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ABSTRACT

The Meissner effect is analyzed in a Josephson junction predicted recently in
a certain double-layer quantum Hall system. Due to the Josephson current the
magnetic field parallel to the layers is squeezed into a Sine-Gordon vortex with the
flux quantized in the unit of 2x/e. It is a manifestation of superfluidity of the Hall
liquid with the condensation of bosonized electrons with charge —e. A distinctive
feature of the vortex is the appearence of an electric potential well perpendicular

to the magnetic field within the layers.
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The fractional quantum Hall (QH) effect is a rcmarkable property intrinsic
to the planar electron system [1] . Recent cxperiments have shown [2] that the
double-layer electron system possesses even- as well as odd-denominator QH states,
which proves that the intrinsic naturc of planar clectrons is not lost even in the
double-laycr system. A Chern- Simons (CS) gauge theory of these QH states has
been presented [3,4] , which successfully accounts for various aspects of the phe-
nomena. Since it is formulated in terms of bosonized electrons (electrons bound
to flux), the Landau-Ginzburg theory is derived quite easily from it, which agrees
with those [5-8] proposed previously. This microscopic formulation predicts [4,9]
that a certain double-layer QH system acts as if a Josephson junction when the
filling factor takes an odd denominator; v = 1/m with m odd integers. (See also
a heuristic work {10] in which use is madec of instantons to drive the Josephson
effect effectively.) This would be the first example where the Josephson effect is pre-
dicted in a system of semiconductors. The Josephson effect occurs due to coherent
interlayer tunnelling of the condensed bosonized electrons just like the Cooper pair
tunnelling in the superconductor Josephson junction. Since the bosonized electron
carries the charge —e as the electron does, the unit charge ¢ appears instead of 2e
of the Cooper pair in various {ormulas in the Josephson effect to be observed in the
double-layer QH system. Such a condensation is only allowed in a planar system

where the statistics transmutation [11] is possible.

The aim of this paper is to analyze whether a kind of the Mcissner effect
occurs in the QH-state Josephson junction. We show that the magnetic field B,
parallel to the layers is squeezed into a vortex just as is in the superconductor
Josephson junction. This is hardly expected because the QH system consists of
semiconductors and not of superconductors. We also reveal some new features of
the vortex peculiar to the QH-state Josephson junction. They arc the existence of
an electric potential well with the size of the vortex and of an electric current parallel
to the magnetic field B, within the layers, which are absent in the superconductor

Josephson junction.

Let us recapitulate the CS theory of a double-layer electron systeimn, whose detail

is found in Ref.{4,12] . In this approach electrons belonging to two different layers
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are interpreted as two distinguishable anyons with appropriate statistics. Thus, we
represent electrons in terms of boson field ¥, with the aid of the CS gauge field
af together with the coupling constants K called statistics parameters, where o
and [ are the layer indices: o, 3 = 1,2. The CS gauge fields are subject 10 the
constraint equations:
_ Bt
E‘-]f)‘a;’ S5 Vp¥p (1)
B

where K®8 = (B« = integer. They ensure that 2r K(?# flux quanta of the statistical
gauge field a are attached to each bosonized electron ’l,[)ﬁ in the layer 8, transmuting

it back into the original electron together with their relative statistics {4,12,13] .

The QH state is characterized by the uniform cond<nsation of all ¥, (¢,) # 0,
which breaks the CS gauge symmetry ¢, — etot,. In general, since the resulting
two Goldstone modes are absorbed by the two CS gauge fields af and disappear,
the state is incompressible. However, it is compressible when all the statistics
parameters /(7 are the same: K®? = m with m being an odd integer. This is

because in this case the constraint equations (1) are reduced to only one equation:

£, = 2rm(Ply, +Pl,), (2)
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where a, = (a} +4}), and the combination 4} —a} decouples from the system. The
system contains only one gauge field a, which absorbs only one of the Goldstone
modes. Hence, one of the Goldstone modes survives, leading to the superfluidity of
the QH state.

This situation is described by our Hamiltonian (4]

1 1
H= (— D, —iD)y,|* + B¢U2)+-wcw
; QM( 1 2 ol ba ] 2

~ AW, + $h) + VW, (3)
a,f

withiD, =10, +a, —eA,: The CS field a is determined by the constraint equation

(2). Here, M is the effective mass of electrons; ~e the charge of the electron; N the
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total number of electrons; u, the chemical potential; A the strength of the interlayer
tunnelling. The external maguetic ficld B is applied perpendicular to the layers
with 4, = ——%chL_jI’. and w, = ¢B/M is the cyclotron frequency. Later we shall
consider the additional magnetic field 5, parallel to the layers ’\[1“,, < B). Terms
V”[Lf’} represent the intralayer and interlayer Coulomb interactions that drive the
planar electron system into the QH liquid. It is mentioned that the tunnelling term

is gauge invariant since there is only one CS gauge symmetry in the system.

Switching olf the interlayer tunnelling (A = 0), we find that the condensation of
¢, occurs at the filling fraction v = 2r(p, +p,)/eB = 1/m, which is characterized

by the mean-field solution

a, =cA, (1)

and
Yo = VPac’®, (5)

with constant density p, and phase 0,. This siaic satisfics the Qll-state condition
(D) —1D, ), =0, (6)

which guarantees that all electrons occupy the lowest Landau level. Furthermore it
minimizes the Coulomb energy, and hencc it gives the ground state. Such a solution
is only possible at the filling fraction v = 1/m, which is found by substituting (4)
and (5) into the constrain equation (2). Because the constraint equation (2) does
not fix the density of the electrons in cach layers separately, any change of each
density p, does not break the condensation in the QH state as far as p, +p, is fixed.
This suggests the presence of a gapless superfluid mode associated with the change
of the density, which can actually be proven within the Gaussian approximation
around the mean-field solution [4] . It is the Goldstone mode we mentioned before.
We note that its existence has also been shown in other approaches [14-17] . This

superfluid mode is the origin of the Josephson elfect when tunnelling is allowed.

Eq.(4) implies that the CS gauge ficld cancels precisely the external magnetic

field perpendicular to the layers. Thus, bosonized clectrons do not feel effectively
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any magnetic field and condense with energy %ch, as revealed explicity in the
Hamiltonian (3). It can be shown that the state is described by the Halperin

wavefunction [18]
[T -2)™ T1GE - 2™ 1= - B
x exp{~3eB(X |21 + Y2 1:2)), Q

by taking account of the Gaussian fluctuation around the mean-field solution [4] .

The small interlayer tunnelling term (A # 0) causes coherent tunnelling between
the two layers. Using the QH-state condition (6) which holds for the QH state, it is
straightforward to derive [4] the well- known equations of motion for the coherent

tunnelling [19] :
i50¢'1 = /»‘1'/’1 - A¢21 iao"rbz = /‘211[)2 = /\11’1 (8)
Substituting (5) into these equations, we find that
0,0, = g + Acosd— ), (9)

where § = 6, — 0, is the phase difference; here, we have shifted g, — p, + A so
that 5,0, = 0 when there is no phase difference (6 = 0) and no external voltage

(o = 0). It follows from (8) and (9) that the phase difference satisfies
0,6 = eV, (10)
and that the Josephson current is given by
J, =0,p, = Jsin§, (11)

where J. = 2Ap, with P, being the average electron density on one layer. Here,
eV = p, — p is the electric potential difference applied across the layers; the index
z in the Josephson current indicates that it flows in the direction of the z axis taken

perpendicular to the layers.

We now analyze the screening of the external magnetic field parallel to the
layers due to the Josephson currcnt. We show that it is squeezed into a vortex
with the flux quantized in the unit of 27/e in a similar way to the case of the
superconductor Josephson junction. Although the equations governing the parallel
magnetic field B, inside the QH-state junction turn out to be essentially the same
as those in the superconductor junction, their derivation is quite different from the

latter case.
Our basic equation is the QH-state condition (0), or

1D, Py = (i0, + o, — eA, —eAl)D,

= =P80 + eA{)e =0, (12)

with the uniform density p;, where use was made of (4) and AF is the electromag-
netic potential describing the parallel magnetic field B,. Let us take this magnelic
field in the direction of the z axis and assume it to be uniform in z; then, 6, as

well as B, do not depend on z. In the gauge AP =0, the above equations yield

0,6 = —e[Al(z =2)) - AP (z = )]

= —edd, Al = eB 4, (13)

where we have assigned the coordinates z, to each layers, and d = z; — 2, is the
distance between the two layers. The above manipulation is justified when B, is
smooth in z between the two layers. According to this equation the y-dependence
of the phase difference § is determined by the parallel magnetic field. On the other
hand, the time-dependence is determined by (10), as driven by the voltage between

the two layers.

In order to take into account the screening effect due to the induced Josephson
current we consider a Maxwell cquation 9,8, = eJ, — €d,L, with ¢ being the
dielectric constant of the matter between the layers. Using (11) and E, = —V/d

we obtain
9,Bp =eJ siné+ed™'9,V, (14)

which holds inside the junction. The set of equations we need to solve is (10), (13)
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and (14).

Combining these three equations we obtain a Sine-Gordon equation:
(€0} — 83)6 + €*dJ, sin§ = 0. (15)

As is well known, there exist soliton solutions that are characterized by the bound-

ary condition;

§(y = +o0) — b(y = —0) = 27n, (16)

with n being an integer. They represent vortices confined in the y- direction within
the size £, ~ 1/y/€*dJ,. This topological nature of vortices makes the magnetic
flux @ quantized in the unit of 27 /e:

o0 oo
1 2m
®=d [ B,dy=- | 8,8dy=—n (17)
P ¥ )
_-0/0 e_{o €

where use was made of (13).

In the above derivation of the flux quantization we have Lacitly assumed that
the magnetic flux is confined in the z-direction between the two layers. Indeed,
the factor d in the second term of formula (17) results from integration over the
distance d between the iwo layers. In order to prove this confinement, we note that
because of the current conservation the Josephson current (11) inevitably induces
a current J; = J, in the y direction on the first layer and a current Jy2 = —J, on
the second layer. Here, evaluating the accumulated currents due to the Josephson
current we find

vy
Jy(v) = / J:(y')dy, (18)

—-00

which is integrated as J, = (1/e2d)(')y6 for the static soliton solution (9,6 = 0)

satisfying 9,6 = 0 at y = —co. The z-dependence of the magnetic flux By is
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controlled by thesc currents as dictated by another Maxwell equation:
9.8, = —eJy6(z = z)) = 6(z - 2,)], (19)

which holds inside as well as outside the junction. Integrating the Maxwell equation
(19) we obtain

Bp(y,2) = —el0(z = 2)) = 0(z = 2,)}J,(v) + B, (20)

Here, by requiring the other Maxwell equation (14), the integration constant B is
found to be really a constant. It is the magnetic ficld outside the QH-statc junction.

Between the two layers it reads

Log
Bylyz)=el, + By = ég()yb + By, (21)
where we have used J, = (1/€? d)8,6 which holds for the static Sine-Gordon soliton.
Comparing (21) and (13) we find that By = 0. Namcly, there exist no parallel

magnetic field outside the junction.

We conclude that the magnetic flux is squcezed in the z-direction between
the two layers and in the y-direction within the size l’v. The typical size ZV and
the magnetic field BP of the vortex are order of 0.1mm and 10727, respectively,
for A = 1K, d = 1004 and py = 10" /em?. This squeezing is very surprising
because our system is not a superconductor Josephson junction but a QH-state
junction. In the superconductor junction such squeezing is naturally expected since
the superconductor expels the magnetic flux. On the contrary, the QH system is

made of semiconductors, and such effect is hardly expected.

The above Meissner effect has resulted from the Josephson current J,, which is
a manifestation of superfluidity of the double-layer QH liquid in problem. Hence,
the superfluidity may be considered to causc the squeezing of the magnetic flux.
Although our analysis has been carried out in the approximation of layers without
thickness, the finite thickness of the layers should obviously not change the above
result about the squeezing. The only effect of finite thickness is that the parallel
magnetic field confined between the two layers gradually decrcascs in the thickness

of the layer and vanishes outside the junction.
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We proceed to consider a QH system with DC-voltage feed or DC-current feed,
where the applied magnetic field is so strong that the total flux passing between the
two layers, ~ B, Ld, becomes larger than the flux carried by vortices, ~ (27/e) x
(L/ev), with L being the size of the layers. Then, the induced Josephson current
cannot screen completely the external magnetic field. In this case we may solve (10)
and (13) by neglecting the screening effect due to the Josephson current. Then,
the phase difference is given by § = eVt + eBPyd in the DC-voltage circuit. The

Josephson current oscillates in space and time:
J = Jsin(eVt +eBpyd). (22)

The electromagnetic radiation induced by this oscillation must be observed in the

double-layer system. On the other hand, in the DC-current circuit, we get
J = J.sin(§, + eBpyd). (23)
In this case, evaluating the total Josephson current we obtain that

2] siné sin(rq)/d)O)

/ 0 ro/o,

(24)

total

with &, = 27/e being the unit flux.

We have so far analyzed aspects of the Meissner effect in the QH-state Josephson
junction which are almost identical to the superconductor case; that is, vortices
with flux quantization (17), Josephson current oscillation (22) and magnetic field
dependence of the maximum DC Josephson current (24). Only the difference is
that the unit charge e appears in place of 2¢ in various formulas familiar in the

superconductor case.

We now point out some distinctive features of vortices peculiar to the QH-state
junction. We only consider the case with the phase difference § associated with the
static Sine-Gordon vortex (15). First of all, an electric field E, in the y-direction

appears spontaneously due to the static but spatially varying phase difference 4.
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To see it we analyze (9) on each layer, which leads to g, = A(1 = cos ) for 3,0, =
0. This equation implies that the non-trivial chemical potential (equivalently the
electric potential) is induced in association with the vortex soliton. Namely, the
clectric potential well (—p,/e) appears in both of the laycrs; note that the electric

charge of clectron is —e. Thus, the clectric field £, is given as
1 A
E, = —gay;ta = —E(sm 8)0,8, (25)

which is identical in both of the layers. It is casy to check that the electric field £,
and the current J, do not lead to any dissipative process, i.e., I2% JyEydy = 0.
Second, the current J; parallel to the magnetic field B, appears in association
with this clectric ficld £, in the QH state: J, = o, F,.
small compared with J, since J,/.J, ~ O(M) ~ 0(1075) where d & O(1004) and

A & O(1K). These £, and J, exist only around the vortex. Their appearance is

This current is quite

very peculiar to the QH system; an electric field can never appear in superconductor.

In this paper we have analyzed the Meissner effect in the QH-state Joscph-
son junction. Most forimulas familiar in the superconductor Josephson junction
hold with the replacement of 2e with e, as is a manifestation of the condensation
of bosonized electrons with charge —e in the QH state. However, the QH-state
Josephson junction also has some cssentially new features. We hope that our pre-
dictions about the Josephson effect and the associated Meissner effect are verified

in future experiments.
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