8(x - X~) + m2 I 8(x - x~))1 (x~};{x~}), (3 


where m" and n are integers. Here, m" is associated with the statistics between compos 

electrons within layer cx, while n with the relative statistics between composite electrons 

the different layers; Each of them gives a relative angular momentum to a pair of electrons 

that they never come to the same xy position [4]. When we choose m", to be odd, compos 

electrons are called composite bosons since they become bosonic. 

The property of the system depends crucially on these parameters: It turns out [: 

that the QH states are characterized by the three integers (mJ, m2, n). The wave function 

composite bosons in the (mJ, m2, n) phase is 

'I'[z,z*] =A[z)n Iz; - z1l m, n Iz~ - z~lm2n Iz; - z~lne-2: l l) 1 2 _2: 'l~12, (3 
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ere ~[z] is an arbitrary analytic function symmetric in z~ and also in z~. This is obtained 

by solving the LLL condition (3.25) we mention later. The Halperin wave function [12] 

simply a singular phase transformation of (3.3). It is observed manifestly in this wave 

ction that no two composite bosons come to the same xy position, even if they belong to 

different layers. It is also observed that the parameters m", and n measure the strength of 

rrelations between composite bosons which are determined dynamically by the Coulomb 

teraction. We can realize the (ml' m2, n) phase by tuning the system parameters such as 

e electron densities and the interlayer distance. In particular, we expect the (m, m, m) 

ase to appear when the magnetic length and the interlayer distance are of the same order 

"" d). 

In term of the composite boson field the Hamiltonian (2.1) reads 

H = 2~ 2: fd2Xcp~(X)[(P:f + (p~)2]cp",(X) + ~ 2: fd2xd2yV"'iJ(x - y)p"'(x)piJ(y), (3.4) 
'" ~ 

ere p'" = I.JI~I.JI'" = cP~cP" and pt' is the covariant momentum incorporating the Chern

mons field defined by Cf(x) = hCOk8"'(X), 

P{' = -inok + J'l~, J'lf = !(Cf + eArxt
). (3.5) 

C 

follows from (3.2) that 

EjkOjq = 2rr1'lc(mlpl + np2), EjkOjCl = 2rrtrc(npl + m2p2). (3.6) 

lis set of equations is the constraint condition which determines the Chern-Simons field 

~ in terms of the density p". 

Although the electron Hamiltonian is invariant under the global SU(2) transformation, 

e composite-boson Hamiltonian (3.4) is no longer so unless ml = m2 =n due to the Chern

mons fields Cf in the covariant momentum. The existence of the (ml, m2, n) phases is 

dden in the original electron theory, where these phases must be realized by way of 

'ontaneous breakdown of the SU(2) symmetry. On the contrary, in the composite boson 

eory each phase is described by its own Lagrangian containing the symmetry-breaking 

Irameters explicitly. 
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It should be noted that, although we can construct the pseudospin density sa(x) out 

of the composite boson fields, SI(X) and S2(X) are not the same objects as the ones in the 

original electron theory. The exceptional case is the (m, m, m) phase, where all the operators 

SQ(x) are identical to the ones in the original electron theory. This is because two equations 

in (3.2) become identical. There exists only one phase field 8 ;: 8 1 = 82, and hence only 

one Chern-Simons field Ck ;: C1 = Cf. This is the basic reason why an interlayer coherence 

develops spontaneously in this phase and leads to novel physics intrinsic to the bilayer Hall 

system [4]. 

B. Cpl Field and 0(3) Sigma Field 

To analyze the pseudospin texture in the (m, m, m) phase, it is convenient to introduce 

the Cpl field and the 0(3) sigma field. We may decompose the composite boson field CP'" 

into the two fields cP and n"" 

cp",(x) = cp(x)n",(x), cp(x) =e'X(X\ p(x). (3.7) 

We substitute (3.7) into the density operator p(x) = ,L cp~(x)cp"'(x) = cp t(x)cp(x), and find 

that nt (x)n(x) =1, where n T = (n l ' n2). The pseudospin generators are expressed as 

SQ(x) =nt(x)TQn(X)p(x). (3.8) 

We count the number of the real fields in the decomposition (3.7). The composite boson 

CP'" has four real fields in tota\, and the UO) field cp has two real fields. Hence, the two

component complex field n", has only two real fields. Such a field is the Cpl field, and the 

0(3) sigma field is given by nt(x)TQn(X) as a composite field [6] . 

The overall phase of the Cpl field is unphysical, since the Cpl field is defined merely 

as a projective field by using a set of patches to cover the entire two-dimensional space [6]. 

When we set 

nl(x) = e;<pl(X)~l + u(x) n2(x) = e;<pl(X)~l - u(x) (3.9)2 ' 2 ' 

12 
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only the difference qJ(x) = qJI (x) - qJ2(X) is a physical field . When we make a perturbative 

analysis about the classical ground state qJ,,(x) = O'(x) = 0, we may carry out calculations 

in one patch by setting 

nl(x) =ei'P(X)/2)1 + ~(X), n2(X) =e-i'P(X)/2 ) 1 - O'(x) (3.10)2 	 . 

Regarding x(x), 15p(x) = p(x) - 2po, qJ(x) and O'(x) as the fluctuation fields, we obtain 

A.. ~(1 15p 0' . .qJ) 
'+'1 = ,Po + - + - + IX + 1- + ... , 4~ 2 2 ' 

A.. r;;:(1 15p 0' . .qJ)
'+' 2 =" Po + - + - - IX - 1- + .... 	 (3.11) 

4po 2 2 

The canonical commutation relations [<t>,,(x), <t>1(y)] = 15er/315(X - y) are realized by 

[15p(x),X(Y)] = i15(x - y) 	 (3.12) 

and 

[PoO'(x), qJ(y)] = i15(x - y) . 	 (3.13) 

The phase difference qJ is the conjugate field of the out-of-phase density 0', just the phase 

X is the conjugate field of the in-phase density p. 

The parametrization (3.10) is not appropriate for a discussion of the Skyrmion classical 

field. If we identify the phase qJ(x) as the azimuthal angle 8(x), the Cpl field (3.10) becomes 

singular at the Skyrmion center where O'(x) = 1. We should rather set 

+ O'(x) () -i8(x)Jl- O'(x)() 	 )1 nl x 	= ---2---' n2 X =e ---2---' (3.14) 

with qJ(x) = 8(x). In this way there exists a phase ambiguity in the Cpl field. On the 

contrary, there is no such ambiguity in the pseudospin fields sa(x) which depend only on 

the phase difference qJ = qJI - qJ2· 

C. Coherent State 

The key property of the (m, m, m) phase is that the ground state is an eigenstate of the 

density operator P and a coherent state of the Cpl field, as we discuss in section V A. Hence, 

we are interested in such a state that 
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p(x)lg } = 2Po Ig} 	 (3. 

and 

nl(x)lg} = jfei'Po /219 }, n2(x)lg } =\~e-i'PO/219 } . (3. 

The pseudospin field reads 

(gISI(X)lg) =PocosqJo, (gIS2(X)lg ) =Po sin qJo, (gIS3(X)lg) =O. (3. 

Without loss of generality we may choose To =0, 

n(x)lgo } =nolgo}, 	 (3.no =jf C), 
and 

1 
sg '" 	-(goISa(x)lgo) =15al. (3.

Po 

Note that the ground state Igo } is different from the one in the monolayer case with s 

degrees of freedom, where (gIS3(X ) lg ) = 2Po, due to the difference between the Zeema 

energy and the capacitance energy. 

A pseudospin texture is generated by performing an SU(2) transformation as 14» 

e i <9 1go } with (2.6). We may parametrize, 

SI(X) '" ~ (4)ISI(X)14>) =~1- 0'2(X)COSqJ(x),
Po 

S2(X) '" ~ (4) IS2(x)I<I» =~1 - 0'2(X) sin qJ(x),
Po 

S3(X) '" -
1 

(4)IS3(x)14>) = O'(x). (3.: 
Po 

The field s(x ) =(Sl, S2, S3) is the classical nonlinear 0 (3) sigma field subject to 2:a(sa(x»2 = 

Using the SU(2) transformation (2.6) explicitly in the state 14» =eWlgo), we may exprl 

sa explicitly in terms of fa, 

1
sa(x) = 	-(4)ISa (x)14> ) = sg - Eabcfb(x)sg +" ' , (3.: 

Po 
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h (3.19), where the dots · .. denote higher terms in fa. Comparing this with (3.20), we 

relate the function fa to the fields 0" and cpo We have 

Sl(X) = 1, S2(X) =cp =-e, S\x) =0" =e, (3.22) 

to the first order in fa. 

The pseudospin texture is classified by the Pontryagin number, Q = Jd2xQo(x) , whose 

nsity have some equivalent representations [6J, 

1 . . 1 1 
Qo(x) =-SEabCEIjSaO'Sb iYsc = -EijOjcpaJO" = -2 Eijo,Kj, (3.23) 

rr 4rr rr 

lere Kj = -i I", n~ojn", is the auxiliary field associated with the Cpl field. When a 

udospin texture has a nonzero Pontryagin number, it cannot be deformed into a trivial 

udospin texture (the classical ground state) by a continuous deformation. The pseu

spin texture denotes a topological soliton which has the topological stability: It describes 

yrmions [6]. 

D. LLL Projection in CS Theory 

We can make the LLL projection also in the bosonic CS theory. The LLL projection 

enchs the kinetic ternl in the Hamiltonian (3.4). The kinetic term is 

(3.24) 

'" 
lere P'" is the covariant momentum (3.5). The LLL condition reads 

HK = 2~ If d2xcpt(x)(P: - iP;J(P: + iP;)cp,, (x) + ~;,wc, 

J 

(P;> + iP;)cp",(x)I$) = 0, for (X = 1,2, (3.25) 

corresponds to (2.12). It is easy to see [4] that the wave function of the state 1$) is given 

the function (3.3) by solving (3.25). In the (m, m, m) phase the LLL condition reads 

(Px + iPy)CP",(x) I¢) = 0, for (X =1,2. (3.26) 

)mposite bosons are hardcore bosons. We postulate the exclusion principle for the U(l) 

ld cp in (3.7), as requires cp(x? = O. Then, all the formulas for the LLL projection in 
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the electron theory hold as they are in the composite boson theory when we replace the 

quantities of the electron by the checked quantities of the composite boson. In particular, 

the LLL projected density and SU(2) generators satisfy the W", x SU(2) algebra (2.22) - (2.24) 

also in the Chern-Simons formalism. 

IV. SEMICLASSICAL ANALYSIS 

A. Classical ground state 

We analyze the (m, m, m) phase of the bilayer QH system in a semiclassical approxima

tion based on the composite boson picture. The previous work [4] is insufficient since it 

predicts an isolated Goldstone mode which is phYSically unacceptable [5). 

We first determine the classical ground state by minimizing the energy of the classical 

Hamiltonian. In this phase the LLL condition implies two classical equations, 

(i\ + iPy) cp,,(x) =0, IX = 1,2 (4.1) 

with h -ihok + Ak and Ak ~(Ck + eA!xt), while the CS constraint (3.6) yields one 

equation, 

EjkiJjCk(X) = 2rr;,cmp(x), (4.2) 

where p = pI + p2 is the total density. The Coulomb energy is minimized by pI =p2 =Po, 

where Po is the uniform background density in each layer. 

The classical ground state is given by the uniform distribution of composite bosons, 

cp"(x ) = MejX~ , CAk = Ct: + eA!xt = 0, (4.3) 

with a fixed angle xt,since it satisfies the LLL condition (4.1) and minimizes the Coulom

b term. Substituting this solution into the CS constraint constraint (4.2), we find eB = 

4rrhcmpo, or v =4rr1'1cPoleB = 11m. The classical ground state (4.3) is possible only at 

this filling factor [4]. It should be emphasized that the densities pt are arbitrary in each 
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layers though their Sum is fixed. In the absence of the tuIUleling interaction, each of the 

classical ground states is the vacuum of a different sector of the Hamiltonian. However, 

the tunneling interaction mixes all of them. Consequently, the Hilbert space contains states 

having arbitrary uniform density distributions Po with p~ + P6 = 2po at the filling factor 

v = I I m. In the next subsection, by considering quantum fluctuations, we show that the 

densities p"'(x) may change locally. This results in the arbitrariness in the out-of-phase 

density S3(X), as is the origin of the interlayer coherence. 

This should be contrasted with the classical ground state i..n the (ml' m2, n) phase. Here, 

since the CS constraint contains two equations as in (3.6) rather than one, the classical 

ground state is uniquely determined: The densities in each layers are fixed as 

pi _ m2 - n 2 2 ml - n
Po = 2po. (4.4)o - ml + m2 - 2n Po, ml + ml - 2n 

and there is no room for the interlayer coherence to emerge [4]. It is realized at the filling 

factor v = (ml + ml - 2n)/(mlm2 - nl) with mlm2 f n2 

In the (m, m, m) phase it is convenient to parametrize the bosonized electron field ¢",(x) 

by using the Cpl field na(x) as in (3.7), or 

¢,,(x) = ¢(x)n",(x), ¢(x) =eiX(X)~p(x). (4.5) 

Here, ¢(x) and n,,(x) are independent fields. Corresponding to the classical ground state 

(4.3) a set of coherent states is defined by 

¢(x)Ie<) = jiPoeiale< ), (4.6) 

for the field ¢(x), and 

n,(x) lcpo ) = ~ei'l'Of2ICPo ) , n2(x)lcpo) = ~e-i'l'O/2ICPo), (4.7) 

for the Cpl field n",(x). The mean-field ground state is given by loc) 0 Icpo). 

The mean-field ground state is a coherent state of the composite bosons and contain an 

indefinite number of particles. This contradicts the fact that the system contains a fixed 
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number of electrons, which we have assumed to derive the Hamiltonian; see (2.11) a 

(3.24). We can construct a state having a fixed number of particles as follows. From ( 

we obtain 

(e<I¢(x)I13 ) =ei"~(e<II3>, 

with (e< 113> = 2rr6(e< - 13)· We have such a relation between two vacua Ie<) and 10) that 

Ie< ) =ei"QIO), Q =Jd2xp(x), (4 

where Q is the number operator. The gauge-invariant quantities do not depend on 

gauge parameter oc. We may construct the state 

10)N =2">-i"'NIe<) =Iei"'(Q-N)IO) =6(Q -N)IO), (4. 

'" '" 
where 2.", = (2rr)-1 Jg" doc. The state has a fixed number N. Furthermore, using (4.8) 

find 

N <0 1¢(x)IO)N =I ei(a-8) (e<I¢(x)113> = .JPoI ei '" =0, (4. 
,,8 " 

and hence the global phase symmetry is restored on 10)N. 

The true ground state is given by Ig) =10),v0Icpo), which has a fixed number of electrm 

Nevertheless, the electron number in each layer is arbitrary. The QH state is a coherent stc 

of the Cpl field in the (m, m, m) phase. 

B. Perturbative Analysis 

We analyze a quantum correction around the classical ground state (4.3). Any flue! 

ations violating the LLL condition (3.26) induce excitations across the Landau level gc 

Thus, we analyze the LLL condition or equivalently the kinetic Hamiltonian perturbative 

We express the composite boson field ¢",(x) in terms of the U(I) field ¢(x) and the Cpl fiE 

n",(x). Since the CS constraint (3.6) reads CjkOjCk(X) =2rr1'l.cm¢ t(x)¢(x), the CS field Ck( 

depends only on the U(I) field ¢(x): It corrunutes with the Cpl fieJd n,,(x). 
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We consider a perturbative fluctuation around the classical ground state by setting 

¢(x) = ,fiPoe'X(X) (1 + 8:;:) + ...), (4.12) 

d 

nl(X) = iCP (X) /2( 1 + CT;X) + ... ),jfe
n2(x) = fie - ;'P(X) /2 (1 _ CT(X) ) ( 4.13) ~~ 2 + ... . 

lbs titu tin g the above expansions to h ¢ C( and ta king only the linea r terms in the fl uctua tion 

.Ids we find 

Pk¢" = ~e:!;'P !2Pk¢ - il1,j2Poe iX i\n" , (4.14) 
,,12 

ere Pk ¢ is given by 

V · il1 
Pk¢ = e' X(JPol1okX - 2jPo0k8P + JPoAk). (4.15) 

:ce Fourier transformations of the fluctuation fields are 

d2k d2k 
8p(x) = -6Pke,kx X(x) = 2rr Xke,kx, ( 4.16) J2rr ' J 

ld 

2. Jd k k j ikx (4.17) Ai(X) = EIJ2mml1 2rr k26Pke , 

r solving the CS constraint. 

In the linear approximation the kinetic Hamiltonian is easily diagonalized. It is conve

ent to introduce the operators 

~k= ~(,JG;6Pk+i,~Xk)' 
JOt 1 ( 'G - t . 1 t) (4.18) 'ok = J2 \; kOPk - I ,!GkXk ' 

here 
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1 2 )
Gk = - (1 + 02 k 2 ' (4.19) 

4po "8 

and 

,.-t _ Wo[CT t _ imt)t;;k = .jP![CTk + i<Pk], (4.20)'ok-V2 k "'k· 

They obey [~k, ~n =8(k - I), and [t;;k, t;;J] =8(k - I) . Substituting (4.14) into the kinetic 

term in (3.24), we obtain [4] 

H = Jd2kE~(k)~Z~k + Jd2 kEz;lkKkt;;k (4.21) 

with 

11 2 k2 11 2k2 

E~(k) = 2M + I1w c, ET;(k) = 4M . (4.22) 

The dispersion relation E~(k) is precisely the same as the one in the monolayer case [4]. 

The operator ~Z creates excitations across the Landau level gap as in the monolayer case. 

Therefore, as far as ~k mode concerns, the Hilbert space contains only the "vacuum". 

There are also vortex sectors created nonperturbatively [13). However, to create a vortex it 

is necessary to supply a nonzero Coulomb energy. Namely, the in-phase density fluctuation 

is a gapful mode. This implies the incompressibility of the fractional QH system. 

We next analyze the Sk mode. It is the Goldstone mode associated with the spontaneous 

breakdown of the 50(2) symmetry. The dispersion relation ET;(k) implies that the out-of

phase density fluctuation has a gapless mode [4). However, a caution is necessary. It is 

clear in the Hamiltonian (4.21) that no energy is necessary to excite the t;;o mode. Hence, the 

uniform electron density pg in each layer is arbitrary though their sum is fixed (p~+ P6 = 2po), 

which is the property of the classical ground states. However, the dispersion relation has a 

peculiar form since any excitation created by t;;l with k of 0 escapes the lowest Landau level. 

Because of this fact it has been criticized [14) that it would not be the coherent mode we 

are looking for. Indeed, it would describe an isolated Goldstone mode [4), as would imply 

an infinitely large pseudospin stiffness and the Meissner effect [15] which are physically 
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unacceptable [5,8]. In spite of these facts, we now show that the criticism [14] is not correct. 

The isolated Goldstone mode is merely a superficial observation: It reflects the fact that (t 
creates the plane wave eikx which does not belong to the lowest Landau level except for 

k = O. 

The LLL condition (3.26) is linearized and yields the condition 

a (4.23)Oz* ((x)Ic!» = 0 

for the ((x) mode. Just the original LLL condition (3.25) determines the wave functions of 

the composite bosons as in (3.3), this restricts the wave functions of the ((x) mode. Let 10)( 

be the vacuum of the ((x) mode, ((x)IO)( = O. We may construct a state If) whose wave 

function is an arbitrary analytic function f(z), 

If) =Jd2xf(z}St(x)10)(. (4.24) 

Use the commutation relation [((x), (t(y)] = b(x - y) we have ((x)lf) = f(z)IO)(. The LLL 

condition (3.26) implies that the state If) belongs to the lowest Landau level. In general, 

the N-excitation state is given by 

IfN) = Jnd2xrfN(Z]. Z2, ... ZN}St (Xl}St (X2) ... (t (XN) 10k, (4.25) 
r 

where fN(Zl, Z2, ... ZN) is an analytic function of the N variables Zr syrrunetric in all of them. 

In due course the kinetic energy of the state IfN) vanishes, as is clearly seen by rewriting 

the Hamiltonian (4.21) as 

2 2 
_ h J 2 t k . - h J 2 taO (4.26)H( - -M d k(k( x - Iky)(kx + kY}Sk - -----;0 d x( (x)-::;--a-((x).

4 4M-(;iJ oz Z· 

The density difference between the two layers is described locally by the operator 

S3(X) = Pocr(x) = j¥[((X) + (t(x)]. (4.27) 

We find (flcr(x) If) = 0 for one-excitation state since cr(x) changes the number of excitations 

by one. We may consider a superposition of various states, 
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IcP) = 1ft) + If2) + ... , (4.: 

for which we have (cPlcr(x)lcP) -=fi O. The state IcP) describes a local modulation of t 

pseudospin texture, ($ISa(x)I$) = posa(x) -=fi O. Although it has the vanishing kine 

energy, it is not a classical solution of the LLL condition (4.1). 

Any states 1$) in the lowest Landau level have no kinetic energy. In evaluating t 

Coulomb energy we cannot use the Coulomb potential (2.4) naively. If we used it, t 

state (4.28) would acquire the capacitance energy only. It is necessary to make the LI 

projection of the Coulomb potential; see the projected potential (5.3) we give later. T 

projected potential Vq contains the guiding center X in place of the coordinate x, wh( 

Xis a differential operator acting on the analytic function fN in (4.25) nontrivially. Hen 

the state 1$) acquires a nontrivial Coulomb energy ($IHcl$). It is possible to modul< 

the pseudospin densities ($15:/ 1$) arbitrarily small so that the Coulomb energy becorr 

arbitrary small. This implies the existence of a gapless mode in the out-of-phase dens 

fluctuation. However, we do not pursue this line of approach any more since it is at bes 

crude approximation. Indeed, when the projected operators are linearized in the fluctuati, 

fields, they do not satisfy the density algebra (2.22) - (2.24), though they are the fundamen 

symmetry. In section V D we evaluate the Coulomb energy by making use of the dens 

algebra, where we derive the dispersion relation Ek in (5.64) for the gapless mode confin 

within the lowest Landau level. 

C. Skyrmion Classical Configuration 

We have studied the classical ground state and quantum fluctuations around it. In t 

(m, m, m) phase the classical ground state is a classical solution of the LLL condition (4 

satisfying the CS constraint (4.2). We now show that there exist other classical solutio] 

We may rewrite the LLL condition (4.1) as 

(a~* +Z+i:~(Cx+iCY))1>c«X)=O' (4.: 
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·.ere use was made of (3.5) and (2.10). Since we are dealing with the classical field, 

u(1i phase factor eix in (3.7) may be aborbed into the Cpl field n,,(x) . Thus, we set 

(x) = ~p(x)n,,(x). We substitute it into (4.29) and divide it with ~p(x), 

a oln~P(X)fB (C + iC ))n (x) = O. (4.30)(-+ +Z+I to x y "oz* oz, en 


ce the identical equation holds for ex = 1,2, by setting nl (x) =w(x)n2(x), we find 


oz*
a 

w(x) = O. (4 .31) 

erefore, w is an arbitrary analytic function. The Cpl field n,,(x) is determined as 

1nl(x)=~ (4.32)
n2(x) = ~1 + Iw(z)i2~1 + Iw(z)i2' 

. s field configuration has the most general form of the Skyrmion configuration [6]. Hence, 

e classical field n,,(x) describes Skyrmions. 

An example is given by 

w(z) = Z + iK ( 4.33) 
Z - iK' 

ere the positive constant K describes its scale. It yields the sigma field, 

r2 _ K2 
Sl=_ S2 = 2KX S3= ..32... (4.34)

r2 + K2 ' r 2 + K2' r 2 + K 2 ' 

has the Pontryagin number Q = 1. We find sa(x) - ,sal as r - co. Thus, it approaches the 

issical ground state (3.19) at infinity. The example (4.33) gives the Simplest Skyrmion on 

e bilayer ground state Igo). 

Another example is given by 

w(Z) = KZ. ( 4.35) 

yields the sigma field sft such as (s,~, S~I' S~I) = (S2, S3, Sl) with (4.34). Due to the cyclic 

mmetry the present Skynnion has the same Pontryagin number, Q =1. We find s~(x) 
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,sa3 as r - co. This is the simplest Skyrmion on the ground state in the monolayer QH 

system with spin degrees of freedom. 

We next analyze the density p(x) in the presence of a Skyrmion excitation. We multiply 

n~ to (4 .30) and sum over ex = 1,2, 

fB y _ + z.-leh(Cx +iCy)=if8 (Kx +iK)+ oln.J'PW (4.36) 

Operating %z to (4.36) we obtain 

f~ 0 r;:w.,2
eh Ci)O,C) = "f,Bcijo,Kj + \l In\,p(x) + 1. (4.37) 

Using the CS constraint equation (4.2) we find 

v 
p(x) = 2po + vQo(x) + 4TT \l2ln p(x), (4.38) 

where Qo(x) is given by (3.23). When one analytic function w(z) is chosen, a Skynnion is 

given together with the Pontryagin number density Qo(x). Then, we may solve (4.38) to 

determine the in-phase density p(x). Since the Skyrmion excitation is a small modification 

of the ground state value 2po, it is convenient to rewrite (4.38) as 

v 
IJ.p(x) ;: p(x) - 2po = vQo(x) + -8_\l2IJ.p(X). (4.39)

TTPO 

We may solve this by iteration as 

v 2 v3 
IJ.p(x) = vQo(x) + -8- \l2QO(X) + -(8)2 \l4QO(X) + .... (4.40)

TTpo TTpo 

The electric charge of the simplest Skyrmion is -ev since its electric charge is f d2x.IJ.p(x) = v. 

The Skyrmion classical configuration describes an in-phase density modulation proportion

al to the Pontryagin number density in a sufficiently smooth pseudospin texture. 

We make some commentS: First, there exist no anti-Skyrmion classical configurations 

carrying the negative Pontryagin number. An anti-Skyrmion is not a solution of (4.1) but a 

solution of 

(f\ - iPy) cpC((x) = O. (4.41 ) 
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It has a component not only in the lowest Landau level but also has components in higher 

Laudau levels. Second, since the Skyrmion (4.34) descreases very slowly asymptotically, the 

capacitance energy diverges. Third, when we modifies the Skyrmion configuration to make 

the capacitance energy finite, it acquires a kinetic energy of the order of I1w c . Therefore, 

the classical Skyrmion solution is not a physical excitation. Here, we should mention that 

Skyrmion and anti-Skyrmions are generated as pseudospin textures 1&) = eiOlgo), which 

are free from all these defects, as we discuss in the next section. 

v. ALGEBRAIC ANALYSIS 

A. Ground State in Lowest Landau Level 

In this section we analyze the bilayer QH system by using onl y the algebraic structure of 

the LLL-projected operators and a few additional properties of the ground state. We have 

already seen that the W", xSU(2) algebra is the fundamental symmetry of the Hilbert space 

spanned by the states in the lowest Landau level. Thus, the ground state and excited states 

are characterized by representations of this algebra. In particular, the in-phase density fluc

tuation is governed by the Woo algebra in the bilayer system, just as the density fluctuation 

is so in the monolayer system [9,16J. We note that all the representations of the Woo algebra 

are already known [11 J. Although there are some attempts [16) to understand the fractional 

QH system solely by the W", algebra without considering the Coulomb interactions, it is 

clear that the physics is not determined by the algebra alone. (For instance there are many 

different phases in the spin theory all of which are governed by the SO(3) symmetry.) It 

is necessary to input the dynamical conditions into the system, which is supplied by the 

Hamiltonian. 

Let us .first review the monolayer system from the algebraic point of view. The Hamil

tonian is the projected Coulomb term, 

fIe = ~ fd 2xd2 yV(x - y)p (x)p (y) =rr I fd2 qV(q)p~Pq, (5.1) 
".8 
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where V(q) is just the Fourier transformation of the potential V(x). In order to minim 

the Hamiltonian we can require the ground state to be an eigenstate of the density opera 

pqlg) '= 4rrpoo(q)lg ). 

This determines the vacuum of the vacuum sector of the Woo algebra. The vacuum sec 

is constructed as a Fock space on it. Now, there exists a striking algebraic result about 

W", algebra with no central extension [l1J: It says that the vacuum sector is a trivial sp 

containing only the vacuum state. This agrees with the perturbative result about the 

mode given in the previous section; see (4.22). This does not mean that the monola 

system is an empty system since there are also vortex sectors. The vortex sector must g 

an inequivalent representation of the algebra, and the total Hilbert space is the sum of 

the superselection sectors with the superselection charge being the vorticity as in the Hi 

model [13,17J. 

We proceed to study the bilayer system. The Coulomb term (2.4) is projected as 

~ fd2 ~ f 2 P3( ~ P3He = rr qV. q)p_qpq +4rr d qV_(q)S_qSq, 

where P_q = P~ and S~q = ~t . We call the potential V. part and the V_ part 

SU(2)-invariant term and the SO(2)-invariant term, respectively. With respect to the SU( 

invariant term it is justified to require the same condition (5.2) as in the monolayer ca 

This is not the case with respect to the SO(2)-invariant term in the (m, m, m) phase, sir 

there exists a gapless mode in the out-of-phase density fluctuation; see (4.21). Hence, t 

ground-state cannot be an eigenstate of the out-of-phase density operator. We can requ 

only a weaker condition that it is a coherent state of the pseudospin operators, 

Posk == (gl~lg ) =2rrpocos <Poo(q), 


Pos~ == (gl~ Ig) = 2rrpo sin <Poo(q), 


Pos~ == (gl~lg ) '= 0, (5 


where <Po is a constant angle. Taking the Fourier transformation of (5.4) we obtain 
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SI (x) = cos <Po, S2(X) = sin <PO, S3(X) = 0, (5.5) 

corresponds to (3.17). The ground state is infinitely degenera teo Any choice of the ground 

te breaks the 50(2) symmetry spontaneously. When we choose <Po = 0 we find 

(goISqlgo) = 2TTPos~8(q), sg = 8QI 
, (5.6) 

SQ(x) =8al , as corresponds to (3.19). 

Although the ground state is fixed by (5.2) and (5.6), we cannot determine excited states 

the algebra alone since its representations are not yet explored. Therefore, we adopt a 

riational method. We consider a pseudospin texture 14» = e,Olgo ) generated from the 

und state 190). Let us analyze the bilayer system, using this variational excited state and 

glecting the vortex sectors. 

B. Coherent Excitations and Skyrmions 

We first evaluate the pseudospin Sq of the state 1$), 

PoS~ = ($IS~ I $ ) = (goISqlgo) - i(901[6,Sqllgo) + .. ' . (5.7) 

e term (golSq Igo) is given by (5.6). The first order term involves 

(gol[6,Sqllgo) = f d2kf~k (gol[SZ,S~1Igo ) = -iEabcposgfSexp[- ?q2], (5.8) 

l.ere we have used the density algebra (2.24), the ground-state conditions (5.2) and (5.6). 

lUS, denoting the Fourier transformation of Sq by Sa (x), we obtain 

E2 
sa(x) = s~ - Eabcexp[--.Jl.V21fb(x)sg + . . (5.9)

2 

~ consider a limit where fa is sufficiently smooth though fa itself may not be smail, 

I V fa I « 1. In this limit we may ignore the exponential term. The second order term 

, [V, Sq]] involves the factor, 

A Ab A ( i ) 2
EC b A E~d d

(90I[S,,[Sk , S~ll l go) = 2rr e E a (90ISI+k+ lgo ) exp[2(lk+kp+pl)]. (5.10) p 
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where we have used the fact that the matrix element contains 8(1 + k + pl. By ignoring the 

exponential factor the algebraic structure is the same as the standard 5U(2) one. All the 

commutators appearing in (5.7) have precisely the same structure. Hence, summing up all 

the terms in (5.7), we find that 

_ 1 
sQ(x):; sQ(x) = -(cf>ISQ(x)Icf», (5.11)

Po 

as the dominant term in the derivative expansion in a smooth pseudospin texture. The 

projected state 1$) has essentially the same pseudospin structure as the state Icf». 

We next evaluate the density in the pseudospin texture, 

Pq =($lpql4» = (golpqI90) + 6.Pq, (5.12) 

where 6.Pq denotes the density modulation, 

6.pq = -i (gol[6, pq]190) - ~ (gol[6, [6, Pq)]190) + . .. . (5.13) 

The first order correction term (go l[6, pq]190) vanishes due to the ground-state condition 

(5.2). The second order term gives 

6.Pq = -~ f d21f~d d2kf~k(gol[Sr, [Sk' pq]llgo). (5.14) 

We use the algebra (2.23) and (2.24) to find 

Ab[SAQ A ]]1 ) __1_abc'[ D2 kl\q] [D21 1\ (q+k)](go I[Sl' k,Pq 90 -2rr2E sm~B 2 COS~B ~ 

E2 
x exp[ : (qk + kl + Iq)](go IS/+ k +q190), (5.15) 

where (goIS/+k+q Igo) = 2rrp08C18(1 + k + q). Making the momentum expansion, we find 

Ap- -_PoEabIE .. D2fd2kfb fa k .q +. (5.16)'-' q - 2 I) ~B q+k - k ' J 

Its Fourier transformation is 

_ V ~ 2 3 V
6.p(X) = -EijOJ Oj f + .. . = -EijOi<P OjiJ' + ... = VQO(X) + . .. , (5.17)

4rr 4rr 
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where Qo(x) is the Pontryagin number density (3.23). This formula is consistent with 

the formula (4.40) in the classical Skyrmion configuration. The SU(2) transformation thus 

generates a topological excitation carrying the Pontryagin number, that is a Skyrmion. The 

electron number of the simplest Skyrmion is -ve, while that of the simplest anti-Skyrmion 

is ve. It should be noted that there exist both Skyrmion and anti-Skyrmion textures after 

making the LLL projection. 

C. Static Correia tion Functions 

Physically relevant correlation functions are those of densities Pand sa.Let us consider 
~ ~b ~ ~b ~ ~b 

a two point function (goISgSqlgo ). It is a sum of (gol[sg,Sq)lgo) and ( go I{ S~ , Sq}lgo) . 

The commutator part is calculable by using the algebraic relations (2.22) - (2.24), but the 

anticommutator part cannot be handled in the same way. 

In order to evaluate the anticommutator we use the formula, 

{ ~ ~ _ 1 ~ [n2 P" q 1 [f~ ) . { ~ ~ }. (5.18)Pp, pq} - rrPp+q cos ""B-2- exp 2 Pq +. Pp, Pq ., 

and 

1 ~ p"q f2
(Sg, S$} = __EabeSe sin[f2--Jexp[2.pq)2rr p+q B 2 2 

1 ab ~ [n2 P" q) [f~ ) ~a ~b+ 4rr o Pp+qCOS ""B-2- exp 2 Pq + :{Sp,Sq}:, (5.19) 

which follow from the operator products (2.25) and (2.27). Here, the symbol: ... : stands 

for the normal ordering. We evaluate the matrix element as follows . 

Using (3.8) we write 

T a T a 

Sa(x)Sb(y) = p(x)p(y)nt(x)2n(x)nt(Y)2n(y). (5.20) 

Since Igo) is a coherent state of the Cpl field n as in (3.18), we obtain that 

~ ~b 1 1 2 ~ ~ 
(ga l :(sg,Sq}: Igo) = 40a 8a (gal : {pp,Pq } : Igo) · (5.21) 
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Since Igo) is an eigenstate of the density operator as in (5.2), the matrix eleme 

(go I {pp, pq} Igo) is trivially calculated. We use (5.18) to find that 

(gal: {pp,pq}: Igo) =8(2rr)2p6 8(P)8(q) - 4Po8(p + q)exp[- f; p2). (5.~ 

Combining these equations we obtain the matrix element of (5.19) as 

2(2rr)2 p~o(p)o(q) for a=b=l 
~a ~b f'

(gol{Sp,Sq}lgo ) = poo(p+q)exp[-Ofp2) for a=b=2,3 (5.~ 

o otherwise 

Note that this simple formula is for the specific choice of the ground state Igo). For a genel 

ground state Ig ) involving a parameter <Po we derive a slightly complicated expression. , 

can calculate various correlation functions in this way. In the following sections we use tl 

method extensively to evaluate the Coulomb energy and the current. 

Here we make a comment. In calculating correlation functions we have used the f< 

that the ground state is an eigenstate of the density operator and a coherent state of the C 

field. If it were a coherent state of the composite boson field <:/>", we would have obtaine 

1 

(gol {pp, pq} Igo) = 40(p + q) exp[ - ~ p2) + 8(2rr)2p~0(p)0(q), 
f2 

(gal {S~ , pq} Igo) = 20(p + q) exp[ - ; p2) + 4(2rr)28a1 p~0(p)8(q), 

(gal {S~, S$} Igo) =8ab poo(p + q) exp[ - f1 p2) + 2(2rr)2p60alob18(p)8(q), (5.~ 

and the resulting physics would be very different. 

D. Coulomb Energy 

We evaluate the Coulomb energy I1Ee of the pseudospin texture 14» = eiOlgo ) a~ 

function of the pseudospin configuration sa (x). The Hamiltonian is given by (5.3), or 

~ J2d qV+ q)p_qpq ~~ +4rr (RlRl (5 . ~He = rr ( J2d qV_ q)S_qSq, 

We analyze the SU(2)-invariant term He and the SO(2)-invariant term He separately. Befc 

gi ving details of calculations, let us present the result, 
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http:sin[f2--Jexp[2.pq


16Ec = "2P1 EL2 fd2x[OkS a(X)]2 + "2PA fd2x[akS3(x)j2 
a:::l 

2 
e p2 f y 2 f+ 2/ d2xS3(X) S3(x) + Z- d2xd2yV(x - y)Qo(x)Qo(Y). (5.26) 

_re, C is a certain capacitance, and 

PE'" P; - P;, PA '" P;+P;, (5.27) 

th 

y q 1;2 2fd2 

pi = 16rr 11~ 2rr V±(q)q2 exp[ - ; q 1. (5. 28) 

e formula (5.26) describes the Coulomb energy of the pseudospin texture described by 

(x) in a sufficiently smooth limit such that 1IB V'sa(x) « 1. The terms involving (OiSa? 

resent the energy necessary to modulate the pseudospin from the constant configuration, 

mely, they describe the stiffness of the pseudospin. The last term in (5.26) describes the 

lulomb energy of static Skyrmions carrying the Pontryagin number density Qo(x). It 

rees with the result [8] obtained based on the SMA in the first quantization scheme. 

1. 5U(2)-invariant term 

Weeval uate the SU(2)-invariantterm He. It is an important observation that the energy is 

2 same for any constant pseudo spin sa. Hence, the energy depends only on the curvature 

:m OkS a and the value of sa itself is irrelevant. In the lowest order approximation, therefore, 

s enough to study a small fluctuation of the pseudospin around a constant vector sa . Due 

the invariance we may choose sa arbitrary to make calculations simple. The simplest 

oice is the ground state 190) . We may recover the SU(2) invariance afterwards. 

We evaluate the energy of the coherent state 1$) by expanding it as 

Me = ($IHel$) - (90 IHe/90) =' (9016.HeI90), (5.29) 

th 
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6.He =e-,8Hee,8 - He =-i[O,Hel- ~[o, [0, Hell +"', (5.30) 

in V, i.e., in fa The pseudospin configuration sa(x ) is related to fa(x) as in (3.22) up to the 

first order in fa: We may set f1 =0 in this order. 

We evaluate the SU(2)-invariant term He to the nontrivial lowest order in fa. The first 

order term is 

[0, He] = rr Lfd2qV.(q) Jd2kf~k[Sk' PqP-q]. (5.31) 
a 

Using the algebra (2.22) - (2.24) and the fact that V+(q ) =V+( -q) we obtain 

~a ~ ~ 1 i ) [f!~ kl . [n2 k /\ q] {~a ~ IV.(q) [Sk,PqP - q = :;:;:v+(q exp z-q sm fiB-2- Sk+q' P-qJ' (5.32) 

Its matrix element vanishes due to the ground-state condition (5.2) since it yields a delta 

function 8(q) . 

The second order term arises from 

[0, [0, Hell = rr L 
3 

Jd2qV.(q) Jd2/ Jd2kf~,f~dSr, [Sk, pqp- qll, (5.33) 
a.b~2 

where 

~b ~ ~ 

V+(q)[S, ,[5;;, pqp-qll 


1 f!~ . n2 k /\ q . n2 1/\ q ~b ~a 

= rr2 V+(q)exp[zq(k -1 )]smkB-2-1sm[fiB-2-] {S,_q,Sk+qJ 


1 bac f!~ ]. n2 k /\ q [n2 /\( k + q)l ~ ~c

-2rr2V+(q)E exp[Z(ql+lk+kq) sm[fiB-2-1COSfiB ' 2 {p-q,S'+k+qJ 

1 ab f!1 ]. n2 k /\ q] . [ n2 1/\ (k + q) ] ~ ~ 
- 4rr2 V.(q)8 exp[ Z(ql + Ik + kq ) sm[fiB-2- sm fiB 2 {p-q, Pl+k+q J. 

(5.34) 

The terms containing the density operator P_q vanish due to the ground-state condition. 

The nontrivial anticommutator in (5.34) has been calculated in (5.23), which gives 

~ ~b b f!~ 
(901 {SI_ q' Sk+q} /90 ) = 8a Po exp[ - Z(k + q )2 )8(/ + k ) (5.35) 

for a -f 1 and b -f 1. Hence, we obtain 
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~b ~ ~ ~ 1 b f1 2 2 . 2 2 k /\q
V+(q) (go 1[51 , [5:;, pqp-qll lgo) = - rr P08a V+(q) exp[ - 2(q + k )1 sm [f8 -2-18(k + I),2 

(5.36) 

for a of 1 and b of 1, and 

2~ A ~ I d q -81 '" I 2 f~ 2 k /\ q(gol[V, [O,Hclllgo) = -2Po 2rr V+(q)exp[-2 q2 ] L d kfkf~kexp[-2k ] sin2 [f~-2-l. 
a=2,3 

(5.37) 

For a smooth pseudospin texture we may expand sin2(~f~k /\ q) and take the lowest order 

term. For any function g(q2) which depends only on q2 = q~ + q~ we may use the formula, 

Jd2q(k /\ q)2g(q2) = ~ Jd2q(k~ + k~)(q; + q~)g(q2) . (5.38) 

As a result we have 

1 ~ A ~Me = -2 (gol[V, [V,Hclllgo) 


2

1 f2= _POf4 J~V+(q)q2exp[-2.q21d '" Jd 2kk 2fafa
8 8 2rr 2 L k -k 

a=2.3 

= ~P; I Jd2x[Oda (x)j2, (5.39) 
a=2.3 

where P; has been defined by (5,28). Using (3.22) we may rewrite this as 

3

Me = ~P; I Jd2x[Oks a (;,:)F, (540) 
", = 1 

.into a global SU(2) invariant form. 

2. SOW-invariant tenn 

We next evaluate the SO(2)-invariant term He. Due to the lack of the SU(2) invariance 

the energy depends on the pseudospin itself in addition to its derivative. Indeed, the 

SO(2)-invariant term represents the capasitive Coulomb energy associated with the density 

difference S3 between the two layers. We evaluate the Coulomb energy 6Eein the expansion 

as in (5.30), or 
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~ ~ 1 ~ ~ ~Me = -i(gol[V,Hellgo) - 2(go l[V, [V,Hell lgo) +. ", (5. 

by choosing Igo) as a ground state. We recover the SO(2) invariance afterwards. 


The first order term involves 


A ~ '" I 2 ~a- a P3 P3 

a=2.3 

[V,Hel = rr L Id 2qV_(q) d k(k[Sk,SqS_q], (5. 

where 

Aa P3 P3 _ i a3c [-8~] nz k /\ q] ~c P3
V-(q)[Sk,SqS_ql- 2rrE V_(q)exp 2 qk cos["8-2- {Sk+q,S_q} 

i a3 [ -81 ]. [02 k /\ q P3}A+4rr 8 V_(q)exp 2qk sm "8 - 2- ](Phq,S-q . (5. 

We use the ground-state properties (5.2) and (5.23) to find that (gol[8,Hcllgo) = O. 

second order term is 

1 ~ AAMe = -2[19, [V, Hell 

2
d 2 

= -2rr I Jd qV_(q) J [ Jd2kf~,f~dsr, [5:;, ~~ql]' (5. 
a,b=2,3 

where 

(2rr)2V_(q) I f~,f~k[Sr, [5:;, ~~qll 
a ,b=2,3 

2 2 [ -81 [nz k /\ q ] [ n2 1/\ q I M M 
= -V-(q)f_,f_kexp 2 q (k -1)]COS "8-2- cos "8-2- {SI_q,Sk+q} 

2 2 (-8~ I [nz k /\ q] [02/ /\ (k + q)l P3 P3
+V-(q)f_,f_kexp 2(ql + Ik + kq) cos "8-2- cos "B 2 (S-q,SI+k+q 

3 2 f1 02 k /\ q [ 02 1/\ (k + q) P3 rz 
+V_ (q)f-,f-k exp[ 2(ql + Ik + kq)1 cos["8-2-1 cos "B 2 j(S-q,SI+k+q 

'" b 3 -81 . [02 k /\ q] . [021/\ (k + q) 1 P3 ~b
-V_(q) L (,f_k exP[2(ql+lk+kq)]sm"8-2- sm"B 2 (S_q,SI+k+q 

b=2,3 

+.... (5.' 

The dots· . . represent the terms containing the density operator p and vanish due to t 

ground-state condition. Using the relation (5.23), we obtain 

V_(q) I f~,f~k(gol[Sr, [S:;,~~qlllgo) 
a,b=2.3 
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=-2P6V-(q)f~f:q exp[ --8~q 2 ]b(l- q)8(k + q), 


1 ~ k 

+ (217)2 V_ (q)Poff(:k exp[ - ; (q2 + k2)] COS2[-8~ ; q ]8(k + l) 

1 -82 k 
+ (217)2 V-(q)pOm~k exp[ - ; (q2 + k2

) ) sin2[-8~ ; q ]8(k + I). (5.46) 

re, we make a momentum expansion of cos2[~-81k I\q] and sin2[~-8~k 1\ q) to find that 

6Ec = ~P; fd2kfff:k - ~P; fd2kfU~k + ECAP, (5.47) 

ere Pi is defined by (5.28). The term ECAP represents the capacitance energy. In a smooth 

11it it is given by 

2 
e p6 f 2 2 2 (5.48)ECAP = 2C d kfkf_k' 

·th the capacitance C given by 

-82Z= j-8~ fd2q[V_(0) - v-1V_(q)]exp[- ;q2]. (5.49) 

e may rewrite (5.47) as 

2 

6Ec = -2P;1 ~2 fd2 x[OkSQ (x)f + 21P; fd2x[OkS3(X)j2 + e2Cp2o fd2 XS3(X )S3(x), (5.50) 
Q= l 

to the global SO(2)-invariant form. 

3. Skyrmions Excitations 

We have already argued that there is a Skyrmion excitation as a pseudospin tex

re I¢) = eiOlgo) in the lowest Landau level. Since it modulates the electron density 

contributes to the Coulomb energy. We calculate the Coulomb energy of Skyrmions, 

:s = (go Ie -iO HeeiOlgo). We expect the Coulomb interaction between the Skyrmion den

:ies to emerge. Indeed, the fourth order term gives 

6Es = 17 fd2qV(q)6pq 6P_q, (5.51) 
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where 6pq is the LLL projected Skyrmion density (5.14). Namely, it just describes the 

Coulomb interaction between Skyrmions. We combine (5.39), (5.50) and (5.51) into the 

formula (5.26). 

In the SO(2) invariant limit the Skyrmion energy is given by [6] 

1 3Me = 2P; ~ fd2x[ OkSQ(x)j2 = 417p;IQ I, (5.52) 
Q=l 

where Q is the Pontryagin number. Thus, one Skyrmion with Q = 2 and two Skyrmions 

with Q = 1 have the same energy. However, the Coulomb energy (5.51) is proportional to 

Q2. Hence, only Skyrmions with Q = ±1 are physically relevant. They carry the electric 

charge ±ve = ±el m at the filling factor v =11m. 

The Skyrmion energy (5.52) is realized by the classical Skyrmion solution (4.32). How

ever, as we have noticed before, its capacitance energy diverges. N ow, we may modify 

the Skyrmion configuration appropriately so that it minimizes the total energy (5.26) while 

keeping its Pontryagin number unchanged. An obvious variational function suggested 

from (4.34) is 

1>1 = f(r), 1>2 = ,/1- (r)2cos e, 1>3 = ±~1 - (r)2sin e, (5.53) 

which has the Pontryagin number Q = ±1, where (0) = - 1 and ( 00) = 1. In the SO(2) 

invariant limit it is given by f(r) = (r2 - K2 1r2 + K2), but in the presence of the capacitance 

term it approaches to the asymptotic value f( 00 ) = 1 much faster. As a result a Skyrmion 

excitation becomes a localized object. In the monolayer system with spin degrees of freedom 

the Zeemann energy plays a similar role. 

E. Tunneling Energy 

We proceed to include the turmeling interaction between the two layers . The Hamilto

nian is given by (2.5), which is 

Hr =fd2xJ{r (x) = -41T1\SJ, (5.54) 
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where sci is the zero-momentum component (p = 0) of the generator Sl(X). The energy 

density of the coherent state 1<1» is 

(<I>I.Jh(x)I<I» = -2A (<I>IS1(x)I<I» = -2ApoJl - u 2(x)cosqJ(x). (S.5S) 

where we have used (3 .20). Here, the variables u(x) and qJ(x) need not be small quantities 

although they should be sufficiently smooth. 

After the LLL prOjection the tUIlneling Hamiltonian reads fir = -4rrASJ. The energy of 

the pseudospin texture is 

Er = (4lI Hrl 4l) = -4rrA(4lISJI4l) = -4rrMJ. (S.S6) 

which has been estimated in (S.7). According to the result (S.l1), we find that 

056'" sJ = fdZx (<I>IS 1(x) I<I», (S.57) 

apart from negligible derivative terms: They are negligible compared with the correspond

ing terms in the Coulomb energy (S.26). Therefore, 

Er = -2ApoJl - u 2(x) fd 2xcosqJ(x) . (5.58) 

The tunneling energy (5.56) turns out to be UIlaffected by the LLL projection. 

F. Effective Hamiltonian for Goldstone Mode 

In the (m. m, m) phase we have pointed out the existence of the Goldstone mode in 

association with a degeneracy of the groUIld state. We now derive its effective Hamiltonian. 

We consider the case when the density difference between the tvvo layers is small enough 

compared with the total denSity, i.e., S3(X) « 1. Substituting the pseudospin configuration 

(3.20) into the energy change (S.26) and expanding it we rewrite as t::.Ec = f d 2x:H with 

2 2 
:H = PE (OkqJ)2 + PA (OkU)2 + e Po u2 (5.59)2 2 2C· 
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Note that the angle qJ is not assumed small in thls derivation. Clearly, the field qJ 

represents a Goldstone mode, which has arisen because the groUIld state Igo) breaks 

global 50(2) symmetry of the system spontaneously. 

The fields qJ(x) and u(x) in the effective Hamiltonian are classical fields. However, 

now show that the canonical commutation relation should be imposed on them, 

[Pou(X). e(y)] = 8(x - y), (5. 

as is consistent with the commutator (3.13). To show this we evaluate the equation of mot 

. d ~a ~a~
In dtSk = [Sk.HC] 

2
= ~ fd qV+(q)[Sk. pqP-q] + 2 fd 2qV_(q)[Sz. 51p~q]· (S. 

We then take its expectation value by the state 14l) = eiOlgo). We need to deal with co 

mutation relations such as [Sr. [S~. PqP-qJJ, which we have already evaluated before; _ 

(5.36) and (S.46). For a smooth pseudospin texture, we may use the relation (3.22) toge 

with the parametrization (3.20). As a result we obtain 

d PA 2 eZpo
-qJ =-\1 u - -u. 
dt Po C 

~u = _ PE \1zqJ. (5.
dt Po 

which are the equa tions of motion for the Goldstone mode. 

It is trivial to check that this set of equations agree precisely with the Heisenberg eql 

tions of motion derived from the Hamiltonian (5.59) together with the commutation relati 

(S.60). This proves that the angle qJ(x) and the density difference u(x) can be regarded 

the quantum fields describing the coherent mode between the two layers. 

To see the eigerunodes we diagonalize the Hamiltonian (5.59). In the momentum Spi 

the Hamiltonian denSity reads 

"r 1 t f>h 2 2 t 
J1 = 2Mk qJkqJk + TEkPOUkUk, (5.1 

where 
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2 2po1 E~ = PEk (PAk2 + e ). (5.64) Mk = P k 2 ' 
E Po Po C 


en we set 


CXk= ~(rc;;poUk+ikcp~k)' 
I 1(1r 1.1 )cxk = fi'i yGkPoUk - I f7"':CP-k , (5.65) 

'12 VGk 

·th Gk = MkEk, the operators CXk and cxI obey [CXk. Gill = 6(k - I). The Hamiltonian is 

agonalized as 

H= fd2kEkcxtGik, (5.66) 

lth (5.64). The excitation mode has a linear dispersion relation, Ek ;: e>fPE ICI k I, as k - 0: 

lis is a superfluid mode for a finite capacitance C. 

When we include the tunneling interaction, the Hamiltonian density for the Goldstone 

de is modified as 

P e2 p2
J{ = P; (OkCP )2 + 2A (i\U )2 + 2Co u 2 + 211Po>fl - u 2 cos cp. (5.67) 

. diagonalization is trivial as far as small fluctuations of U and cP around the classical 

ound state U =0 and cP = IT are concerned. It is clear that the energy density Ek in (5.64) 

modified as 

k 2 k2 21 E2 = (£.L.- + 11 ) ( ~ + e Po - 11). (5.68)Mk= PEk 2' k Po Po C 

has a finite gap, Ek =~(e2po1l/C) - 11 2, as k - O. The Gik mode is no longer gapless, 

,cause the tunneling interaction breaks the SO(2) symmetry explicitly. Indeed, due to 

is term the degeneracy of the ground states (5.4) is removed , and the Goldstone mode is 

rned into a gapful mode. Nevertheless, the Gik mode gives the lowest-lying excitation 

the tunneling interaction is taken to be much smaller than the Coulomb interaction. In 

is case the tunneling interaction does not modify the hierarchy of the energy spectra 

;nificantly. The tunneling term breaks the SO(2) symmetry explicitly but only softly. 

lch a mode is called the pseudo-Goldstone mode. 
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VI. ELECTRIC CURRENTS 

A. Definition of Currents 

We analyze the electric current Jf == -(e IM)I./J~Pi I./J IX in each layer in external electric 

field EF- There are some attempts [18,8) on this problem but they are unsatisfactory since 

their currents are introduced in a rather ad hoc manner. We presents a systematic method. 

As is well known [9], the current Jf vanishes when it acts on the LLL state due to the 

LLL condition (2.12). We overcome this problem in the following way. Let us make an 

infinitesimal local phase transformation, I./J IX - eif "(X)I./J", with the gauge field fixed . Since 

this is not a symmetry, the Hamiltonian (2.1) is modified by 6.H = (l / e) J d2 xJ,"'oi f". We 

can use this relation to define the current JF- Since the LLL projection is modified as the 

momentum Pi is modified by O;(IX, it is interpreted that the current flows v ia a Landau-level 

mixing. The modification of the Hilbert space may be neglected in the limit f IX - O. 

It is convenient to define 

J " - e ( Ip. I 1 2i --MI./Jl ,I./J1 ±1./J2 Pi I./J2)=Ji ±Ji · (6.1 ) 

The current J; is associated with the in-phase transformation, 

I./JIX - e'Y(X)I./J", (6.2) 

whose generator is 

0; =fd2xy(x)p(x) =fd2kY_kPk. (6.3) 

The current J,- is associated with the out-of-phase transformation, 

I./Jl - eiy(X)I./J ], 1./J2 - e- iY(X)I./J2, (6.4) 

whose generator is 

20;; =2 fd xY(X )S3(X ) =2 fd 2ky-kSt , (6.5) 
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where the existence of the factor 2 should be noticed since f3 = 2y in (2.6). The local phase 

transformations modify the Hamiltonian by C:!.H=. After the LLL projection, it is 

~ ~ ~ 1~ ~ ~ 
C:!.W = -i[O:,H) - 2[0:, [O~,HJJ + .... (6.6) 

The projected current H is defined by the formula, 

ie 6C:!.fF I (6.7)k,J;=(k) = h 6Y-k y-O 

where the limit y - 0 is taken after the derivative is taken. It is clear that only the first order 

term in the expansion (6.6) is relevant. We evaluate the matrix element liCk) := ($IJi(k) 1$) 

and denotes its Fourier transformation as ];(x) . We can justify the drift current discussed 

in Ref. [9] based on this formula. 

B. Hall Current 

The Hamiltonian consists of the electric-field term HE, the Coulomb term He and the 

tunneling term H T . We first analyze the current induced by the external electric field Er(x) . 

We choose a gauge in which Er(x) = o,Ag(x), with Ag the electric potential applied in the 

layer IX. The Hamiltonian is given by 

HE = e Jd2xAg(x)p"(x) 

= e Jd2q(Ao(q)p_q + 2Ao(q)~q), (6.8) 

where Ag = hA6 ± A6). The change of this Hamiltonian by the in-phase transformation is 

"'Hi = -i[O; ,HE] 

= -ie Jd2kY_k Jd2q{Ao(q)[Pk,P_q]+2Ao(q)[Pko~q]}. (6.9) 

Therefore, the in-phase current is given by 

Jd2q~E+ 2ie
2 

+ . [n2k Aq] [C~ ] ~ 
k;]; (k) = - T 2rr Ao(q)sm ""B-2- exp -2kq Pk-q 

4ie2 Jd2q . 2k A q C~ r3-T 2rr Ao(q)sm[CB -
2
-]exp[ -2kqjSk-q' (6.10) 
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where use was made of the density algebra (2.22) and (2.23). On the other hand, the 0 

of-phase transformation modifies the Hamiltonian as 

C:!.Hi. = -i[O;,HE) 

2 2= -2ie Jd kY_k Jd q{Ao(q)[.51,P_q) +2Ao(q)[.51,~q)}. (6. 

Therefore, the out-of-phase current is given by 

~E- 4ie2 Jd2 
q + . C2 k A q C1 r3

k;]j (k)=-T 2rrAo(q)sm[ B-2-)exp[-2kq)Sk_q 

2ie2 Jd2 q _ . 2 k A q .e~ ~ -T ~Ao (q)sm[CB-
2
-]exp[-2kq ]Pk - w (6. 

It is notable that the formula (6.12) for J,E- is obtainable from the formula (6.10) for ]f+ 

interchanging the symbols + and -. 

For simplicity we assume that the electric field is uniform in each layer IX, E'j' 

-ojAg(x) = constant, or 

qj Ag(q) = 2TTiEJ6(q) . (6. 

Expanding the sin[~.£1(k Aq)] in (6.12) and using the above relation, we obtain 

~E~ e2C~ + ~ '" r3 
k;J; -(k) = -h-cij k,(Ej Pk + 2Ej Sk)' (6. 

or 

~E: e2C~ '" ~ " r3
J, (k) = -h-Cij(Ej Pk + ZEj Sk)· (6.1 

We estimate this in a smooth pseudospin texture 1$), 

E ~ ~E ~ e2C1 - 3 
]; =(k);: (<P IJ; "'(k)I<P ) = T E;}(EJPk +2poEjSk)' (6.: 

where Pk - q and sLq have been defined by (5.13) and (5.7), respectively, and have alrea 

been estimated. First, Pk consists of the uniform charge distribution and the Skyrmi 

excitations C:!.Pk on it, as we explained from (5.13) to (5.17). Next, sL describes the dens q 
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fference between the two layers as in (5.11). Taking the Fourier transformation, we obtain 

e Hall current, 

-£± _ e2v " "3 • 2}, (x)- 2rrhcij {Ej +EJs (x)+E;-liBQo(x)}. (6.17) 

e first term is the wen-known form of the Hall current for the uniform distribution 

electrons. In the (m, m, m) phase a coherent density fluctuation is allowed, and the 

cond term describes this effect. The Hall current is proportional to the electron density 

each layer, which is pl(X) = Po(l + 53) and p2(X) = Po(l - S3). The third term comes from 

e Skyrmion excitations, where Qo(x) is the Skyrmion density or the Pontryagin number 

nsity. In particular, when an identical electric field Ej is applied to both of the layers, we 

tain 

2 
_£+ e v 2
}, (x) =2rrh cijEj {I + -€BQO(X)}. (6.1S) 

, means of measuring the Hall current distribution the Skynnion excitation is observable. 

C. Supercurrent 

We next analyze the current due to the Coulomb interaction. The in-phase transforma

n changes the Hamiltonian (5.25) as 

He = -itO;, Hc) 

= -rr; I d2q I d 2kV+(q)Y_k[Pk,P_qPq)- 4rri I d2q I d2kV_(q)Y_k[Pk,~q-5~], (6.19) 

hile the out-of-phase transformation changes it as 

fie = -i[O; ,Hc) 

= -2rri I d2q I d2kV+(q)Y_k[S1,p_qpq)-Srri I d2q I d2kV_(q))'_k[S1,~q~1. (6.20) 

le relevant commutators are 

43 

( )[ ~ ~ ~ ) i (-li~ k) . [D2 k I\q) ~ ~ }V+ q Pk,P-qPq =ITV+(q)exp 2 q sm 1;B-2- {p-q,Pktq , 

~ PJ PJ i P~. 2 k 1\ q PJ PJ
V-(q)[Pk, S_qSq) = IT V_(q) exp[ 2 qk )sm[PB-2-JlS-q, Sktq}, 

( )[ PJ ~ ~) i ( (-li~ kJ . [D2k l\ ql{~ sPJ )V+ q Sk , P-qPq = ITV+ q)exp 2"q sm 1;B-2- P-q, k+q , 

PJ PJ PJ i -€~ 1· [D2k l\ q PJ ~ V-(q)[Sk' S_qSq) =4rr V_(q) exp[2"qk sm 1;B-2-]{S-q, Pktq}. (6.21) 

Hence, the in-phase current is given by 

kJf+(k) = ~ I d2qV+(q) sin[-€~ k; q) exp[-€l kq){p_q, Pktq) 


4ieI 2 2k l\ q -€~ PJ PJ

+/1 d qV_(q) sin[-€B-2-) exp[ 2"kq ){S_q, Sk+q}' (6.22) 

while the out-of-phase current is given by 

~ 2ieI2 . 2k l\q -€~)~ PJk,lf-(k) = /1 d qV+(q)sm[-€B--) exp[ 2"kq {p-q, Sk+q}
2


2ieI2 . 2k l\ q -€~ PJ ~ 

+/1 d qV-(q)sm[-€B-2-)exp[2 kq ){S_q,Pk+q). (6.23) 

We evaluate these currents in the smooth pseudospin texture I<p), 

(4) lJ,c±(k) 14» = (90Ie-i<9 J,c±(k)e'OI90) 

= (901J,c±(k)190) - i(90I[8,]F"(k)) 190) - ~(9oI[8,[8,J,C!:(k)llI90) + .... (6.24) 

The term (goIJF±(k)190) vanishes due to the ground-state properties (5.2) and (5.23) and 

due to the fact that V_(k) is an even function of k. The first order term (gol[8,J,C+(k))lgo) 

of the in-phase current vanishes by the same reason. 

The nontrivial term is the first order term (go I[8, J,C-(k))190 ) of the out-of-phase current. 

We examine the term, 

JT-(k);: -i(901[8,]F-(k))190) = -i Id21f~/(901[Sf,J,C-(k)1190) 

;: .Jt )(k) + i-)(k), (6.25) 

where we have denoted the contribution from the potential V ± part as i=) We first evaluate 

the part ] ;+) The relevant commutator is 
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~a ~ i'3 i . 02 l\ q .e~ ~a i'3 
[SI' {p-q,sk+qll '" -IT" sm[-C;8-2-1exp[-2 ,q ](SI_q,Sk+qJ + ... , (6.26) 

' 

The dots denote the term containing the operator P_q. Since it yields 6(q) due to the 

ground-state condition (5.2) in the matrix element (6.25), the term does not contribute to 

the out-of-phase current (6.23). Using the ground-state property (S.23), or 

.(!2 
(go 1 {Sf_ q,.51+q } Igo ) = 6Q3 Po exp[ - 28 (k + q)2]6(1 + k), (6.27) 

we obtain 

2 

k . -(+)(k) = 4iepo f d q . 2[ 02 k 1\ q]v ()(3 [_ 02 (k + qj21 (6.2S)JJ,. 1i 2rr sm -C; 8 2 +qk exP-C;8 2 ' 

In a smooth pseudospin texture it is sufficient to take the lowest order term in k. We use 

the formula (S.3S) to derive 

-(+)(k) - 4iepo +k .f3 
), - 1i Ps , k' (6.29) 

where P; has been defined by (S.2S). We can follow the same steps to evaluate the ter

m 1; 1which is the contribution from the potential V_ term. The main difference is the 

commutation relation 

~Q i'3 ~ _ i . 02 1 1\ (k+q).e~ 2:3 ~a 
[SI' {S_q, Pk+q II - IT" sm[-C;B 2 1exp[2 (k + q)]{S_q, SI+k+ql + ... , (6.30) 

' 
which replaces (6.26). Because of the difference of the overall sign between (6.26) and (6.30) 

we derive 

-(-)(k) '" _ 4iepo - kf3 (6.31)), 1i Ps 'k' 

where P; has been defined by (5.2S). Combining (6.29) and (6.31), and taking the Fourier 

transformation we find the out-of-phase current to be 

.,c_ 2e 
),. (x) = tiPEa,.cp(X), (6.32) 

where PE has been defined by (S.27) . We have found that the phase difference cp(x) induces 

a current to reduce itself. This current is what we expect naturally from the Coulomb energy 

(S.26). We have shown in the previous section that cp(x) is a superfluid mode; hence, it is a 

supercurrent. 

4S 

D. Tunneling Current 

We finally analyze the current due to the tunneling interaction. After the LLL projecti 

the tunneling Hamiltonian is given, 

~ i'1
H T ", -4rrASo, (6.: 

where S6 is the zero-momentum component of the projected generator. 

The in-phase transformation modifies the tunneling Hamiltonian as 

DHf '" -if0;, HT 1= 4rrAi fd2ky-k[Pk, 56]. (6., 

which vanishes due to the density algebra (2.23). Hence, there exists no in-phase curr 

ll+· The out-of-phase transformation modifies it as 

6.H i = -i[O;,HTl '" SrrAi fd2kY_k[.51,561 '" -4A fd2kY_k.5i, (6. 

where use was made of the denSity algebra (2.23). According to the formula (6.7), t 

out-of-phase current reads, 

l'TT-(k) '" _ 4ieA SZ (6., 1ik,. k' 

We estimate iT-(k) in the coherent state 14», 

k,. ]T-(k);: k,. (4)liT- (k)I$ ) = _ 4i;A ($I.51 I$ ) = _ 4i:As~, (6.~ 

or 

~. -T-( ) _ 4eApo -2( )
0,),. x - 1i s x. (6.:: 

Since the in-phase current does not exist this yields 

~ -Tl -T2( 2eApo - 2 )
0;), (x) '" -aU,. x) = -11-S (x . (6.: 

At each point x this amount of charge is exchanged between the t\-vo layers. Hence, 1 

may identify 

}'(x) == a,. JT1(x) = - 2e~po ~l - cr(X)2 sin cp(x) (6.< 

as the tunneling current, where we have replaced S2(X) with S2(X) in a smooth pseudosF 

texture. 
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VII. CONCLUSION 

Based on the bosonic CS gauge theory with the LLL projection, we have analyzed the 

terlayer coherence which is spontaneously developed in the (m, m, m) phase of the bilayer 

stem. The W", xSU(2) algebra is the fundamental symmetry of the system. We have made 

erturbative analysis and an algebraic analysis, both of which have led to a trivial vacuum 

ctor in the in-phase density mode and revealed a rich gapless mode in the out-of-phase 

nsity fluctuation. In particular we have overcome the problem of the isolated Goldstone 

ode we encountered in our previous perturbative analysis [4). 

It is one of our findings that the ground state is determined by the conditions (5.2) and 

.6). It is an eigenstate of the in- phase density operator and a coherent state of the out-of

ase density operator. When the representations of the W", xSU(2) algebra are known, the 

ound state conditions select one to describe the bilayer QH system with all its excitations. 

owever, since they are yet to be explored, we have employed a variational method. As a 

Iriational state we have taken the state 14» = ei8 Igo) , where 8 is the generator of the local 

(2) transformation with the LLL projection made. 

Evaluating the Coulomb energy of the state 14», we have derived the effective Hamil

nian governing the interlayer coherence. The result is given by (5.26), which allows both 

:yrmions and anti-Skyrmions as coherent excitations in the peudospin texture. It yields 

e effective Hamiltonian (5.67) for the Goldstone mode. We have already argued else

here [5) that such a Hamiltonian leads to quantum coherent phenomena including the 

sephson-like effect. 

In this paper we have analyzed the quantum coherence in the bilayer system in details. 

lmost all our results can be taken over to the monolayer QH system with spin degrees of 

"edom by replacing the capacitance energy with the Zeemann energy. Then, our results 

'esent a field theoretical proof that it is a quantum ferromagnet with Skyrrnion excitations 

a spin texture. In particular, Skyrmion excitations would be detectable by measuring the 

all current distribution. We believe that our field-theoretical method is a powerful tool to 

47 

analyze various aspects of the QH effect. 
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