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Abstract

The total energy-momentum of a finite composite system should
have a correct property for Lorentz transformation. Consequences
from this consistency condition with the classical picture for
the constituent motion are studied in detail. It is found that
(i) the rapidity distribution of the constituent particles in a
boosted frame is not just é simple translation of the distribu-
tion in the c.m. system but is given by the translated distribu-
tion multiplied by a distortion factor; (ii) the distortion
factor implies existence of a scalar-type effective interaction;
(iii) the distorted rapidity distribution gives a correct
expression for the energy-momentum tensor of a relativistic gas.
A kind of virial theorem is proved for the case where a consti-
tuent particle is massless. Lorentz transformation property of
the yo-yo mode of a color-flux tube with particles (quarks) at

the ends is elucidated as an example.
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In general, it is highly nontrivial to construct a fully

1. Introduction

1

relativistic wave function for a composite system made of many
constituent particles. An approximate method is used in most
cases. In this paper, we consider a retativistic composite system
within a classical picture and study under what conditions the
energy-momentum of the system has a correct Lorentz transforma-
tion property. The starting point of our argument is the rapidity
distribution of the constituents . A remarkable result is
obtained from the fact that a constituent is confined in a finite
region of constant volume. The rapidity distribution in the
boosted frame is not merely a translated c.m. rapidity distribu-
tion but a translated distribution multiplied by a distortion
factor as will be shown in sec.2. In sec.3, the distorted
rapidity distribution is used to calculate the contribution from
the constituents to the energy-momentum of the system in the
boosted frame, and it is shown that an additional contribution ¢(
scalar-type potential energy ) is necessary in order that the
total energy-momentum of the system is transformed correctly
under a Lorentz boost. As an application, the distorted rapidity
distribution is further used to calculate the energy-momentum
tensor of a relativistic gas in sec.4. The well-known result is
reproduced correctly. In section 5, contributions to the
invariant mass of the composite system from the constituent
energy and the interaction energy are calculated for an isotropic
gas. A simple bag-model like virial theorem is obtained for the
case where the constituent particle is massless. In section 6,

the yo-yo mode of a color-flux tube with quarks at the ends is
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examined as another example. Section 7 is devoted to conclusions

and discussions.

2. Rapidity distribution of constituents in a boosted frame

As an illustration,consider first a simple one-dimensional
case where a constituent particle moves back and forth

periodically along a longitudinal direction with velocity % v0

( v0 >0 ) in the c.m.system. If the length of the system is L,

the time a constituent takes to start at one end EL' move forward

and reach another end ER is given by

t. =L/ v,.. 2. 1)

It is obvious that the corresponding time for the backward motion

from ER to EL is the same;

te = L Ve €2:2)

Then, it is also obvious that the probability P(yo) to find a

constituent with velocity v, = tanhyO is equal to the probability

0

P(—yo) to find a constituent with velocity vy = tanh(—yo). ( The

light velocity is taken to be unity throughout this paper.) The
"time-averaged" normalized rapidity distribution of the

constituents is given by

Do(y) = { 6C vy - Yo) + 6( y + YO) )y /2. (2.3)

In the boosted frame where the center of mass of the system moves

with velocity V = tanhY, the corresponding period for the forward

motion from EL to ER and the same for the subsequent motion from

ER to EL are given, respectively, by

LI— _2 -

tF-LJl v /(vF Vo, (2.4a)
o1 2
tB-Ll-V/(V

VB Yo (2.4b)

where
Ve = tanh(Y+y0). (2.5a)
Vg = tanh(Y—Yo). (2.5b)

Then, the probabilities that a constituent at one instant is on

the way of its journey from EL to ER with velocity vF or the one

from ER to EL with velocity vB are given, respectively, by

-~
¥
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-+
+
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cosh(Y+yO>/(2coshY coshyo)

P(yO.Y), (2.6a)

té / « t# + té ) = cosh(Y—yo)/(ZcoshY coshyo)



= P(-YO,Y). (2.6b)
Note that P(yO.Y) » P(—yO.Y). Accordingly the rapidity
distribution DY(y) in the boosted frame is not just a translated

distribution Do(y-Y) but is given by

DY(y) = A(y,Y)DO(y—Y). 2.7)

where

ACy,Y) = 2P(y-Y,Y)

coshy /(coshY cosh(y-Y)). (2.8)

Essentially the same result holds for a more general three
dimensional case where the rapidity-transverse momentum

distribution of the constituents is continuous;

> 3
Dy(y.pT) = A(y,Y)DO(y-Y,pT). (2.9)

where BT is the transverse momentum of the constituent. The proof

goes as follows.

Consider a motion of a constituent particle during a
sufficiently long time T in c.m. system. ( It is enough to take T
as a period of the motion when it is periodic. ) Let the total
time during which the particle moves with rapidity [ y,y + dyl be

t(y)dy. By definition, one has the normalization condition

@
J dy 1(y) = T. (2i.. 100

The probability to find a particle with rapidity (y,y+dy] at a
time is t(y)dy/T. ( Note that this argument does not apply to a
free particle with no interac@ion at any time. In such a case, a
particle moves with constant rapidity forever through an infinite
space.) Therefore, the rapidity-transverse momentum distribution

of the constituents is given in the following form;

3 ~ 3
Do(y.pT) = Nr(y.pT>/T, (2.11)
where
@
25 = -
J d"p.1(y,p) = T(y). (2.12)
- T T

A particle with rapidity y travels a distance tanhy-At during a
short time At. In the boosted frame with boost rapidity Y, the

same motion takes a time
At' = cosh(Y+y) At / coshy. (2.13)
As the rapidity y' of the constituent with ¢.m. rapidity y is

equal to y + Y in the boosted frame, the rapidity distribution in

the boosted frame is given as

- 3
DY(y .pT) = F(cosh(y+Y>/coshy)Do(y,pT)

- =



= F(coshy'/cosh(y'—Y))Do(y'—Y.BT).
that is,
D P = /cosh(y-Y)}D,.(y-Y,p.) (2.14)
Y(y,pT) = F{coshy/cosh(y-Y)} 0 Yy 'pT s .

where F is the normalization factor to be determined by the

following condition;
Jd sz* Dy (Y, ) = Jd sz* D (y,p.) (2.15)
b4 PT v Y;PT) = Yy DT 0 y'pT . .

Equations (2.14) and (2.15) give F.= 1/coshY, vielding (2.9),
provided the mean velocity of the constituents in the c.m. system

is vanishing:

@

J d J a%P.tanhy D.(y,p.) = 0 16
Y PT anny 0 y'pT = . (2. )

-

Equation (2.16) holds if Do(y,gT) is an even function of y.

Behavior of the distortion factor for various Y is shown in
Fig.l. There is no distortion i.e., OC(y,Y) = 1 if Y = 0, while,
for positive Y, AC(y,Y) ¢ 1 for y < Y and A(y,Y) > 1 for y > Y

corresponding, respectively, to suppression and enhancement

compared to the translated distribution Do(y—Y,BT). As seen in

Fig.1, the distortion factor approaches the following asymptotic

form very quickly as Y » @ at a fixed y - Y;

y

lim ACy,Y) | J=Y, cosh(y-Y). (2.17)

Y y~Y fixed
The curve for Y = 2 is already almost asymptotic. As an example,

the distorted distribution De(y) and the translated distribution

Do(y—ﬁ) are shown in Fig.2 for the following choice of Do(y):

D.(y) = 5 exp(-0.1coshy), (2.18)

which is also shown in Fig.2. The effect of the distortion factor

is really dramatic.

Figs.l and 2

3. Energy momentum of the system

Equation (2.9) with (2.8) is the most important result of the
present paper. Using this formula, one can derive various
consequences on the properties of a relativistic composite
system. We first consider the energy and momentum of the system.
Contribution to the rest mass of the system from the constituent

particles is given by

w
_ 22 e
M= J dy Jd meTcoshy Do(y,pT), (3.1)
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where mp is the transverse mass of the constituent i.e., mp = There should be some additional contribution to the energy

1/2 (including the rest mass) and/or the momentum of the whole syste
22

(m2+ Pr ) and m the constituent mass. Similarly, the contribu-

in order that the correct Lorentz transformation property is

tion from the constituents to the energy and the longitudinal satisfied. A simple solution to this problem can be obtained by

momentum of the system in the boosted frame is given by introducing a scalar type volume energy a la MIT bag model [(1].

[t is assumed here that the system has a definite volume. Let Ms

@
E = J dy JdZBT mTcoshy Dy(y‘;T) be the contribution to the rest mass from the volume energy. The

—

the total rest mass is Mc & MS while the volume energy in the

9 boosted frame is Ms/coshY because of Lorentz contraction. There
= MccoshY + 21sinh”Y/coshyY, (3.2)
is no additional contribution to the longitudinal momentum of th
system in the boosted frame because the scalar type interaction
o0
p = J dy szg m.sinhy D (y,g ) does not carry momentum. The total energy and the longitudinal
cL o T T Y T
momentum of the system in the boosted frame are then given by
= M sinhY + 2Isinhy, (3.3
c E = E_+ M _/coshy,
fo} S
(3.5)
where -
Py = Pop-
®©
23 i #h & 5 3.4)
I = dy |d"py mp(sinh y/coshy) Dy(y,pp). (3. On the other hand, Lorentz covariance requires that
-®
E= (M _+ M_ ) coshy, (3.6a)
It is apparent that EC and Pap alone do not form correct c s
ts of a Lorentz 4 vector since E2 = p2 I MZ owing to the
componen ¢ oL M
terms proportional to the positive quantity I. Note that there b= ( Mc " Ms ) sinhY. (3.6b)

would have been no such terms if A(y,Y) were equal to unity (no

distortion).
Fqs.(3.2),(3.5) and (3.6a) yield



x
"

21. (3.7

Equation (3.6b) is then automatically satisfied. This is the
least modification to the energy-momentum of the system in order
to achieve a correct Lorentz transformation property. Egs.(3.1),

(3.4) and (3.7) give an inequality

R
D.(y,p.)
Jz* 0Ty, (3.8)

d meT coshy

4, Energy-momentum tensor of a relativistic gas

Consider a case where a composite system in c.m. system is a
gas contained in a box at rest. We will first calculate the
pressure. The proper energy density due to constituents is given

by

£ = Mc/Vr, (4.1)

wvhere MC is given by (3.1) and Vr is the volume of the box. The
density of constituent particles with rapidity between y and y +

d dt tum bet B and p. + d%p. is D.(y,B)

y an ransverse momentum between pT and pn Pp is Dyly,pqy

ddeBT/Vr. The number of such particles that collide with a unit

area of the surface S per unit time is tanhy Do(y,ST) ddeET /Vr

for vy > 0. See Fig.3 for the definitions of the surface S and the

coordinate axes. The transferred momentum per collision is

- 11 -

Fig.3

Zstinhy. The pressure at the surface S is then given by

-2 de IdQ* inhy tanhy D.(y,p
1 v y prmrsinhy tanhy D, y.pT>

;1 - ®

n
=

s/Vr. (4.2)

The contributions from the constituents to the energy and the
longitudinal momentum of the system in the boosted frame with

boost rapidity Y are evaluated using (3.2),(3.3),(4.1) and (4.2):

sinhZY

E = MccoshY + P]Vr coshy °

ch= ( MC + Plvr )sinhY

As the volume of the system is Vr/coshY in the boosted frame, the

energy density TOO and the longitudinal momentum density TIO are,

respectively, given by

00

-
'

E /(V_/coshY)
¢ r

=TT o (4.3)
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o

22 _ -1 22 2
-1-10 - ch/(v /coshy) T = (Vr/COShY) J dy J d pryVyDY()’.PT)
r -
v + P ®
- L (4.4) =1 J J 2> -
= , . =V d d D (y,
L - v2 r 4 PP,V Doy, P )
where V = tanhY. As mpcoshy tanhy = misinhy, one can easily show = Py, (4.64a)
that TOl = Tlo, where TOl is the x-component of the energy
current and similarly,
The 11 component of the energy-momentum tensor corresponds to
the x-component of current of x-component of momentum. [t is 133 . Fya (4.6b)
given as
where P2 (P3) is the pressure for a plane perpendicular to the y-
-1 [© 23 2
T11 2 (Vr/coshY) J dy J d meTsinhy tanhy DY(y,pT) (z-) axis. Finally, it is easily proven that
-0
5 ™) =0 for i,j = 1,2,3 with i ¥ j, 4.7)
. 12 o stinh (y+Y) 5
_ e yP)
= Vr J_iy J d Pr coshy DO(Y Pr
provided DY(y,BT) is invariant under the rotation around the x-
VZS N Pl axis. Of course, one has P1 = F2 = PB when the momentum
e (4.5)
1 -V distribution of the constituents in the c.m.s. is isotropic. All
those results (4.3) ~ (4.7) coincide with the well-known
3 2 i f the energy-momentum tensor of a relativisti
= = tum and the expression for gy e ivistic
Now let p = (px,py,pz) and Vv (vx,vy,vz) be the momen
gas [21].
. . 22 _ 2, 2 d _
velocity of a constituent particle. As pT = py pz an Vy =
py/mTcoshy, one has
5. Invariant mass of the system and a virial theorem

= 94 -
=13 =



In this section, we assume that the invariant momentum

distribution of constituents in the c.m. system
g 4 . 3%
39
d-p
One then has
e 52
Do(y.pT) = f(p)
= f(mzcoshzy & m2).
T
From (3.1) and (5.2), one has
o
_ 22 2 2. .2
Mc = J dy Jd Pr mTcoshy f(mTcosh y m)

- @

© [d 2
2n J dy J dm_micoshy f
T'T
il m

s ]
= 27 J ds\/m2 + s f(s) J

0

where

h(s) = cosh_l(sz+ s /my.,

and use was made of an identity

2cosh?’y - mz)

(rnT

h(s) —9
dy (coshy) ~,
0

- 15 -

isotropic;

(5.1)

(5.2)

(5.3)

(5.4)

@

f(m%coshzy & m2) = J ds f(s) é(m%coshzy = m2— s).
- 00

In a similar way, (3.4),(3.7) and (5.2) yield

L FE“_* h(s) 5 _4
M = 2nJ ds ¥m"+ s f(s) J dy (sinhy)“(coshy). (5. 5)

s 0 0

Equations (5.3) and (5.5) give

0

© F;‘_— h(s) -4
M - M = ZnJ ds vm"+ s f(s) J dy (coshy) > 0. (5.6)
0

Since h(s) @ ® as m 2 0 for s > 0 and

0 «©
J dy (coshy) % =1, J dy (sinhy)?(coshy) ¥ = 1/3,
0 0
one obtains a virial theorem a la bag model
MC/MS = 3 (6.7)

in the massless limit m = 0.

In a one-dimensional case where there is no transverse degree
of freedom, the single particle inclusive distribution of consti-
tuents is completely specified by the rapidity distribution g(y).

The constribution to the invariant mass of the system from the
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constituents and that from the scalar type interaction turn out

to be
M = mG (5.8a)
e 1’
M = mG (5.8b)
s 2’
where
Lo
G, = [ dy coshy g(y), (5.9a)
1 -
® sinh’y
= = . (5.9b)
G2 = J_:y coshy g(y)

In order that MC stays finite as m approaches zero, g(y) should

. ~1
have an appropriate m-dependence so that G1 grows like m as m

goes to zero. Such a divergent behavior of G1 can only come from
the integration region where Iyl is very large. As the leading

behaviors of coshy and sinhzy/coshy are the same for large lyl,
it is obvious that Gl/G2 > ] as m ® 0. One thus has

M /M =1 (5.10)
T’ s '

in the limit m = O.

- 17 =

6. Yo-yo mode of the flux tube

The energy-momentum of the composite systems discussed in the
preceding sections consists of two parts: one due to the consti-
tuents and another to the scalar type interaction. In general, a
system may have a more complicated structure because any Lorentz
4-vector can be added to the original energy-momentum 4-vector
without destroying the correct Lorentz transformation property. ¢
typical but rather complicated example is provided by the yo-yo
mode (3-6]1 of the bagged flux tube with a quark and an antiquark
attached at the ends [7-101.

The structure of the flux tube can be determined by requiring
that its Lorentz'transformation property should be the same as
that of a string in the zero radius limit. The string has the
following crucial properties. An infinitesimal segment of string

of length dQ carries energy and momentum

dE = kdQ, (6.1a)
dg = KdQ3T/@ 1 - 3% i (6.1b)

5
in any frame. Here, Kk is the string constant and vT is the

velocity vector which is perpendicular to the string direction.
Such an object can be realized as the zero radius limit of a
color flux tube in the following way [10].

Consider in the c.m. frame a non-rotating tube with radius R

and the maximum length L with disk-shaped massless quark{(g) and

- 18 -



antigquark (i) attached at both ends. It is assumed here that the
vacuum inside the tube is perturbative while the one outside the
tube is of nonperturbative nature such that the dielectric

constant is vanishing there. A uniform color electric flux tube

is formed between q and q, while there is no magnetic field
anywhere in c.m.s. If the tube is placed such that its axis lies
in the x-y plane, each component of the color electric field

inside the tube is given by
E = (E \E,.E,) = (Ecos8,Esing,0), (6.2)

where 6 is the angle between the x-axis and the tube axis, and
the color indices are suppressed. The situation is depicted in
Fig.4. In the bag version of the flux tube picture, there is the
following relation between tHe bag constant B and the field
strength to realize the pressure balance at the boundary of the

tube [71:
2
B = €E"/2. (6.3)

N
As vT = 0 in the present case, the string constant is equal to

the string tension and hence to the total energy of the flux tube

per unit length. It is given by

¢E2 + B ) = nR%eEZ. (6.4)

- 19 -

Fig.4

The guark and the antiquark at both ends of the tube perform the
yo-yo motion with light velocity and the period 2L. If the x-axis

is chosen as the longitudinal axis, the longitudinal rapidities

of g and q turn out to be

t ¥y = tanh—l(tcose) = :Intang i (6..5)

while the momenta of q and 5 change linearly in time between

-KL/2 and +kL/2 within a half period. The time-averaged rapidity-

pT distribution of the constituents (q and 5 in this case) is

5 1 i
DO(Y,PT> = e(pT)e(zKLsnnG - pT) { 6y - yo) + S(y + yo) )

X 1/(inKLsine), (6.6

5
where pT & |pT| and B(x) is the step function.

1f the system is boosted along the x-direction by rapidity Y =

1

tanh vV, the electric and the magnetic fields E' and g’ inside

the Lorentz contracted tube become

ﬁv = (EcosB,EsinBcoshY,0), (6.7)

= 20



B = (0,0,Esin®sinhY). (6.8)

The energy and momentum densities due to those fields are,

respectively, given by

Y

pr = §s< B2 482

1 2

= 2SEZ( 00528 + cosh2Y sin"8 ) (6.9)
and the Poynting's vector
2. - ( #8%s5in?8 coshY sinhY, -£E’sinB cos® sinhY, 0 ). (6.10)

The angle between the flux tube and the x-axis is
8' = tan 'C coshY tan8 ). (6.11)

The y—ETdistribution of g and 4 is given by (2.9) with (6.6):

P D (y-Y,p)
DY(y,pT) Aly,Y) O(y ' Pr

B(pT)G(%KLsinB—pT)

inKLsinecoshYcoshyo

X {cosh(Y+y0)6(y—y0—Y)+cosh(Y—yo)6(y+y0—Y)).(6.12)

-2 -

Now the contributions to the invariant mass M and the total
energy-momentum of the system in the boosted frame from the
constituents (C), fields(F) and the "bag constant” (B) can be
determined by some straightforward calculations and the result ics
summarized in Table 1. The contributions from C,F,B to M are in

the ratio 2:1:1. The most peculiar point is that the

Tables 1 and 2

contributions to <P§> (the y-component of the momentum) from C

and F cancel each other. On the other hand, the contribution to

the energy <Q'> gnd <P§> ( the x-component of the momentum ) fron

C is just what is predicted by (3.2) and (3.3) with
1 2
I = M = 2KLcos 8. (6.13)

While the contribution from B possesses a property characteristic
of a scalar-type interaction, the F part shows a hybrid nature,

the scalar (SF) and the vector (VF) as long as <%'> and <P§> are

concerned. Furthermore, it has an additional contribution called

XF to <P;>. In the present case, it is remarkable that the scalar

type volume energy consists of two parts SF and B. Shown in Table
2 are the decomposition of the F-part into three parts SF,VF,XF
as well as the sum of the SF and the B parts. Dependence of

various components on B8 is also remarkable. For example, MS ( sur

of the SF and the B parts in M ) depends on 8 (see (6.13)), both

the F and B parts in M are independent of 8 while separation of I

=97 =



part into VF and SF depends on 8. The total sums for M, <Q'>,<P§>
and <P;> are of course independent of 8 and satisfies a correct

energy-momentum relation

<§2'>2 - <P'>2 - <P'>2 = MZ. (6.14)
X y

7. Conclusions and discussions

In the present paper, we have considered relativistic
composite systems with finite extension within a classical (non-
guantum mechanical) picture. The key result (2.9) is obtained
from the fact thét. in an isolated composite system, a constitu-
ent particle is confined in a spatial region of finite volume.
The result claims that the rapidity distribution of the constit-
uents in a boosted frame is not just a translated c.m. rapidity
distribution but is a translated one multiplied by a distortion
factor A(Y,y). This result is to be compared with the case where
a system is made of completely free particles. In such a case,
the rapidity distributions in different frames are transformed to
each other by simple translation. It is essential that such a
system cannot form a stable system with finite spatial extension.
Conversely speaking, existence of particles confined in a finite
region of space means existence of an interaction. A minimal way
of making a composite system consistent with Lorentz transforma-
tion is to add a scalar-type interaction term as shown in section
3. In such a minimal case, the invariant mass of the whole system
consists of two parts, the constituent (C) part and the scalar

type interaction (S) part;

- 23 -

M= M, o+ M. (7.1)

In a relativistic gas confined in a "box" with vanishing energy-
momentum, the proper energy density corresponds to the C part
while the pressure to the S part as demonstrated in section 4.
This means that the enthalpy density € + P corresponds to the
invariant mass density.

A remarkable but peculiar result is obtained in the case where
a constituent is massless. That is, we obtain in section &6 a

virial theorem MC:Mg = 3:1 ( or 1:1) for the 3- (or 1-)

dimensional case. Usually, one has the same result by assuming

that the energy (=mass) of a system in its c.m.s. is expressed as

I

E = + bR (7.2)

o

and by minimizing E for variation of R, where 4 is the dimension
of the space in which the system is embedded. Note that the first
term on the r.h.s. is due to gquantum filuvctuation ( ground state
kinetic energy of massless particles ) while the second term is
the volume energy term. It is therefore very peculiar that the
same virial theorem is obtained within a purely classical (non-
quantum mechanical) framework. This result may be an indication
for an unknown deep connection between special relativity and
quantum mechanics. Anyway, our result is most: reliably applicable
to a relativistic composite system of macroscopic size. It should

be used carefully when a system is so small that quantum effects

may be important.
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As illustrated in section 6, an instructive example of a fully
relativistic composite system is provided by a flux tube with a
gquark and an antiquark at the ends performing a yo-yo motion. It
should be noted that a stationary flux tube with constant length
is relativistically "incomplete'", that is, the energy-momentum of
such a system does not have a correct Lorentz transformation
property. An open flux, i.e., a flux with ends has to be
associated with source particles that emit or absorb fluxes. In
general, our result suggests that full consistency of a composite
system with Lorentz transformation implies a very stringent
condition on the nature of the interactions which are responsible
for forming the composite system. Presumably, such a consistency
may hold automatically in a bound state problem of covariant
quantum field theory if the problem is solved exactly.
Nevertheless, our result will be useful in various practical
cases such as phenomenological models of hadrons, relativistic
effects in nuclei, approximate methods of solving a relativistic
bound state problem or constructing a relativistic wave function

for a composite system, relativistic hydrodynamics and so on.
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Table 1. Contributions from constituents(C), fields(F) and bag Table 2. Decompositien of the ¥ part inig vector(VR) pari, scalar
constant(B) to the rest mass, energy and momenta of the flux tube (SF) part and the third(XF) part. Sum of SF and B parts_ls shown
also.
Cc F B sum
VF SF XF SF + B
M %KL Ler s KL
4 4 1 2 1 2 1 2
M ~klsin™B “KL(1-2sin"8) 0 ~KLcos™ 8
1 2 2.1 2,2 2 KL 2 4 2
(R'> skLcoshy(1+vicos™8) SkLcoshy(l+v -2vcos“8) ——— - kLcoshy
2 q 4coshy 2 2
1 .2 KL(1-2sin"B8) kKlLcos™B
R'> <ZkLcoshysin®® 0
<P;> -%KLsinhy(l+c0526) %KLsinhysinZB 0 KLsinhy 2 4coshy Zcoshy
| ) ;> IeLsinhysin’e 0 0 0
(P;) EkLtanhysinScose —EKLtanhysinecose 0 0 *
(P;) 0 0 —%KLtanhysinBcose 0
= 9 =
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Figure captions

Fig.

Fig.

The distortion factor for various Y

Comparison of the distorted as well as the merely
translated distributions with the original distribution
before the boost

A box with the surface S which is perpendicular to the
boost axis x.

Color flux tube formed between a disk-shaped quark and an

antiquark with opposite color charges.
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