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Abstract 

I 
We investigated the limits of magnetic methods of trapping neutral atoms in 

a spot of small size and small polarization misalignment . The analysis cov· 

ers various methods of trapping with static and rotating magnetic field. In 

particular, new rotating field methods having advantages are proposed. They 

differ from the recently invented "top" type by employing a slow rotating 

field, resonant to the orbiting atoms, rather than much faster rotation . Also 

a theory of the top trap is developed . It elucidates important features of trap· 

ping lying beyond the time· averaged potential concept . General criteria on 

the trapping temperature as a function of size and misalignment parameters 

are established for various methods. 

(Submitted to Physical Review A) 

PACS numbers: 32.80.Pj, 85.70.Nk, 42.50.Vk 

The method of neutral atom trapping by magnetic fields has been successfully demon­
strated since 1985 [1-31 and its usage and development is in rapid progress, (see e.g. Refs. 
[4 -71) . Many questions have arisen and there are many factors to consider if requirements 
on the smallness of atom spot and polarization misalignment are imposed. First of all, the 
question abuut the most appropriate magnetic field configuration is very important since the 
magnetic potential well is shallow and able to trap only atoms of rather low temperatures 
- 10- 3 K. Even deeper cooling of the atoms is required if low polarization misalignment is 
critical. 

Addressing the problem, we derive simple criteria and present scales and estimates allow­
ing one to judge and compare various types of magnetostatic traps. We consider the static 
field traps and the type with rotating field ("top" trap) recently invented by Cornell [71 and 
investigated very sketchily in the literature. The top trap is considered in more detail and 
its new features are elucidated. We also draw attention to trapping methods with rotating 
lields of much lower frequency than the top type. These methods are discussed for the lirst 
time. Our earlier results reported to the TRIUMF TRINAT group and summarized ill [81 
are partly included in the present consideration . 

II. MAIN ASSUMPTIONS AND DEFINITIONS 

The well· known principle behind a magnetic trap is that magnetic dipoles may be trapped 
by a lucal field minimum (local maxima are forbidden) and that the atoms prepared in select 
Zeeman levels with the resultant (average) magnetic moment I-' antiparallel to an applied 
magnetic field B fullow adiabatically the magnetic field lines across the volume of the trap. 
In such states the atoms are attracted to a point of minimum of the force potential 

U(r) = -I-'B(r) + Mgz = pB(r) + Mgz (I) 

with H = IBI and p = 11-'1 = const > 0, i.e. to a minimum of the magnetic field magnitude 
(here M is the atomic mass, 9 the gravity acceleration) . The model can be applied to the 
case of sluw time-varying fields, in which the frequency spectrum of B(t) = B(r(t),t) for 
a trapped atom is in a range well below the Zeeman frequency in the field. This is what 
une means by a magnetostatic trap. The trapped atoms are vulnerable to background gas 
cullision~ and the mean free time between collisions should exceed the desired trapping time. 

We will first consider static field traps . At the trap centre 

oB My
-=-- (2)
Oz p 

Also , the curvature of the field B at the trap centre should be positive to provide confinement 
in three urthogunal directions. The curvature is given by the matrix iP U/Oriork. In the 
coordinate frame where the matrix is diagonal the natural frequencies of small amplitude 
atomic uscillation are given by 

Wi = JJl olB (3)M urf . 
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We will assume that the directions ri coincide with the coordinate frame x,y,z and the 
point r = °will be taken at the trap centre. 

The lower edge of the potential weU of U(r) Eq. (I) is located where Eq. (2) is again 
satisfied, after the field curvature changes sign. The upper edge may be at infinity, or where 
the field goes through a maximum, again satisfying equation (2) . One more edge leading to 
the leakage of particles is in the vicinity of B = °where the adiabaticity is violated. What 
one usually needs is for the well to be as deep as possible within a given atom spot size, 
rather than a deep well with a wider but flat bottom. Requirements on the uniformity of 
atom polarization alignment within the atom spot reinforce this point. In particular, the 
"hole" centered at B = °should not be inside the atom spot, and neither should the field 
curvature vary considerably inside. 

In the case of a small atom spot, its average spatial scales ;:r are related to the trapping 
temperatures Ti by 

kTi = Mrl(O) = 2Mw~;:r . (4) 

We define the trapping temperature such that kT;/2 is the total initial kinetic energy of 
the atoms, divided by the number of atoms loaded into the trap centre. The conditions 
correspond to the loading from an optical trap having much better confinement. The energy 
of oscillation is distributed equally, in average, between the kinetic and potential energy and 
this results in the factor 2 in Eq. (4). The definition does not depend on interactions between 
atoms and whether thermalization takes place. Obviously, the requirements on preliminary 
cooling of the trapped atoms are directly related to the trapping temperatures, specifically 
their upper bounds for given spot sizes and polarization misalignment. Our goal will be to 
determine such bounds. 

The accuracy of Eq. (4) can be judged by the frequency shift OWi /Wi caused by anhar­
monicity. For small;=1, l&.iil/wi = ?if /1 

, roughly, where 1 is a characteristic scale of field 
curvature variation. For typical trapping geometries I is about three times smaller than R, 
the radius of the "main" magnetic coil, so for amplitudes, ..,!;!, not larger than ~ O.IR we 
may rely on Eq. (4) . In fact the atom spot sizes of interest are within this scale. 

The static field traps of interest employ the field B(O) aligned vertically, and as a mea­
sure of deviation of atomic polarization from z-alignment within the spot, we will take the 
quantity 

P = l-I/J.(r)I//J = I -IBz(r)/B(r)1 

which in the case of small atom spots reduces to 

p=~1 L ~~Bzl (5)
2 r,=r,V,z 'ar! B 

where the derivatives are taken at r = 0. 
Proceeding from these notions and definitions we will consider first, in Sees. II-V, the 

static field traps. The rotating field traps require a modified approach which is undertaken 
in Secs. VI and VII. 

III, THE AXIAL SYMMETRY TRAP 

The magnetic coil configuration we address here is a set of concentric coils of arbilrary 
radii and currents with the axis in the z direction . Simple examples are the "opposing coils" 
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and "spherical hexapole" traps (Fig. I(a,b». Obviously, the arrangements with B(O) = 0, 
e.g. the spherical quadrupole of such currents that 8B/8z at the quadrupole centre satisfies 
Eq. (2), do not do for the traps of interest. The analysis below makes this and other 
requirements clear and puts them on a quantitative basis. The quadrupole configuration is 
merely one of the axial symmetry traps. Coils with parallel currents, rather than opposing, 
is an example of different trap configuration . 

The magnetic field components near the axis can be presented up to second order in r 1. 
by the well-known general expansion 

B.(z,r1.) = Bo(z) - ~ B~(z)rI, 

Br(z,r1.) = -~ B'.(z)x, Bv(z,r.d = -~ B~(z)y 

where ri = xl +yl, Bo(z) is the magnetic field at the axis of symmetry, B:(z) = dBo(z)/dz 
and B~(z) = ~Bo(z)/dzl. These quantities at the trap centre are related through Eqs. (2) 
and (3), yielding 

BoB~ Mg 
IBol =--;­

W~ = £.. B~Bo
MI8:I' 

1 1 /J B,! - 2B~Bo 
Wr = Wv = M 41 Bol 

As a consequence, 

B~l > 2BoB; > 0, B': = (Mg//J)l. (6) 

Evaluating P of Eq. (5) and relating ri to the perpendicular temperature T1. = (Tr +Tv)/2 
via definition (4) one obtains 

B:l l kTl. ( w; )
P = 8B~ r1. = 2/JIBol 1+ 2w~ 

Excluding Bo (using the latter relation), results in 

kT1. r;:; wl 

~ = CIVP, where CI = __r (7)
M9V r i/2 w; +w~/2 . 

This relation allows one to determine the trapping temperature required to provide a given 
(slllall) alom spot size and misalignment. Its upper bound is given by 

'1'1. = ~9 JP r i/2~ 0.4 x 10-4 K. (8) 
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Ilere (and further on) the numerical estimates are for M = 40 a.m.u. We assume ill Eq . (8) 

that ;;f = 0.5 cm and P = 0.05. 

We may also interpret the relations (7) and (8) as a bound on the product Pri for a 
given trapping temperature TJ. : 

~ kTJ. kTJ. 
VPrj./2 = -M < -M . (9) 

gCI 9 

Similarly, the product pz1 can be presented in the form 

fiii = k~w; +w~/2 < k~ (10)
Mg wzw, Mg 

where, however, TJ. is bounded by Eqs. (7) and (8). 
No dependence on the magnetic field appears and only one atomic parameter, the atomic 

mass, enters Eq . (8) as well as the r .h.s. of Eqs. (9) and (10). Originally we came to this 
result by a different approach [8J . Thus, whatever the set of concentric coils, their radii and 
currents are, the relation (7) and its consequence Eqs. (8), (9) and (10) i~ true. With this 
the derivation implies that the magnetic field provides trapping and the atom spot is small 
compared with the spatial scales of oscillation anharmonicity of atoms in the trap. 

The formulas (7) · ( 10) seem in evident contradiction with the case 9 = O. But in that 
case B~ = 0 and the requirement (6) cannot be satisfied, i.e. a trap of axial symmetry with 
the desired properties cannot be realized. 

The larger the atomic mass M, the higher the temperature that can be used for trapping. 
In principle, the derivation is applicable to a macroscopic particle, provided its state with 
p antiparallel to Band IJ = const has a sufficient life· time. Note that the bound Eq . (8) 
written in terms of mean square velocity rather than temperature is a universal function 
entirely independent of free parameters: 

1v = 3g';Pri/2 

which for P = 0.05 and ...;:r = 0.5 cm results in .;;;r ~ 15 cm/sec. 

IV. THE "COIL + CURRENT BAR" TRAP 

The magnetic field coil configuration considered here has vertical current bars which 
generate a quadrupole field in the horizontal plane (Fig. 2(a)). The vertical field is formed 
mainly by the current of a round coil so that to second order in coordinates 

B, = Bo(z) - ~B~(z)r~, 

Bz = -GB~(z) +Q )x, ( II) 

Bv = - GB~( z) - Q) Y 

where (Qx , -Qy) are the components of the quadrupole field and Bo(z) is the axial field of 
the round coil. For a thin coil of radius R placed at z = - D 
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Bo(z) = ( D1 + Rl )3/1 
(D +z)l + Rl Bo 

with Bo = 0(0) determined via the condition Eq . (2). As a result 

L = D D1 + R1w1 - 9 where ( 12),- L' 4D1 - R1 

and in view of Eq. (4) we obtain the relation 

kT, 2..(;] 
( 13)Mg..(;] = -L-

Obviously, the area of interest and applicability of Eq. (13) is where v7i is small compared 

with L. One may use Eq . (13) where Eq . (4) can be used (i.e. where vii - O.lD or smaller) . 
The spatial ~cale L is bounded by the fact that D > R/2 and that the coil radius R cannot 
in practice be made arbitrarily small. For a given R the minimum of L is ~ R/3, for 
Dl/ Rl = '2/( /65 - 7) ~ 2. Thus, the relation (13) imposes by itself, without any additional 
restriction 011 polarization misalignment, a strong bound on the trapping temperature. For 

R = 1J = 5 cm and the spot size v7i = 0.5 cm the bound equals 

Mg 3ii 4 
T, = T D - 0.7 x 10- K. 

Requirements for small polarization misalignment impose upper bounds on the trapping 
temperatures Tz , Ty rather than T, . Evaluating p of Eq . (5) for an atom spot of temperature 
1',; = 7~ = 1'1. we obtain 

1 1
P = kTJ. w w

where c1=1+~+~.21J/ Bo(1' 4wz 4wv 

With Bo determined via Eq. (2) this results in the following bound 

Mg2L I 4
TJ. = --P-0.8 x 10- K (14)

k C1 

where 

4D1 - R1 
L. = L 3D1 

and the numerical example is for R = D = 5 cm, C1 = 2 and P = 0.05. It is worth noting 
that the prod uct Pii is gi ven by the formula similar to (10) 

;p-;i = kJT,TJ. ./~~ 
Mg V4 4D1 - R1 

where 1', and T.1 are bounded by Eqs. (13) and (14). 
Agaill, as for the axial symmetry traps, the upper bounds on the trapping temperatures 

do 1I0t dcp.,ml 011 the magnetic field magnitude, and only one atomic parameter, the mass 
M , cntcrs the criteria for 1~ and 'fl. ' 
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V. THE "BASEBALL", AND OTHER STATIC FIELD TRAPS 

The "baseball" geometry consists of a loop of wire wound similar to the seams of a 
baseball (Fig. 2(b)) and an axial pair of anti-Helmholtz coils to generate the required axial 
field to compensate gravity at the baseball centre. The baseball loop current produces no 
field gradient at the centre, just field and field curvature, and so this point i~ the centre of 
the trap . The anti-Helmholtz coils generate no field or curvature, and thus the curvature is 
decoupled from the gradient, unlike previously discussed configurations. 

The field expansion near the trap centre is given, to second order in coordinates, by the 
functional form Eq. (II), whereas before IB~I = Mg//J, while Bo, B~ and Q are determined 
by the baseball coil radius R and current I by 

Bo = 
21 
5R' 

B" = 2Bo 
o R1 ' 

Q = 5Bo 
2R' (15 ) 

The natural frequencies Wi (Eq. (3)) take the form 

l=J!...B" 
w. M 0' 

(Q± Mi)l
1=J!... 1~ 

w:t M Bo 
1_w.

2 
(16) 

where W± = Wr.~ and Bo and B~ are assumed (without loss of generality) positive . At 
Bo ~ 2MgR/3R the dimension y becomes untrapped . In the limit of large Bo and, hence, 
large Q, the frequencies W± become equal and three times larger than w • . 

From (4), (15) and (16) follows the relation 

2f1 B 
o Zl '" 2.7 x IO-~ K. T. = -A;- R1 ( 17) 

The numerical estimate is for R = 5 cm, ,fit = 0.5 cm, fI = fiB, the Bohr magneton, and 
Bo = 101 gauss. Such a baseball field is generated by the current I = 5BoR/2 = 1250 
ampere-turns. To increase it by much creates technical problems, so the cited figure of T. 
seems a characteristic scale for the baseball traps. 

Now let us investigate the polarization characteristic of Eq. (5). For the baseball trap 
we obtain 

p = 4f1k [Tz (I + ~~J +T~ (I + ~~~) ] . ( 18)
Bo 

It follows that the upper temperature bound is given by 

0T.J. = 2f1: p '" 7 x IO-~ K 

where the numerical example is the same as in Eq. (17) with P = 0.05. Since the cited 
horizontal temperature bound is 2.5 times larger than the corresponding vertical temperature 
bound in (17), the level of polarization misalignment, for the given vertical size spot and 
isotropic trapping temperature, is much better than for P = 0.05. 

Finally, we note that the baseball trap and the traps employing a bias field Bo and 
axial confinement from a set of concentric coils and transverse confinement from a four-wire 
quadrupole field have much in common, in particular the relations (II), (16) and (18) are 
the same. An example is the loffe trap, which has two concentric coils with equal currents 
(Fig.2(c)). As seen from Eqs. (16) and (18) the bias field should be within certain limits 
to provide both small spot size and polarization misalignment and therefore, though more 
freedom in the parameters of Bo and Wi appear, the upper temperature bounds cannot 
change mudl compared with the case of the baseball trap. 
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VI. THE TOP TRAP 

The top ("time-averaged orbiting potential") trap is a recent invention [7]. It employs a 
combination of static and rotating magnetic fields: 

B(r,t) = Boc(r) + b(t) ( 19) 

where Boc is an axial quadrupole field generated by uopposing coils" with the axis in the 
vertical direction (Fig. I(a)) and b is a large-amplitude uniform field quickly rotating in the 
horizontal plane. ULarge" and "quickly" are in the sense 

b1 :» B~, Wi ct: n < nz (20) 

where Bo = Bo,(O) is the vertical field at the trap centre, n is the frequency of rotation of the 
field b, nz the Zeeman splitting in the field and Wi with i = x, y, z are the natural frequencies 
of small amplitude smoothed vibration . The inequality n < nz makes the principle behind 
the top trap the same as for a static field trap. The atomic magnetic moment adiabatically 
follows the field rotation which in view of b1 :» B~ rotates almost in the horizontal plane . 
The top trap has a rather small atom spot. This and the rotation of the atomic polarization 
are attractive features for experiments on polarized neutral atoms . 

Now, unlike the static field traps, the potential U( r) Eq. (I) varies periodically in time. 
That the oscillating component of magnetic force is large and influences the confinement 
critically makes the analysis of confinement more complex than that of a static field trap. 
The atom motion r(t) is a superposition of a high frequency, small radius orbit and a 
smoothed oscillation in the averaged potential characterized by low frequencies Wi « n. 
The standard asymptotic method of nonlinear mechanics can be applied to the analysis and 
we used it at first . However, the conventional second order perturbation theory results in 
losing ~ight of interesting features elucidated below. We obtained them by a different method 
. employing the coordinate frame rotating with the field. This greatly simplifies the analysis 
and its correctness becomes eiL~y to check, because the confinement is then governed by the 
time-independent potential 

U(R) = flB(R) - ~Mn1(X1 + y1) + Mgz (21 ) 

with B(R) = B(r,t), R = (X, y,z) and the second term in the r.h.s. representing the 
centrifugal forces. Assuming the static field configuration an axial quadrupole, the total 
field B(R) components read 

I
Bx = b-· !B'X 

, 
By = --B'.Y 

, 
= (22)

0 0 
B. Bo + B;z.2 2 

The coordinates X, Yare expressed via x, y by 

(X, Y) = (x cos(Ot) + y sin(nt), -x sin(nt) + y cos(nt)), 

if t = 0 is taken as a moment where b is directed along x. 
Neglecting other influences, the atomic motion equation takes the form 

il. = _ I au
MaR - 2(n x RI· (23) 
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The second term in the Lh.s. is the Coriolis force and {} = (0,0, fI). The equilibrium point 
R = Ro of Eq. (23), determined by aufaR = 0, corresponds to the synchronous rotation 
of trapped atoms about axis z at frequency fl . Taking R = 0 for the center of rotation, we 
obtain Ro = (Xo,O,O) where Xo is determined from 

2b 2w~(Xo) 
(24)Xo = - B~ fll - 2w~(Xo) 

with 

l J.l B'l 
Wo = 8M iJ and 1J = B(Ro) . 

The frequency Wo characterizes the transverse oscillation r(t) in the potential U(r, t) av­
eraged over explicit t dependence. The regime of fast rotation implies Wo « fI and hCllce 
B~Xo «b. Because of that and in view of Bo «b it follows B(Ro)::::: band wo(Xo)::::: wo(O) . 

The equation aU(R)/az =0 takes the form 

B' = _ Mg B (25) 
o J.l Bo 

and represents the balance condition between the gravitational and magnetic forces . It 
differs from that of the static field traps, Eq. (2), considerably since B » Bo and it is no 
harm for the top trap to have Bo arbitrary smal\. While for the static traps B~ is fixed by 
atomic parameters, the B~ of Eq . (25) is not. This equation may be viewed as a relation 
betweell B~, band Bo. The larger B~ is, the larger the confinement spring w~ which bchaves 
like B~2/B::::: (Mg/J.l)2b/Bo. 

Let us consider small oscillation near the state R = Ro. Linearizing Eq. (23) we arrive 
at the system of three coupled oscillators 

x+ (26. l - fll)(X - Xo) = 2f1Y - 4woLlz, 

y + (2w~ - fll)y = -2f1X, (26) 

Z +8(w~ - 6.2)z = -4woLl(X - Xo) . 

llere we denote by 6. the small frequency parameter 

6. = wo~ol «woB 

and 6. = (I - B~Xo/2b)6. ::::: 6.. The partial frequency of z oscillation, w. = .j8(w; - 6.2), 

differs considerably from the natural frequencies fI± (given further by Eq . (27)) of coupled 
transverse oscillation . Because of that and since Ll is small the coupling between the vertical 
and transverse oscillation is a tiny effed. We will neglect it for simplicity. On the contrary, 
the coupling between the X and Y oscillations is strong and should be taken into account 
,· .• ;.i, dly. The lI·pu l .; ,.-', springs of partial X and Y osdllators of Eq. (26) are difrerent 
a.lld this is of imporl. ... ,.c resulting in a specific gyroscopic 1Il00Iulation of free oscillation, as 
elucidated below. 

Evaluating from Eq. (26) the natural frequencies of transverse oscillation we obtain 

fI~ = fl2 +w! ± .j4f12W! +w~ (27) 
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whcre 

wl =w~±6.2 . 

The regime of small oscillation is stable unless fll < 2w~ (more about this condition is in 
Sec. VII). In view of fll » w~ the transverse oscillation reduces approximately to a simple 
form which after returning to the fixed coordinate frame is given by the complex fundion 
p(t) :; r(t) t iy(t) 

p(t):; Xoei{ll + (X+ei..tl +X_e- i"'l)ei61 . (28) 

So r .i(t) = Ip(t)1, x(t) = Re[p(t)J and y(t) = Im[p(t)J. Here Xo is given by Eq. (24), X± 
are complex constants determined by initial conditions, fI and fI± assumed (without loss of 
generality) positive, and 

w = fI+ - fI_
2 ~Wo 

6 = fI _ fI+ + fI_ w
4 

(29)2 ::::: 803 ' 

As seen from Eq. (28) the normal transverse oscillations in the fixed coordinate frame are 
of different frequencies, w + 6 and W - 6, rather than of equal frequency [7J . The oscilla­
tions of different frequencies rotate in opposite diredions. This results in the polarization 
of harmonic oscillation of frequency w rotating slowly, at frequency 6, in the direction of 
the rotating magnetic field. This modulation which we call gyroscopic can be 100 % de­
pending on the conditions of loading and manifests itself when the time of observation is 
commcnsurate or larger than 1/6. The effect cannot be explained by the time-averaged 
potential concept and described in its terms. That concept results in a picture of degenerate 
transverse oscillation governed by averaged potential-like forces . It loses sight of gyroscopic 
forces induced by high frequency forces. 

Another important feature we found is that the loading of atoms into the center r = 0 
and with zero velocity, does not eliminate the free oscillation and makes its amplitude larger 
than Xo by more than fI/w times: 

p(t) = p(ol(t) 

Xo {einl= _ [ifl: 6 sin(wt) +cos(wt)] eih }. (30) 

The physics is easy to understand noticing that the velocity oscillations p( I) of high and low 
frequency motion havc nearly equal amplitudes. 

For the case of nonzero initial conditions, 

p(l) = p(ol(t) + p«)(l) 

with 

p«)(l) = [p(O) -wiP(0)6 sin(wl) + p(O) cos(wt)]ei61 (31 ) 

where p(O) = x(O) + iy(O) alld p(O) = x(O) + iY(O). Provided Ip(O)! is of the same order 
or smaller thau Ip(O)!/w, i.c. for loading dose to the cellter of the trap, the two types of 
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motion, pta) ilnd p(e), become of same amplitude when the initial kinetic energy is about 
MOl X;. In terms of temperature Tl. of trapped atoms this corresponds to Tl. ~ Tio) where 

l 
T(o) = ! MOl Xl = 2Jlb w ~ 1.4 X 10-6 K (32)l. k ° k Ol . 

The numerical estimate is for the example b = 10 G, Jl = JlB and w/O = 10- 1
. For the 

cited data, atomic mass M = 40 a.m.u. and static field gradient B~ = 10l G/cm, we obtain 
roughly Bo/b = 0.07, w/27r = 21 Hz and 1/6 = 0.6 s. With this Xo = 0.04 mm and 
Ip(o)(t)1 ~ 0.4 mm. 

So, for the atoms loaded into the center of trap at a temperature Tl. small compared 
with Tio) the transverse size of the atomic spot is about r l. = Ip(o) I which is independent of 
Tl. and given by the formulas and estimates above. In the opposite case, when Tl. ;:P 1~, 

approximately (for Ip(O)\ :;» wlp(O)1) 

- kTl.ri = --, (33)
Mwl 

The bar here and below means the average over the initial conditions and per period 271" /w. 
The dependence on the motion of low frequency 6 is retained but in the limit Ip(O)1 ;:P wlp(O)1 
(and also when Ip(O)1 ¢: wlp(O)1) the gyroscopic modulation does not manifest itself in the 
mean square radius of the atom cloud. The radius is the same as for degenerate oscillation 
of frequency w. As mentioned above the spring coefficient wl can be made large compared 
to the transverse spring coefficient of an axial symmetry static trap and correspondingly 
the spot radius made much smaller. The vertical confinement of the top trap is even more 
strong, since w~ = Swl . So, the atom spot in the case of an isotropic trapping temperature, 
Tl. = T., is a flattened ellipsoid having a transverse diameter eight times larger than the 
vertical diameter. 

The oscillation at which the trajectory touches the ring where the atoms leak from the 
trap due to spin-flips determines the bound on the atom spot size and, hence, the trapping 
temperature. As is obvious from Eq. (22) the points r = r(t) where B = 0 are determined 
by 

b = B:X/2, Y = 0, B. + IJ'.z = O. (34) 

The distance z is small, Izl = IBoX/2bl < lXI, and can be neglected. The trapping 
temperature given by Eq. (33) corresponding to a spot extending to the radius r l. = 21b/B~I 
equals 

l l
4Mw b _ Jlb ~ 1.7 x 10-4 K. (35)Tl.=~-4k 

° 
The numerical estimate is for the same example as above. Only the rotating field magnitude 
enters the bound and the larger the field is, the larger the trapping temperature threshold. It 
is possible to arrange for fields several times larger than 10 G. But to increase the magnitude 
by orders of magnitude is difficult, since the rotating field coils should provide a uniform 
field of high frequency (~kHz). 

Let us now consider polarization misalignment of atom spots which are small and do 
not extend near the ring where B = O. The atomic polarization rotates around the z axis 
and a characteristic of interest is the spatial average of Jlr(r,t). Say, a device is used which 
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critically depends on the polarization projection on axis I, rather than y or z. At the 
equilibrium orbit 

Jlr Br(R.,(t), t) = _ b - B~Xo/2 (Ot) 
B(R.,) B cos " Jl 

and the deviation of the averaged amplitude of rotation from the unperturbed rotation 

p = -21 cos(Ot)[Pr(r(t), t) - Jlr(0)11 

Jl ~ ~I 
(36)::::: Icos(Ot) j,j~~,' rj(t)rAt) Br;i'Jrj B 

[with Jl~o) = Jlr(R.,(t),t), rj = rj - RoO and the derivatives taken at r = R.,(t)1 can be taken 
as a measure of misalignment. Evaluating this quantity in terms of trapping temperatures 
we obtain approximately 

p = ~ {T. +Tl. [! + (xocos(6t) - Yo Sin(6t)P]} (37)4Jlb 2 Xl + 'l .° Yo 

At 6t « 1 this equation reduces to 

k 3 1 
P = 4Jlb (T. + "??r + 2T~). 

Tr and Ty enter Eq. (37) unequally since the quantity Br of Eq. (36) as a function of atom 
coordinate r depends on I and y differently. For isotropic initial conditions, when IoYo = 0 
and T, = Tl., it follows from Eq. (37) that the upper temperature bound imposed by a given 
P is given by 

T = ~Jlkb P ~ 0.5 X 10-4 K. (38) 

The numerical example is for Jl = JlB, b = 10 G and P = 0.05. 

VII. TRAPPING BY SLOW ROTATING FIELDS 

The top trap has a rather small spot size but not so good polarization alignment as 
seen from the boulld (38). Besides, different "weak field seekers" appear in spots close to 
each other and to eliminate the atoms of unwanted ground states may cause problems. The 
area of atom leakage where the magnetic field periodically reduces to zero is rather close 
to the centre of the trap and this also limits the trapping abilities, as seen from the bound 
(35). Addressing these problems, we found that employing a rotating field of frequency 0 
resonallt to the orbital motion, rather than 0 ;:P w., represents a way to improve trapping 
characteristics. 

The idea why the resonant orbit trap may have advantages comes from the analysis of 
equilibrium rotation of atoms. As seen from Eq. (24), when Ol > 2w~(X.) the quantity 
n~x. is negative. lIence, the transverse field exerted by an atom trapped at the equilibrium 
orbit is larger than b: 
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fllb bJ > .li = b - ?,B'.Xo = fll _ 2w:(X )o

The smaller the resonance denominator is, the larger the effective rotating field b. This 
quantity, rather than b, enters the important bounds. 

The approach we developed in Sec. VI can be extended for the case of arbitrary fl without 
difficulties. As fl decreases the equilibrium radius Xo increases and the dependence w~(Xo) 
in Eq. (24) becomes significant. It makes the change of Xo and, hence, li finite for any fl. 
Assuming as before IBo/bl ~ 1, we obtain approximately 

x _ 4bw
l li 2w l 

0-- ,. (39)b = J + fl:B~fll ' 

and 

fllw; ~B;:l __ . 
w;(Xo) = Ol -'- ')'f where w. - 8Mb ( 40) 

Noteworthy is that the resonance detuning 

1 1 fl4 
fl - 2wo (Xo) = fll + 2wl ' • 

i.e. rapidly goes to zero as fl decreases . 
Besides Eq. (39), a different solution of Eq. (24) exists for all fl. It results in positive 

B~Xo, li/b < 1 and 2w~(Xo) > fll. But for an arbitrary ratio between fl and w;, this 
equilibrium solution is unstable with respect to small perturbations, while the solution given 
by Eq. (39) is stable. This follows from Eqs. (26) and (27) which are exact, IHovided the 
Wo is understood to be a function of X o, wo(Xo) . The formulas of Sec. VI are modified 
beginning from Eq. (28). 

Still, for fl larger than or near w., the bounds as functions of fl roughly follow the 
formulas of Sec. VI with Wo and b substituted by wo(Xo) and li given by Eqs. (39) and 
(40). In particular, the trapping temperature bounds Eqs. (35) and (38), which relate T.J. 
to the spot size where leakage of atoms from the trap begins and to the level of polarization 
mi~a1ignment, take the form 

~li 4
T.l. = 4k ~ 3.3 x 10- K, 

4~lip ~ 10-4 K
T.J.=~ 

where the numerical figures are for the example of Sec. VI and fll = 2w;. With this 
Xo ~ 2 mm. 

So, the trapping temperatures can be significantly increased. As fl decreases, the ap­
proximation of free oscillation in Eq. (28) by two frequency components, at Ifl - fl_1 allll 
In - n+ I, loscs accuracy and the items of frequencies of fl + Hi: neglected in Eq. (28) in · 
crease. The orbital motion r.l. = r~)(t) of the atoms loaded illto the centre of the trap has 

five frequency components, Ifl ± fli: I and fl. The scale of rr) becomes of the same magnitude 
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as Xo· It is worth noting that by properly adjusting the loading one may change the orbit 
r~)(t) or reduce it to a circle of radius Xo. The dispersion of initial conditions results in the 
dispersion of r(e)(t) = r .J.(t) - r(o)(t), rather than r(o)(t), so we have the picture of an atom 
spot of mean size 

Iir.J. = \/(rrJ(t))l 

moving along the orbit r.J. = r~)(t). 
Though the radius Xo increases by orders of magnitude compared to the top trap, the 

spot size Iir.J. changes much less. Indeed, for a given dispersion of initial conditions this 
size behaves like l/wo(Xo). So the ratio or.J./Xo as a function of fl and w. behaves like 

flJfl 2 + 2w;/w; and rapidly goes to zero as fl decreases. As a result, with the increase 

of Xo and r~) there appears the possibility of separating clouds of trapped atoms having 
different ground states . The difference between equilibrium orbital radii for different values 
of ~/M increases like J/fll and this allows one to arrange that the spots do not intersect. 

One more advantage is that employing a rotating field frequency of a few tenths of a Hz, 
rather than a few kllz, makes it significantly easier to arrange large currents in the magnetic 
coils. 

VIII. CONCLUSIONS 

In the present work we developed a method of analysis based on a mmlmum of as­
sumptions, and derived general relations and criteria concerning the trapping temperature 
for various types of magnetostatic traps, given small spot size and polarization misalign­
ment parameters. We also discussed new ideas of trapping by rotating fields not previously 
elucidated in the literature. 

It is widely believed that higher magnetic fields result in better trapping parameters. 
However, this is not totally correct as is evident from the presented results. Two classes 
of magnetic trap appear. For one class, including the axial and "coil + current bars" 
static field configurations, the trapping temperature does not depend on the field at all. In 
particular, for the axial symmetry traps the relation between the polarization misalignment, 
spot size and mean square velocity is a universal function containing no free parameters and 
is independent of the field and atomic mass and magnetic moment. 

For the other class, including the baseball and loffe traps and the rotating field traps, 
the bounds on trapping temperatures strongly depend on the atomic magnetic moment and 
the magnctic field magnitude. Here the technical problems of arranging large fields limit 
the paramclers. 

The two bounds imposed on the trapping temperature, by restrictions on atom spot 
~ize alld polarization misalignment, are different for all traps considered except the axial 
~ymmetry trap. The criterion for the laller (see Eq. (8)) is a function of the geometrical 

mean ;;rP, while for the other types either ri or P enter the temperature bound linearly. 
III the case of strong experimental requirements on the polarization misalignment the axial 
symmetry trap may have advantages, while for moderate P the baseball and loffe traps and 
rutatillg fi eld traps provide better temperatures . The scales estimated in the text give a 
clear Hutiull of what paramcler values can be achieved in these Ca8CS . 
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We have paid much attention to the methods of trapping with rotating fields. For the 
top trap type the consideration has revealed important features of trapping lying beyond 
the time-averaged potential concept. A deep low-frequency gyroscopic modulation of atomic 
orbital motion takes place. Another specific feature is that the orbital motion of the atoms 
loaded in the trap center with zero velocity has a radius large compared with the radius of 
equilibrium orbit, Xo. 

Finally, new methods of trapping with rotating magnetic field are proposed in the present 
work. They differ from the top type by employing the resonance between a low frequency 
rotating field and orbital motion, rather than a much higher rotating field frequency. At 
the expense of enlarging the radius of orbital motion, resonant orbit trapping allows one to 
increase the temperature bounds caused by polarization misalignment and leakage of atoms 
from the trap, facilitate the separation of particles of different ground states, and make 
arranging the rotating field of large amplitude easier. 
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FIGURES 

FIG. I. Two axial symmetry configurations. (a) The axial quadrupole. The currents of two 

coils are in opposite directions. The magnetic field vectors are shown by black arrows. (Figure 

from [6]). (b) The spherical hexapole. Three wires carry equal currents on the surface of a sphere. 

FIG. 2. Three non·axial static field traps discussed in Secs. IV and V. (a) The "coil + current 

bar" trap. (b) The baseball trap. The external coil pair generating the magnetic field gradient 

which cancel~ gravity is not shown. (Figures (a) and (b) from Ref. [5)). (c) The loffe trap. Two 

coils form a "bottle field" and four vertical wires form a quadrupole field in the horizontal plane. 
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