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Abstract 

A simple Jerivation of all three so-called Kepler Laws is presented in which the orhits , 

bound and unhound, follow directly anJ immediately from conservation of energy anJ 

angular momentum. The intent is to make this crowning achievement of Newtonian 
Mechanics easily accessible to students in introductory physics courses . The method is 

also extended to simplify the derivation of the Rutherford Scattering Law. 
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The so-calleJ Kepler's Laws of planetary motion have been of central interest for 
Nt'wtonian Mechanics ever since the appearance of Newton's Principia [I] . They are 
JiscusseJ in most introductory textbooks of physics [2,3] and continue to be a suoject 
of lively interest in tht! pages of the American Journal of Physics [4]. This interest is not 
surprising heCiluse the undt~rstanding of planetary motion has been one of the olJest 
challenges in mallY human cultures and continues to excite the sense of wonJer among 
young scientists toJay. 

The purpose of the present article is to give a new elementary derivation of allthrcc 
of t1w Kepl(~ r Laws intended to make their physics accessible to first year university 
stuJents taking introJuctory mechanics. I have used this derivation in my own in
troJuctory classes for more than a Jecade and find that it, and the many associat(~J 
proolems, are a highlight of the introduction which I give to physics. In contrast, most 
first -year textoooks give a Jescription of Kepler's Laws but apparently regard their 
Jerivation as too difficult. Perhaps the derivation given here can then fill an important 
gap . 

The elementary proof, given in the next section, follows directly, in a few easy 
steps, fro III conservation of ellergy anJ angular momentum which, in turn, follow frol1l 
F = rna and the central nature of the universal gravitational force, F = Gm M/r2. 
These c.onservation laws, on which we build, are usually covered thoroughly, and often 
even elegantly, in first year textbooks. 

111 succ<~eJillg sections, beyond the proof, we provide further discussion of oounJ 
dliptic. orbits and extend the treatment to the unbound Kepler orbits anJ to the 
llutherforJ Scattering Law. 

II . ELEMENTARY PROOF OF KEPLER'S LAWS 

a) J(epler 's First Law (The Law of Orbits): All planets move in elliptical orbits hav· 
ing the Sun at one focus . 

For a planet of mass m in a oound orbit(negative total energy E), arounJ the sun 
of mass M, we have the constant total energy, E 

E == mv l /2-GMm/T, (I) 

where r is the distance of the planet from the sun and v its velocity. (- 8/m) is a 
positive constant of the 1II0tion. Because the force is central we also have conserved 
angular momeJltum, l 

l muh, (2) 

where h( == r .~in¢, with ¢ the angle between v and r) is the perpendicular distance from 
the planet's iJlstantancous velocity vcctor to the SUII (see Fig. I) . From the Jdinition 
of h we have h ::; r . (l/m) is abo a positive constant of the motion. Using Eq. (2) in 
Eq . (I) we ootain 

[(f/m)l/2( -/~'/m)] [eM /( - /~' /m)] 
-I (3)

h2 r 
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All 'orbit' eqllatioll is, ill general, a rc~lationship between two illdepend(~nt variables. 
Equatioll (:1) is all orhit equation cOllllecting two independent coordillate~, r & h. What 
kind of all orbit? It is exactly an ellipse because the standard ellipse equatioD, tralls
formed into the two variables r & h is (see Sec. 3) 

2 
b 2a _ I (h / ~ r) , (1)
h2 r 

wh(!re a is the semi-major axis of the ellipse and b is the semi-minor axis. The equality 
of Eq . (:I) and Eq. (4) 1I0t only completes the proof of Kepler's F'irst Law, but also 
immediately give~ the orbit parameters, a & b, in terms of the constants of the motion, 
(-e/m) alld (l/m) 

a = GM /2(-E/m) , b = (l/m)/(-2E/m)~ . (5) 

b) Kepler's Second Law (The Law of Areas): A line joining planet to the Sun sweeps 
out equal areas in equal times. 

This law is the only one of the three commonly proved in introductory physics 
textbooks. H.eferring to Fig. I, the time derivative of the area, A, swept out is 

I 
dA/dt = "ivh = l/2m , (Ii) 

which is constant. Thus this law is directly associated with the conservation of allgular 
momentum. 

c) /\·t<pler's Third raw (The Daw oj Periods): The square oj the period oj (my plallet 
about the Sun is proportional to the cube oj the planet's mean distallce Jrom th(: SUII. 

Using the second law the period, T, of the planet must be equal to the total area 
of the ellipse, divided by the constallt, dA/dt. The total area of all ellipse is 7fab. 
Therefore, 

T = '27f ab/(l/m) = (27r/.jGM)a~ 
or T2 = (17f2/GM)a3 

. (7) 

Int(~rpreting the semi-major axi~ as the mean distance frolll th(! S\lll, the rc!slIlt Eq. (7) 
proves til!: third law. The constant, (47f2 /GM), which applies to all planets is, about, 
:1.0 x IO-J4 y·l/ rnJ. 

111_ SOME PROPERTIES OF ELLIPSES 

Itcf(!rrillg to Fig . I, the familiar equatiolls for the ellipse rdat(' to th(' coordinates 
x&y , 

rl / a ~ + y~ / b~ I , (~) 

:! 

or, alterJIatively, to the polar coordinates r &0, 

r = a(l-t2 )/(1 +tcos9) , (9) 

where the eccentricity, t, is defined by c == (a2 
- b2)~ == ta, with c being the distance 

from the center of the ellipse to its focus . 

Next we provide the derivation, beginning with Eq. (7) of the unfamiliar form of the 
ellipse, Eq. (4), required for the proof of Sec. 2. The coordinate r, shown 011 Fig. I, is 
defined by 

r := [l + (x - C)2]~ . ( 10) 

We substitute for y2 from Eq. (7), 

y2 = b2{1 _ x2/a2) (I/a 2)(a2 _ c2)(a2 _ x 2) , 

to obtai 11 

r a- l (a 2 - ex) , (II) 

which is also an equation for the ellipse in terms of the coordinates r & x . 

To lind h ill terms of x (or y) we start with the general formula for the perpendicular 
distance, h, frolll an arbitrary point (xl'Y.) to an arbitrary straight line, y = y'x +Yo, 
when! y'(:= dy / dx) is the slope of the line and Yo is its y intercept. The formula is 

h = (I + yI2)-~(yo - YI + y'xl) . (12) 

lIere (X., y.) := (c,O) and the y-intercept is Yo = Y - y'x. The straight-line (see 
Fig . I) is the tangent to the ellipse at the position (x,y) of the planet so that 

y' := dy/dx = -(x/Y)W/a2) , (13) 

which follows directly from Eq. (7) . Substituting into the square of Eq . (12) for y', Yu, 
YI and XI, we obtain 

h2 (1 + x2b4 /y 2a4rl(y + x2b2/ya 2 - xcb2/ya 2)2 
(la4 + x~b4rl(y2a2 + b2x2 _ b2xc)2 

2(a 2 21?[a4(1 - x 2/a 2) + x _ c2Jr I [a2(1 - x 2/a 2) + x - XC]2 
b2(a 4 _ x~c2rl(a2 - XC)2 

b2(11 2 + xcr l(a 2 - xc) , (14) 

which, agaill, is an (!quatioll for the ellipse in terms of the coordinates h &. x . 
Solving Eq . (10) for x yields 

x = (a 2/c)(1 - ria) , ( 15) 

dl,,1 silllilarl y, solvillg Eq . (13) for x yields 

.c = (a~/c)(l-h2W)/(1 +h2b2) . (16) 
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Filially, (!quatillg Eq. (IJ) and Eq . ([tI) yields the desired ellipse Eq . (") . 

Frolll a teaching point of view tht! present approach to the Kepler probl p'1II works so 
well because the physics content of the proofs is all contained, as in Sec. 2 above, ill a f( !w 
simple statements pertaining to the conservation of energy and angular momentum. 
The (;omplications, su(;h as they are, occur only in the derivation of the unfamiliar 
form of the ellipse equation . Even this derivation involves straightforward mathematics 
which , in my experience, is familiar to students taking introductory physics courses . In 
order not to deHect from the physics interest it is my practise to present the derivatioll 
given in this section as a handout intended to help those students who wish to know 
1lI0re about ellipses and who want to relate the unfamiliar form of Eq. (4) to something 
that they know. 

It is interestillg to plot the ellipse pairs of coordinates other than the usual x&. y 
of Fig. 2. For example, the x&.r ellipse of Eq. (11) or Eq. (15) is a straight line for 
which the elliptical motion lies between the maximum and minimum values of r, that 
is, between (I-f)a and (I+f)a. Similarly, for thex&.h equation the ellipse lies between 
the limits (I - f)a S h S (I + t)h, or correspondingly, -a S x Sa. The h &. r ellipse, 
Eq. ("), which is of importance to us ill this paper, is shown on Fig. 2, for two values of 
the eccentricity, ( = 0 and f = 0.8660. The laller corresponds to a choice of b = (1/2, 
which was also the choice for the ellipse of Fig. 2. By the definition of h, the only values 
of h whidl can have any physical meaning are those for which h S r. Thus the dlipti(;al 
motion takes place in the half quadrant for which, h S r, that is , below the dashed line 
of Fig. 2. For f = 0 we have a circle and, indeed, on Fig. 2, the only physical poillt is 
h = r = a. 

IV, UNBOUND KEPLER ORBITS 

It is well known that when the total energy E is a positive constant the orbit of the 
Ke pler problem is hyperbolic. This fael is often stated in introductory physics texts . 
We now prove it by the same simple methods used for elliptic orbits above. 

For positive E we rewrite Eq. (3) as 

[(l/m)l/2(E/m)] _ [GM/(E/m)] = I 
( 17)

hl r 

For this orbit equation we note that the relevant hyperbola, shown on Fig. :1, oheys 
the equation 

b1 2a 
(Ill)

hl r 

which call be contrasted with the ellipse, ~q . (4). Again, the equality of Eq. (17) and 
Eq. (18) proves that the orbit is hyperbolic and gives the orbit parameters, a&. b, to be 

a = GM /2(E/m) , b = (l/m)/(2E/m)! . (19) 

To complete the proof we must derive the hyperbola Eq . (I H), ill terms of the 
coordinates r &. h, from the usual equation of a hyperbola, ill terms of the coiirdillaks 
x&y: 

x1/a 2 
_ .t//b1 	 (2l1) 
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III the (x , y) plalle of Fig. 3 the hyperbola lies between two asymptot.es whose direc
tiolls are determin(!d by the choice of b&. a. (For the hyperbola illnstrated ill Fig. :\ w(' 
have chosen b = a/2, as we did for the ellipse of Fig. 2 above.) There are, of course, 
two equal hyperbolas, both of which satisfy Eq . (20) . We have drawn only the left-side 
hyp(!rbola 011 Fig. 3, and not its image mirrored in the y-axis . 

This choice between the two hyperbolas is arbitrary but the choice for a system of 
hyperbola pins focus is not. When we refer to the physics we place the center-of-force 
at the focus : (x, y) = (-c, 0) or (+e, 0) with r? == a 1 +b1. For the left hyperbola shown 
on Fig. 3 the choice of (-c, 0) as the focus corresponds to gravitational attraction 
the orbit is "pulled around" the center-of-force. Placing the focus at the otiIPr posi
t.iOIl, (+c, 0), would correspond to the unphysical orbit of antigravity - with the orbit 
"pushed away" from the center-of-force. Although this latter case has no relevance to 
the Kepler problem it does provide the orbit for Rutherford scattering (see Sec. 6, 
below). The orbits for the left-side hyperbola, with the two possible foci both obey the 
sallie hyperbola equation in the x&. y coordinates, that is, Eq . (20), but for the r &. h 
coordinates the two cases obey different equations. We are illterested here in the case 
of til(! Kepler problem, with the left-side hyperbola taken together with the left-side 
focus . 

To begin the proof of Eq. (18) we note that from Eq . (20) we have 

y = 	 b(x2/a l 
_ I)! , (21) 

y' == dy/dx = W/al)(x/y) , (22) 

and the y- intercept for the tangent line at point P is 

yo=y-yx 
, 

. 	 (2J) 

Choo~ing the left-side focus, (X., y.) = (-e,O) we find at once, in place of Eq. (10) 

r == 	 {yl + (x + e)l]! 
_a- l (a l + xc) . (21) 

Similarly we find, using Eq. (12) 

hl = _bl(al + xe)/(a l - xc) , (25) 

whi ch can be compared to Eq. (13) for the ellipse. Combining Eq. (24) and Eq. (25) 
yields the desired hyperbola, Eq. (18). 

V. ACCESSIBLE ORBIT PROBLEMS 

With the simple relationship between the orbit parameters and the constants of the 
motion, derived ahove, a myriad of interesting problems can immediately be tackled 
by th(! students. The point is that any two pieces of information pertaining to a, b, e, 
lim, I~'/m , 'J' etc., completely specify the orbit. A few exampl(!s are: 

i) 	 If you fire a cannonball horizontally at the North Pole with an initial velocity of 
v = 0.4H x 104 mis, ~ketch the orbit and find the orbit parameters. (Assume til(~ 
(!arth is spherically symmetric allli neglect air frictioll .) Filld the period of t.he 
lllotioli . The solution for this problem is an elliptical orbit wllose major axis lies 
alollg till! .~arth 's axis and i~ grl!ater than the earth radius . 

fi 

http:asymptot.es


ii) 	 If your friendly computer "lIal" launche~ YOIl from your spaceship into outerspace 
at a distance from the Sun of 3.1 x 1011 Ill, with a speed of 8.2 x 104 rII/s and a 
direction of motion such that your perpendicular distance is 1.86 x 10" 01 from 
the Snn, find out what will be your distanre of closest approach to the SUII. Also, 
find out if your orbit is bound or unbound. 

iii) 	 If a c.:omet were to strike the earth in such a way that its orbital velocity instantly 
increased by 10% but the direction of the velocity remained unt:hanged by tlw 
collision, find the effect on the earth's orbit (originally assumed to be cirt:ular) 
and its period. 

Further, a great deal of celestial mechanics becomes accessible and transparent. 

VI. THE RUTHERFORD SCATTERING LAW 

In spite of its importance the Rutherford Scattering Law is not a subject normally 
covered in introductory physics textbooks, perhaps because the concepts of cross sec· 
tiolls are usually optional or omitted. Indeed, the concept of a differential cross section, 
lIeeded for the Rutherford Law is quite sophisticated for a first year course. lIowever, 
because of my own personal predilections in physics I like to say more about atomic 
and nuclear cross sections in my introductory class than is the standard fare. When I 
then also give a full treatment, as above, of the Kepler Laws it is very tempting to go 
further and derive the Rutherford Scattering Law. The connection between the crown
ing achievement of Newtonian Mechanics and the foundations of modern subatomic 
physics is very compelling. This is an approach to which I was led by the PSSC courses 
of two decades ago and which has been admirably presented by French in his textbook, 
Newtonian Mechanics [3]. 

The purpose of this section is to show that the derivation of the Rutherford Law ben· 
efits fully from the simplification of the Kepler Laws introduced above. If the Coulomu 
force is F = kQIQ2/rl, in an obvious notation, then the total energy, E, of an alpha 
particle in its orbit around a gold nucleus is given by 

E = mv l /2 + kQ,Ql/r . 	 (26) 

Using the conserved angular momentum, i == mvh, we find, instead of Eq. (:l) 

fl/2mE kQIQl/E
-h-- + r = I . 	 (27)2 

This orbit is that for the Kepler problem with a repulsive force. We have the left· side 
hyperbola with the right·side focus, as sllown on Fig. 3, where the coordinates r' &. h' 
are also indicated. In terms of r' &. h' the hyperbola equation is 

b2 2a 
(28)(h'P + -;:; = I , 

which is to he compared with the ellipse Eq. (01) and Eq. (18) which pertai liS to the 
hyperbola· focus system for a.ttractive forces . Again, comparing Eq . (28) and Eq. (27) 
gives us the orbit parameters : 

a = kQIQ2/21~, b = (f~/2H1E)~ . 	 (29) 
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The proof of 8q. (28) follows closely the derivation of Sec. 4 above. Bquations (21), 
(22) and (23) still apply. However, with the choice of (XI, YI) = (+c, 0) we find 

r' = a-I lal +xc] , 	 (30) 

and (h')l = _bl(a l - xc)/(a l + xc) , 	 (31) 
j 

which are to be c.ompared with the corresponding variables of Sec. 3 and Sec. 4. Com
bining Eq. (30) and Eq. (31) now yields Eq. (28) . 

When the alpha particle is far from the gold nucleus the potential energy vanishes 
alld therefore E = Trn the initial kinetic energy of the alpha particle. The orbit 
parameter b is in fact, from Fig. 3, the usual "impact parameter". From the geometry 
of Fig. 3 we see that 

b=acot(fJ/2), 	 (32) 

where 0 is the scattering angle, and then 

db/dfJ = (a/2) !Jin- l (fJ/2) . 	 (33) 

To c:omplete the derivation of the Rutherford Scattering Law we need to introduce 
tlw definitions pertaining to the differential scattering cross section, du / dO. . Here we 
follow the conventional treatment whose elements are the following . The partial cross 
section element, du, is defined to be proportional to the fraction of alpha particles 
whose impact parameters lie in between b&. b + db 

du 	 == 211' bdb , (34) 

dO. is the area on the unit sphere between fJ and fJ + dfJ 

dO. 	 == 2uin fJdfJ = 411' !Jin(fJ/2) ros(O/2)dfJ . (35) 

Therefore, using Eq. (20) 

du b db 
dO. 2 5m(0/2) cos(fJ/2) dfJ 

a l f[4 !Jin4(O/2)] = IkQ,Ql/4Ta sin2(fJ/2W , (36) 

which is the Rutherford Scattering Law. 

VII. CONCLUSION 

II. derivation is given of Kepler's Laws in which the physics is easy and immediate. 
AllY complicatiolls reside in the mathematics of ellipses and even these are well within 
the grasp of the students who have, in the past decade or more, come into my intro
duc.tory physics class. Therefore, the derivations presented here fulfilled their intent 
of making the whole Keplerian problem easily accessible to physics students ill first 
year. The intellectllal payoff is large for the effort involved and that is the essence of 
illtroducing physics to willillg stlldents. 
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FIGURE CAPTIONS 

Fig. l. The geometry for the bound elliptical orbit of a planet at point J> around titc 
Sun at the focus. The ellipse parameters (a, b and c) arc showlI as well as tllr(~c 
alternative pairs of coordinates: x & y, r & (J, r & h, where h i~ the perpendicular 
distance from the focus to the tangent at point P. The ellipse shown has b = a/:1. 

Fig. 2. The elliptical orbit, Eq. (4), in terms of the coordinates r &. It for two different 
valu(~s of the eccentricity: f = 0 (a circle) and ( = 0.8660 (the ellipse of Fig. I 
for which b = a/2). Sillce h ~ r the elliptical motion pertains to that part of the 
curve which lies in the lower half of the quadrant, that is, below the dashed line 
of r = h. 

Fig. 3. The geometry of the hyperbola pertaining to unbound Kepler orbits of plands 
and to the orbit of alpha particles in Rutherford scattering. The hyperbola (heavy 
line) is confined between two asymptotes. For the unbound Kepler orbit til(: Sun 
is at the focus (x,y) == (-e,O) and the orbit parameters a,b&eare indicated. As 
in rig. 1, above, we have chosen b = a/ s. For the planet at point J> its distance, r, 
from the Sun as well as the perpendicular distance, h, to its tangent line are also 
~hown. For alpha-nucleus scattering the same hyperbola applies but the IIUcJCllS 

is at the other focus, (x,y) == (e,O) for which the alpha-nuch~us distallce is I" 

and the perpendicular di~tance to the tangent line is h', r' &. h' art~ indicated 011 

the figure as well as the scattering angle (J. 

y 



I Y 
~------o c------~ 

2.0y 

1.5 

o 
I }' :> x ""'-... 1.0 

...c 

focus 

0.5 

Fig. 1 

o 0.5 1.0 1.5 2.0 

y ~O 

~ Fig. 2 

) 1'/1 

o ". , ,I, ,I, ,I, ,I 

X) "," I .. x 

" to~" 
9f>I")t " 

It;, '),
f> 

Fig. 3 

>K =-==-f 


