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ABSTRACT 

The Meissner effect is analyzed in a Josephson junction predicted recently in 

a certain double-layer quantum Hall system. Due to the Josephson current the 

magnetic field parallello the layers is squeezed into a Sine-Gordon vortex with the 

flux quantized in the unit of 211' Ie. It is a manifestation of superfluidity of t.he Hall 

liquid with the condensation of bosonized electrons with charge -c. A distinctive 

feature of the vortex is the appearence of an electric potential well perpendicular 

to the magnetic field within the layers. 
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The fractional quantum Hall (QH) effect is a remarkable property intrinsic 

to the planar electron system [1] . Recent expcl'iments have shown [2] that thc 

double-layer electron system possesses even- as well as odd-denominator QH states, 

which proves that the intrinsic nature of planar electrons is not lost even in the 

double-layer systelll. A Chern- Simons (CS) gauge theory of the~e QII states has 

been presented [3,4] , which successfldly accounts for various aspects of the phe­

nomena. Since it is formulated in terms of bosonized electrons (electrons bound 

to flux), the Landau-Ginzburg theory is derived quite easily from it, which agrees 

with those [5-8] proposed previously. This microscopic formulation predicts [4,9] 

that a certain double-layer QH system acts as if a Josephson junction when the 

filling factor takes an odd denominator; l! = 11m with m odd integers. (See also 

a heuristic work PO] in which use is made of instantons to drive the Josephson 

effect effectively.) This would be the first example where the Josephson effect is pre­

dicted in a system of semiconductors. The Josephson effect occurs due to coherent 

interlayer tunnelling of the condensed bosonized electrons just like the Cooper pair 

tunnelling in the superconductor Josephson junction . Since the bosonized electron 

carries the charge -e as the electron docs, (.he unit charge c appears instead of 2e 

of the Cooper pair in various formulas in the Josephson effect to be observed in the 

double-layer QH system. Such a condensat.ion is only allowed in a planar system 

where the statistics transmutation [11] is possible. 

The aim of this paper is to analyze whether a kind of the Meissner effect 

occurs in the QH-state Josephson junction. We show that the magnetic field Bp 

parallel to the layers is squeezed into a vortex just as is in the superconductor 

Josephson junction. This is hardly expected because the QH system consists of 

semiconductors and not of superconductors. We also reveal some new features of 

the vortex peculiar to t.he QH-state Josephson junction. They are the existence of 

an electric potential well with the size of thc vortex iind of an electric currcnt parallel 

to the magnetic field Bp within the layers, which are absent in the superconductor 

Josephson junction. 

Let us recapitulate the CS theory of it double-layer electron system, whose detail 

is found in Ref. [4,121 . In this approach electrons belonging to two different layers 
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are interpreted as two distingu ishable anyons with appropriate statistics. Thus, we 

represent electrons in terms of boson field 1/J" with the aid of the CS gauge field 

a~ together with the coupling const ants J( QfJ called statistics parameters, where a 

and (3 are the layer indices: Cl, P = 1,2. The CS gauge fields are subject I ,) the 

cons traint eq uations: 

Clo;/J,aj = 271" L j( fJ..p1t/;/J' (1) 
fJ 

wh ere /( afJ = J(fJa = integer. They ensure that 2lr ](afJ flux quanta of the statistical 

gauge fiel d a'J are attached to each bosonized electron 1/Jf3 in the layer /3, transmuting 

it back into the original electron together with their relative statistics [4,12 ,131 . 

The QH state is characterized by t.he uniform cond ' nsation of all1/J", (.p",) # 0, 

which breaks the CS gauge symmetry 1/J" ---t e"a,pa. In general, since the result ing 

two Goldstone modes are absorbed by the two CS gauge fields a~ and disappeM, 

the state is incompressible. However, it is compressible when all the statistics 

parameters J(afJ are the same: K afJ = m with m being an odd integer. Thi s is 

because in this case the constraint equations (1) arc reduced to only one equation: 

c/J;a j = 27fm(1/J11/JI + 1/J~1/J2)' 	 (2) 

where a = ~(ai +a~), and the combination uk -a~ decouples from the system. Thek 

system contains only one gauge field at' which absorbs only one of the Golds tone 

modes. Hence, one of the Goldstone modes survives, leading to the superfluidity of 

the QH state. 

This situation is described by our Hamiltonian [4J 

,,( 1 , 2 2) 1 
7-{ = ~ 2M [(D1 - ID2 )t/;al +J-la l1/Ja [ + "2wcN 

" 
- .\(1/J11/J2 +"'i1/J1) +	I:V"p [tJ;], (3 ) 

a,p 

with iDk = iOk+ak-eAk: The CS field at is determined by the constraint equation 

(2). Here, M is the effective mass of electrons; -e the charge of the electron; N the 
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total number of electrons; 1'0 the chemical potential; A the st.rength of the interl aycr 

tunnelling_ The cxtcrJl id mag net ic field 13 is applied perpendicular t.o t.he layers 

with AI; = -teil£kj x J, and We = c13 /M is th e cyclotron frequency. Later we shall 

consider th e additional m.-,gnctic fiel d Dr pa mllcl to the layers (B p « B). Terms 

V,,13[1/11 represent the il\tral"yer and inLerldyer Coulomb interactio ns that drive t il 

pl anar elect ron system in to the QI-I liquid. It is mentioned that the tunnelling term 

is gauge irwarian t since there is only one CS gauge symmetry in t he sys telTl . 

Switching off the interl ayer t unnell ing (A = 0) , we fin d that the condensation of 

~'a occurs at the filling fraction II == 2r. (1' 1+1'2) / eB = l/m, which is characterized 

by the mean-field solution 

(lk = (:11:, 	
(1 ) 

and 

t/Ja = ~C;80 1 	 (5) 

with constant. df'n sity 1'0 ~ nd phase 0". This sL,d 'e " ,tisfico t. he Q!I·state condition 

(D 1 - lD2 )';'a = 0, 	 (6) 

which guarantees that all el ectrons occupy the lowes t Landau level. Furthermore it 

minimizes th e Coulomb energy, and hence it gi ves the groun d state. Such a solu tion 

is only possible at the filling fraction 1/ = l/m, which is found by substituting (4) 

and (5) into the constrain equation (2) . Because the cons train t equ at ion (2) does 

not fix the densi ty of the electrons in each layers separately, any change of each 

density p" does not break the con densation in the QH state as far as PI +P2 is fixed. 

This suggests the presence of a gapless superfluid mode associa ted with the chan ge 

of the density, which can actually be proven within the Gaussian approximat ion 

around the mean-fielcl solution [4) . It is the Goldstone mode we mentioned before. 

We note that its existence has also been shown in other approaches [14·17) _This 

superfluid mode is Lhe origin of the Josephson effect when tunnelling is allowed. 

£q.(4) implies that the CS gauge fielcl can ce ls precisely th e external magnetic 

field perpendicular to the layers. Thus, bosonized electrons do not feel effectively 
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any magnetic field and condense with energy tWcN, as revealed explicity in the 

Hamiltonian (3). It can be shown that the state is described by the Halperin 

wavefunction [18] 

I1(z;-z})m I1(z~ - zl)m I1(z;- zf)m 

x exp{ -~eB(L: Iz;12 +L: IzW)}, (7) 

by taking account of the Gaussian fluctuation around the mean-field solution [4) . 

The small interlayer tunnelling term (A # 0) causes coherent tunnelling between 

the two layers. Using the QH-state condition (6) which holds for the QH state, it is 

straightforward to derive [4] the well- known equations of motion for the coherent 

tunnelling [19] : 

ioo,pl = PI,p1 - A,p2' iOO1/;2 = P21/;2 - A,pl' (8) 

Substituting (5) into these equations, we find that 

0(0" = -,L" +Acos6 - A, (9) 

where 6 == 01 - 02 is the phase difference; here, we have shifted p" -+ Ji-" + A so 

that 0(0" = 0 when there is no phase difference (6 = 0) and no external voltage 

(p" = 0). It follows from (8) and (9) that the phase difference satisfies 

0(6 = eV, ( 10) 

and that the Josephson current is given by 

J, == o(P I = Jc sin 6, (11) 

where Jc == 2APO with Po being the average electron density on one layer. Here, 

eV == - PI is the electric potential difference applied across the layers; the indexP2 

z in the Josephson current indicates that it flows in the direction of the z axis taken 

perpendicular to the layers. 
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We now analyze the screening of the external magnetic field parallel to the 

layers due to the Josephson current. We show that it is squeezed into a vor tex 

with the flu x quantized in the unit of 2r.je in a s imilar way to the case of the 

superconductor Josephson junction . Although the equations governing the parallel 

magnetic field B p inside the Q H· statc junction turn out to be essentially the same 

as those in the superconductor junction, their derivation is quite different from the 

latter case. 

Our basic equation is the QH-state condition (6), or 

iDk1/;" = (iok +ak - eA. - eAf)JjJ" 

= -y7fQ(OkO" +eAf)e ,80 = 0, (12) 

with the uniform density Po' where use was made of (4) and AF is the electromag­

netic potential describing the parallel magnetic field Bp' Let us t.ake this magnetic 

field in the direction of the x axis and assume it to be uniform in x; then, 0" as 

well as B p do not depend on x. In the gauge A; = 0, the above equations yield 

0/) = -e[A:( z = zl) - A:(z = z2) ) 

= -edo,A: = eBpd, (13) 

where we have assigned the coordinates z" to each layers, and d == zl - z2 is the 

distance between the t ll"O layers. The above manipulation is justified when B p is 

smooth in z between the two layers. According to this equation the y-dependence 

of the phase difference 6 is determined by the parallel magnetic field. On t.he other 

hand, the time-dependence is determjned by (10), as driven by the voltage between 

the two layers. 

In order to take into account the screening effect due to the induced Josephson 

current we consider a 1vlaxwell equation oyB p = eJ, - cOtE, with c being the 

dielectric constant of the matter between the layers. Using (II) and E, = - V j d 

we obtain 

OyBp = eJcsino +cr10tv, (14) 

which holds inside the junction. The sct of equations we need to solve is (10), (13) 
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and (14) . 

Combining these three equations we obtain a Sine-Gordon equation: 

(cai - a;)o + e2 dJ, sin.5 = O. (15 ) 

As is well known, there exist soliton solutions tha.t a.re ch aracterized by the bound­

ary condition: 

o(y = +00) - o(y = -oc) = 21rn, ( 16) 

with n being an integer. T hey represent vortices confined in the y- direction within 

the size tv ~ ·1/Ve2dJ, . This topological nature of vortices makes the lI1ilgnetic 

fl ux If! quantized in the unit of 21r/e: 

00 00 2 
~ == d JB pdy = ~ j i\ody = : n, (17) 

-00 -00 

where use was made of (13). 

In the above derivation of the nux quantization we have tacitly assumed that 

the magnet ic fl ux is confined in the z-di rcct ion between the two Jayers. Indeed, 

the factor d in the second term of formula (17) resul ts from integration over the 

distance d between the two layers. III order to prove this confinement, we note thi\t 

because of the current conserva.tion the Josephson current (11) inevi tably induces 

a current J; = J. in the y di rection 011 the first layer and a current J; = -J ony 

the second layer. Here, evaluat ing the accumulated currents due to the Josephson 

current we fin d 

v 
Jv( y) = j J, (y' )dy', ( 18) 

-00 

which is integrated as J~ = (l/e2d)ayo for the static soliton solution (OtO = 0) 

satisfying avo = 0 at y = -00. The z-dependence of the magnetic flux B p is 
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controlled by these currents i\.S dictated by an other Milxwell equal-ion: 

a,Ep = - eJylo(z - zJ) - o(z - z2)]. ( 19) 

which holds inside as well as outs ide the junction. ln tr.g rati ng the Maxwell equation 

(19) we ob ta in 

Ep(Y,z) = -cIO(z - zJ) - O(z - zz)]Jy(y) + Eo (20) 

Here, by requi ring the other Maxwell e'-juation (1 4), t he in tegration constant Eo is 

found to be really a constant. It is the magnetic field outside the QH-statejunct ion . 

Between the two layers it reads 

I 
Dp(Y, z) = eJy + Eo = - ,uyo + Bo' (21 ) 

ec 

where wc have used J = (l/e2 rJ Jf} owh ich holds for the static Sine-Gordon soliton.y y

Comparing (21) and (13) we find tha t Bo = O. Namely, there exist no parallel 

ma gnctic field ou tside I he juncl.ion. 

We conclude that the magnetic nu x is s'-jueezed in the z-direc t ion between 

the two layers and in the y·direction within the size ell' The ty pical size ell an d 

the magneti c field B p of the vortex are order of O.l mm an d 1O-2T, respect ively, 

for A = 1](, d = 10011 and Po = 1011/cm2. This squeezing is very s urprising 

because our system is not a superconductor .Josephson junction but a QH-state 

jllllct ion. In the supercondu ctor junct ion SllCh squ eezi ng is naturally expected since 

the superconductor expels the magn et ic nux. On the con t rary, the QH system is 

made of semi conduclors, and such effect is hardly expected. 

The abo\'(' " leissllc r effect has rcsultcd from the Josephson cltrrent J" which is 

a manifestation of superfluidity of the double-l ayer QH liquid in problem. Hence, 

the superfluidily may be considered to cause the squ eezin g of the magnetic flli x. 

AILhough our a nillysis h ",~ been carried out ill the approximat ion of layers without. 

thickness, the finile thickness of t.he layers should obviously not change the above 

result about t.he sq ueezing. The on ly effect of finite thi ckness is that the parallel 

magnetic fi eld confined between t.he two layers gradually decreases in th e thickness 

of the layer and van ishes out.s ide the junction. 
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We proceed to consider a QH system with DC-voltage feed or DC-current feed, 

where the applied magnetic field is so strong that the total fl ux passing between th e 

two layers, ~ B pLd, becomes larger than the flux carried by vortices, ~ (2rr / e) x 

(L/ev)' with L being the size of the layers. Then, the induced Josephson current 

cannot screen completely the external magnetic field. In this case we may so lve (10) 

and (13) by neglecting the screening effect due to the Josephson current. Then, 

the phase difference is given by 8 = eVt +eBpyd in the DC-voltage circuit. The 

Josephson current oscillates in space and time: 

J = Jcsin(eVt +eBpyd). (22) 

The electromagnetic radiation induced by this oscillation must be observed in the 

double-layer system. On the other hand, in the DC-current circuit, we get 

J = Jc sin(8 + eBpyd). (23)0 

In this case, evaluating the total Josephson current we obtain that 

J = L2J . < sin("CP/<l> ) 
lolal c sm 0 0 (24)o rrCP/CP ,o 

with <1>0 =2rr/e being the unit flux. 

We have so far analyzed aspects of the Meissner effect in the QH-state Josephson 

junction which are almost identical to the superconductor case; that is) vortices 

with flux quantization (17), Josephson current oscillation (22) and magnetic field 

dependence of the maximum DC Josephson current (24). Only the difference is 

that the unit charge e appears in place of 2e in various formulas familiar in the 

superconductor case. 

We now point out some distinctive features of vortices peculiar to the QH-state 

junction. We only consider the case with the phase difference 8 associated with the 

static Sine-Gordon vortex (15). First of all, an electric field Ey in the y.direction 

appears spontaneously due to the sta.tic but spatially varying phase difference 8. 
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To see it we analyze (9) on each layer, which leads to 1-'0 = ,\(1 - cos8) for uIOa = 

O. This equation implies that the non-trivial chemical potential (equivalently the 

electric potential) is induced in association wilh the vortex soliton. Namely, the 

electric potential well (-II,,/e) appears in both o r th e layers; note that the electric 

charge or elect.-on is - c. Thus, th e e lectric field Ey is gi ven as 

I A 
Ey = --uy/!a = --(sin8)uA (25) 

e e 

which is identical in both of the layers. It is easy to check t hat the electric field Ey 

and the CUl'l'ent Jy do not lead to any dissipative process , i.e., f~oo .JyEydy = O. 

Second , the current Jx parallel to the magnetic field B p appears in association 

with this electric ficid Ey in the QH state: J. = CTxyEy . Thi s current is quite 

small compared with Jy since JJfy "" OUiI) "" 0(10-5 
) where d "" O(IOOA) and 

A ~ 0(1 I\). These Ey and J exist only around the vortex . Their appearance isx 

very peculiar to the QH system; an electric fi eld can never appear in superconducto r. 

In thi s paper we have analyzed the Meissner effect in the QII-state J oseph ­

son junction. Most ro rmulas familiar in the superconductor Josephson junction 

hold with th e replacement of 2e with e, as is a manirestation or the condensation 

of bosonized electrons with charge - e in the QH state. However , the QH-state 

Josephson junction also has some essentially new reatures . We hope that our pre­

dictions about the Josephson effect and the associated Meissner effect are verified 

in future experiments. 
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