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Abstract

Analysis of the J™ = 0¥ — 0% super-allowed Fermi transitions within isospin lri‘)B.\.R‘ i

is ltnited in the precision of its outcome not by the accuracy of the experiinental
input data nor by the confidence with which the radiative corrections can be applied
but by knowledge of the nuclcar mismatch: the subversion of the isospin symine-
try along the multiplets by the charge-dependence of the forces, both Coulomb and
specifically nuclear. Theoretical estimates of the mismatch differ considerably from
author to author; their direct application results in clear violation of the hypothesis
of conservation of the vector current and clear inconsistency with unitarity of the
Cabibbo-Kobayashi-Maskawa matrix. This paper pursues and claborates the pre-
vious suggestion that, in these unsatisfactory circumstances, the best procedure is
to look to the experiinental data themselves to determine and eliminate the mis-
match by appropriate extrapolation to Z=0. This is done: (i) without any prior
correction for mismatch; (i) after correction for the full theoretical misinatch; (i)
after correction for case-to-case fluctuations in the theoretical mismatch. These three
procedures are individually statistically satisfactory and mutually consistent in their
extrapolation to Z = 0 despite the varicty of the theoretical mismatches on whicl, in
varying degrees, they are based. The resultant unitarity test for the CKM matrix is
|Vid|? + [Vis|? + | Vis|? = 1.0003+0.0014. The associated value for the operational vee-
tor coupling constant is: Gy, /(hc)® = (1.1515540.00064) x 10~* GeV ~2. If unitarity of
the CKM matrix is alternatively assumed one may conclude, from a similar analysis,
that the inean charge of the fermionic fields between which beta-decay takes place is
Q) = 0.172+0.060 and that, at the 90% confidence level, bg < 2.6 x 10™* were b is the
rclative effective scalar coupling constant. Neutron decay is also discussed, with the
provisional recommendations: G /(hc)® = (1.45574+0.0051)x 107°GeV~2%;|G3 /G| =
1.2641 4 0.0017.

(submitted to Nuclear Physics A)
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1. Introduction

Beta-decay within J™ = 0% isotriplets, of which there are presently eight
accurately-measured examples (see Table 1), is pure vector in nature (with the excep-
tion of a small, but very important, axial contribution associated with the radiative
correction) provided that the effective scalar coupling constant is itsclf zero — as it
is witlin the standard modecl. Such beta-decay therefore seems to offer an almost-
direct determination of the vector coupling constant, subject to assumption of the
conservation of the vector current (CVC) and, indeed, seems to offer a test of that
assumption through the constancy, or otherwise, of the apparent vector coupling
constant inferred from the eight decaying bodies, separately, under that assumption.

It may then be thought that, following CVC, the vector coupling constant G7,,
inferred from such studies via the equation (see Appendix 1):

K

"= pey w

becomes a “fundamental constant”. There are, however complications relating to
that view that imply that Eq. (1) is not a suitable starting point for a fundamental
discussion: (i) the so-extracted constant G}, would be a purely operational constant
that would include the radiative “inner” v, Z-related corrections associated with the
detailed W-anatomy of the weak interaction process; it furthermore would become
a constant only after removal of a nuclear-structure-dependent (axial) clement of
the radiative correction to be discussed in detail below, and this element would
then have to be replaced in the context of whatever beta-decay it was to which
we subsequently wished to apply G} in order to assess its rate; in this sense the
operational vector coupling constant G}, would be nuclear-structure-sensitive and so
not rcally a constant at all; (ii) there is no mechanism for removing from G} the
remaining “inner” radiative corrections, to which reference has just been made, in
order to reveal soine “truly-fundamental” Gy; on the othier hand, no interest would
reside in such a Gy, as opposed to Gy, except for purposes of comparison with a
similar “truly-fundamental” muon coupling constant G,,, similarly derived from the
operational G}, in order to gain the element {V,4| of the Cabibbo-Kobayashi-Maskawa
(CKM) miatrix (see Appendix 2):

[Vual = Gv/G.,. ()

What is available (Ref.{6] and see further discussion below) is a combined radiative
correction that directly relates Gy /G, to G}/G), so there is no point in writing
equations involving Gy and G, separately but we rather write:

.. K
U =y pez ®)
where: '
(ft) = ft(1 - &)1+ A" (4)

and where now t is corrected only for branching, for orbital clectron capture and for
atomic excitation. In Eq. (4) 6 corrects for the fact that isospin symmetry along the

2



isomultiplet is not exact but is subverted by the Coulomb force and by the charge-
dependence of the specifically nuclear interaction itself; At is the overall radiative
correction that : (1) supplements the effect of the Coulomb force as already allowed
for in the reduction of the experimental Q-value for the beta-decay to the phase-
space factor f through appropriate elaboration of the Fermi function F(Z, W) and
that: (i) results from the detailed W, Z-anatomy of the beta-decay inner mechanisin
itself, there representing, as mentioned above, the difference between such effects for
nucleon decay and for muon decay; G, is the operational Fermi coupling constant as
determined from muon-decay|7,8]:

G;/(he)* = (1.16639 £ 0.00002) x 107° GeV~? (5)

where it has been corrected for both real and virtual radiative processes including
all leading logaritluuic corrections of the form a™*'In"(m,/m.), n > 0, by use of the
fine structure constant evaluated at the mnuon mass in the M S schieine; but it has not
been corrected for those “inner” radiative processes involving the W, Z-anatony of
the weak nteraction, these having been transferred, as remarked above, into the A®
of Eq. (4) (the detailed anatomy of the weak interaction is involved in the extraction

of Eq. (5) from the muon lifetime only through the tiny factor 1+ ¢ f:t ~ 1.0000010
w

induced by the W-propagator on passage from local V-A theory to W-mediated
decay.)

2. The radiative correction AR

As has been remarked, the overall radiative correction A¥ of Eq. (4) comprises
sonte clements that are sensitive to the weak interaction mechanisin and some that
are not. The most important, Z-independent, picce of A% in fact contains both types
of element [6]:

a

1+A:{1+27r

[ 1 2+ edrty) || } Sty mz) (6)

my 2w
In Eq. (6) the last term in the curly brackets, involving g(W, Wy), is the well-known
“outer” radiative correction of order a of Sirlin [9). (The derivation of g(W, Wy) ig-
nores certain aspects of nucleon structure although it is largely insensitive to strong
interaction effects. It also neglects terms of order ag/my and o(W/my)in(iny /W)
whichi, taken across the beta-spectra, range up to about 0.003% and 0.02% respec-
tively so that they are on the edge of meriting further consideration. Terms of order
av/c, where v 1s a nucleon velocity within the nucleon, and that might be anticipated
on dimensional grounds, could take the serious magnitude of 0.2 - 0.3%; fortunately,
they do not occur - I am very grateful to Professor Sirlin for his elucidation of this
point.)

As written in Eq. (6) this “outer” correction has heen extended to higher
(leading-log) orders in « through the use of a(m,), the fine structure constant cval-
uated at the proton mass in the M S schane, and the short-range factor S(in,, 1m1iz)
that involves all the a(m;) where z = p,¢, 7,0, W and Z (sce Ref. (1] for an explicit
recipe for S(myp,mz). S(wny,,my) itself coutains the vector component of the “in-
uer” weak-interaction- mechanisi-sensitive radiative correction, exact to order a by
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CVC and containmg higher orders in leading-log approximation, and also a portion
of the quark (short-range) contribution to the axial component. The remainder of
the short-range axial contribution is cut off at some “axial mass” 1n4 i the middle
term in the curly brackets of Eq. (6) to avoid divergence of the responsible YW box
diagrain wlhile the long-range nucleonic part of the axial contribution is represented
by C.

Now although Eq. (6) is concerned primarily with the electroweak interaction
there is a sinall influence of QCD; this QCD effect has been incorporated in the nu-
merical evaluation of S(rn,,mz) by F. Jergerlehner in his estimnate, as carlier reported
[10], usiug recent data bearing on the vacuum polarization function Ren” derived
by studying ete™ — hadrons, and solving the renormalization group equations from
the initial condition of the well-determined a(mz). Using a, = 0.117 at my for the
estimate of the QCD correction Jegerlehner finds:

S(m,,mnz) =1.022284 + 0.000020 . (M)
Jegerlelhner also gives:
a”'(m,) =133.85+0.11. (8)

These values we use in what follows; they are very close to earlier estimates [1].

An alternative bookkeeping of the QCD effects places them not in S(rn,,mz)
but rather within the curly brackets of Eq. (6) where they are represented by ;- A.
With this bookkeeping (there setting a, = 0) Jegerleher finds S(rn,,nz) = 1.022507+
0.000020 together with which we should then need [10] A = —0.19; this compares
closely with the expected A ~ —2In 22 = —0.17 in which we use the value for m4
adopted below and, following Jegerlehner, a, = 0.117 as at my.

The uncertainties in the S(m,,my) of Eqs. (7) and (8) and a™'(m,) together
cutrain a systematic uncertainty of only a little larger than £0.002% in A. However,
we st recognize that these uncertainties arise in the pursuit of particular procedures
and that the dcfinition of those procedures is not itself without amnbiguity and is
therefore a source of additional uncertainty that it is difficult to quantify. It is, in
particular, useful to observe that the difference between the “old” combination of
“outer” radiative correction of order a only [9] and “inner” correction of order «
only (the first cutry of Ref. [6]) and the “new” Eq. (6), that additionally incorporates
leading-log terms in higher powers of a, ranges from 0.15% for M0 to 0.13% for **Co,
the “new” correction being the larger. (We may note that a®(mnz/m,)* ~ 0.11%.) It
would seem prudent to associate an uncertainty of perhaps +20% of this additional
“lcading log” 0.14% with this definition of procedure and therefore to attribute an
addition uncertainty of +£0.03% to A.

Turning to the axial clements of Eq. (6), visible there only through the terms
In f:— aud C, we must admit at once that the take-over between these short-range
and long-range axial terins, as parameterized by the axial mass my, is not well
defined. Various values for axial masses are to be found i the literature: the lightest
physical axial particle is the T¢(J"¢) = 17(1**) a),-ineson of mass 1260 £30 McV
[7] but of widtl about 400 MeV (chiefly against p7): no other meson of appropriate
quantum numbers appears likely to exist below at least 2300 MeV [7]; other axial
wass estimates derive from the dipole parameterization of thie axial form factor for
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vN interactions at low encrgy: 1032 + 36 MeV (11} and 1050 + 30 McV [12}; we
also note that the Weinberg relation [13] my ~ V2my, where my and my are,
respectively, axial and vector masses, defined under a weak form of dominance, gives
my =~ 1086 McV (sctting my = m,); an extreme range of 400 to 1600 McV lhas been
suggested [6] for the m, of Eq. (6).

The last of these estimates, interpreting the suggested extreme range as a 90-
95% confidence level, and taking the logarithmic mean of the values as is suggested
by the form of the term in which m4 appears in Eq. (6), leads to in %’A— =0.16+0.40
where the uncertainty is now at the 1o - level; combining this with the other values
just listed, namely in g’: = ~0.29,-0.11 and —0.14, from the a;-mass, vN scattering
and the Weinberg relation respectively, leads to our adopted value:

In 2 — _0.10 4 0.40. (9)
My .

We note that the uncertainty adopted in Eq. (9) implies an associated uncertainty
of £0.049% in A; in view of the cxperimental precision of today’s ft-valucs, whose
uncertainties average only £0.063%, as seen from Table 1, an improvement in our
understanding of the relationship between the two axial components of A is highly
desirable.

The long-range part C of the axial contribution splits into two parts:

C =C(1) + Cys (10)

C(1) is the domain of a single nucleon: for example the beta-decaying proton un-
dergoes axial decay, flipping its spin which is flipped back again by virtual photon
exchange with the departing positron rendering the overall decay J© = 0 — 0%,
but for a consideration about to be introduced C(1) would be called a Born terin; it
was, indeed, carlier written Cgonn; it will obviously depend upon g4(s, + 4£,). Cns,
NS standing for “nuclear structure”, recognizes that we are dealing with complex
nuclei so that the nucleon whose spin is flipped by the virtual photon exchange with
the positron in order to make the overall process J* = 0 — 0% nced not be the
onc that emitted the positron by axial decay. The likelihood of this 2-nuclcon terin
obviously depends upon the mutnal disposition of the two nucleonic orbitals involved
and so is nnclear-structure-sensitive hence the suffix NS. The first quantification of
this important term was by Jaus and Rasche [14] using rather simple nuclear wave
functions; however, the effect is of long range and so is not very sensitive to the finer
details of the wave functions involved; subsequent computations using modern wave
functions [15,16] give Cns- values not very different from the originals [14]. As might
be expected, C(1) and Cys are numerically of comnparable importance.

At this point we encounter a further nuclear structnre subtlety of significance
for the assessment of the long-range axial term. It is very well established (sce,
c.g., Ref. [17]) that when one uscs the best modern many-body wave functions to
describe nuclei such as those of onur present concern, excellent agreement between
theory and experiment for such matters as axial decay probabilitics and magnetic
moments is found but only if one, systematically and uniforinly, replaces the free-
nucleon values of g4, g, and 1, by effective or quenched values that may differ from
the free-nncleon values by up to some tens of percent. It is not yet clear to what
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degree this phenomenon is due to some authentic change in the intrinsic properties of
nucleons on immersion in the nuclear medium or to what degree it is due to the use of
an inadequate configurational basis for generating the many-body wave functions but
the phienomenon itself is definite in the content of present many-body wave functions
such as those used to generate Cys [15,16] and it will also presumably manifest itself
in the (ostensibly) 1-nucleon term C(1) of Eq. (10), this influcnce of the medium
cxplaining why C(1) is no longer written as Cporn. This important consideration
has been raised by 1.S. Towner [18] who recommends the values for C(1) and Cns
listed in Table 1. Also listed in Table 1 are the values for Cns following Ref. [16]
multiplied by 0.83, that figure being the mean impact of the quenching according to
Towner [18], that we might expect, part passu, there to apply also.

References [15] and [16] , as well as Ref. [18], give (somewhat impressionistic)
cstimates of the uncertainties that might attach to the Cys; for the most part these
estimates bring the two sets of values into (adequate) accord. These uncertainties
average about +0.08 which corresponds to an impact of about +0.6 sec on ft; as
seen from Table 1, this is not negligible in relation to the experimental uncertaintics
but we do not here attempt to take these theoretical uncertaintics explicitly into
account nor list them in Table 1 but rather, as will be seen, allow their impact to
be realized in the overall dispersion of the (ft)"-values, following Eq. (5), to which
they contribute. We may note, however, that a reasonable figure for the systematic
uncertainty in |V,q4|? associated with uncertainty in the long-range axial terms might
be taken from the above-mentioned +0.06 sec in ft, namely about 0.02%; we take
this into account in due course. (A further small uncertainty, worth about +0.2 sec
in ft, is associated with treatment of the nuclconic form factors [15]).

Table 1 shows Ar, being the cvaluation of Eq. (6) following the C(1) and Cns
of Ref. [18], and Ag which follows the C(1) of Ref. [18] and the Cns of Ref. [16]
moderated by the above-mentioned factor of 0.83.

In addition to the Z-independent radiative corrections of all (leading-log) orders
in a, now discussed and listed in A, Apg in Table 1, we have those involving Z.
Naive vertex counting might suggest that huge terms of order Z%a could arise but
such fortunately vanish identically {19] and those of order Za are also cancelled [19);
however there is no present demonstration that terms of order (Za)*, n > 1, do not
occur; now (Za)? ~ 0.04 for **Co so such a term would be of major importance. As
will be secn, the method of analysis advocated here could automatically compensate
for such a term in Z? provided that it would not be strongly Wy-sensitive.

The most important Z-dependent terms that have been explicitly considered
are those of order Za?(6;) and Z?a>(63) but the possibility of others must also be
recognized making up a total of 4, such that:

A=A+, . (11)

These Z-dependent radiative corrections §, have been discussed and evaluated
at length [1] and will not be elaborated upon here; they are listed in Table 1; it 1s
estimated [1] that they carry uncertainties ranging from about 0.006 to 0.034% across
the range of Z in question.

In addition to §, and 83 the §, of Table 1 include very rough but explicit assess-
ments of all remaining terms Z"a™ [1]. An alternative approach to these remaining
terms is to write 8, ~ (b, +63)S(m,, mz); the difference between these two versions of

6


http:Z-dependr.nt
http:estimat.es

5, ranges from 0.0022 to 0.0053%, significantly smaller than the other uncertaintices
i 4, just noted.

lu summary we may say that the radiative correction carries significant sys-
tematic uncertainties of: (1) £0.03% associated with the procedure lying behind
Eq. (6); (ii) £0.05% associated with m4; (iii) £0.02% associated with C; (iv) £0.01
to £0.03% associated with 6, making a total of £0.062 to +0.069% which will be
applied as appropriate in what follows.

3. The nuclear mismatch é¢c

It has been clear since the earliest tines of our concern with these J* = 0% — 0t
super-allowed Fermi transitions that the isospin symmetry along the isotriplets must
be subverted to the tune of at least some tenths of a percent by the charge-dependent
forces, Coulomb and specifically nuclear [20]. Early quantitative estimates were based
on the Coulomb perturbation of harmonic oscillator wave functions [21-24}; they
gave values of 6. (sce Eq. (4)) ranging from about 0.03 to 0.06% for 'O and from
about 0.3 to 0.6% for >*Co. Later work used many-hody shell model wave functions
generated by a Saxon-Woods potential [24-26] or a Hartree-Fock mean field {27]; this
shell-model approach splits é¢ into two parts:

bc = bcm + by - (12)

In Eq. (12) the larger component, égg, reflects the different binding encrgies, and
so, together with the effect of the Coulomb potential, differing radial wave func-
tions, of the decaying proton in the initial nucleus and of the neutron into which it
transforms in the daughter nucleus; this difference of radial wave function implies a
less-than-perfect overlap between initial and final states, hence a finite value of dgp.
Furthermore the many-body nature of the wave functions means that cach case will
involve a range of effective binding encrgies reflecting the range of excitation of the
parent states in the nuclel of A-1 so that ézg 1s determined not just by the nominal
proton and neutron binding energies but also by the parentage spectrum and frac-
tional parentage cocfficients in the relevant nuclei of T = } and 5‘ The estimation
of dyg is therefore dependent not only upon the method chosen for gencerating the
single-nucleonic wave functions: what choice of Saxon-Woods potential; what choice
of Skyrine force for the Hartree-Fock mean field?; but also upon the parentage struc-
ture for the states involved: what choice of basis states; what choice of 2-body matrix
elements? None of these choices is unique and it is difficult to know what choice is
optimal. There are also very significant uncertainties associated with: (i) the way
in which the range of single-nucleonic binding energics referred to the various parcnt
states i1s to be induced viz. by what recipe for modification of the relevant mean
ficld; (ii) the overall artificiality of considering the excitation of a given parent state
to be translated literally into an equal increase in the binding of the associated single
nucleon involved in the beta-decay. It is not surprsing that values for oy range
from about 0.2 to 0.3% for **O and from about 0.3 to 0.6% for **Co.

The additional term écp in Eq. (12) arises from the Ty-dependence of the
configuration mixing along the multiplet; it is smaller than 5, but important, rising
to as much as 0.1%, but also depending quite strongly, being evidently a delicate

effect, on the mode of generating the configuration mixing and on the range of basis
states admitted |24,26,27].

The present situation as to these shell-model-based estiinates of é¢, which one
might hope to be more realistic than the harnionic-oscillator-based results, is sum-
marized in Table 2. As we see from Table 2, the divergences in the estimates of ¢,
combining all values of éyg and 8¢y for each A-value, are 0.12, 0.17, 0.24, 0.21, 0.13,
0.16, 0.13 and 0.22% for our bodies from O through **Co. This average divergence
of 0.17% is much larger than the average uncertainty of +£0.063% in the individual
experimental ft-values of Table 1 and the +0.062 to 0.069% uncertainty in the over-
all radiative connection listed at the end of the previous section. Nor must we be
tempted to split the difference and associate an uncertainty of, say, £0.08% with the
theoretical 6¢ because we have no assurance that the right answer lies within the
rauge of estimates represented by the combinations we have just considered.

The seriousness of the situation is further emphasized by recent estimates of
b¢ using a very different, R-matrix-based, approach [29] that, in effect, combines the
bpr: and éop of Eq. (12) and that, in effect, replaces the p —n overlap just described,
which has coinmon core nuclei, by an overlap of different core nuclei with conunon
nucleons outside. The results of this R-matrix approach are also given in Table 2;
they raise the average divergence of the theoretical estimates of é¢ from the above
mentioned 0.17% to an even-more-unacceptable 0.42%.

Now these divergences are most serious and we have very little guidance as to
choice amnong the theoretical §c that give rise to them. (An exception to this remark
concerns some of the ey, where it appears [28] that the Chalk River estimates
|26,28] are superior to those of Orinand and Brown [27] for the heaviest bodies of our
concern on account of the broader basis employed by Chalk River; this is reflected in
our construction of Table 2. However, this preference as to écp has no beariug on the
reliability of the dyp as is explicitly recognized [28]; we here make no preference as
to oyk-) In these unhappy circumstances the best procedure is evidently demnocratic
rather than eclectic namely to combine the various é¢p and dgg 11 all possible ways
mto a range of 6 different é¢, to combine these, with the addition of the é¢ of column
B of Table 2, with the two A® that stem from the combination of the Ay and Ay
of Table 1 with the é, of Table 1, following Eq. (11), and to analyze the resultant
(ft)", following Eq. (5). Table 3 quantifies the results of this procedure, listing the
resultants of the 14 combinations of the 7 6¢ and 2 A" according to the coding given
i the caption.

The columns under Constant in Table 3 refer to straightforward averaging of the
8 (ft)*-values from cach of the 14 é¢, AB-sets taken separately and to the associated
confidence levels Q(x?|v). It is evident that the results are strongly incousistent with
the CVC expectation of a constant value of (ft)*, independent of Z, for all the
ooy AB-sets.

This inconsistency with a constant (ft)"-value is not, however, due to a random
fluctuation of (ft)* from Z-value to Z-value such as we might expect were CVC not to
hold; this is demonstrated in Fig. 1 which displays the ft-values of Table 1 corrected
ouly by (the two scparate versions of) AF with no éc-correction at all. It is seen
that the data-points are regularly related and can be nicely fitted by quadraties in Z:
using the Cnsr) to construct the A® we find the extrapolation to Z = 0 (Fig. 1(a)):

(ft); = 3139.7 £ 5.2 sec (13)
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with Q(x?|v) = 0.18 while using the Cns(py (Fig. 1(b)):
(ft); = 3135.2 % 5.2 sec (14)

with Q(x?|v) = 0.32.
For further consideration we take forward, from this analysis:

(ft); = 3137.4 £ 5.7 sec (15)

where the error is increased over that of Eqgs. (13) and (14) to allow for the dispersion
of the individual values.

We are therefore led to the conclusion that, most probably, the theoretical .
are simply deficient or incomplete as clearly nust be the case for some, or all, of
them owing to their wide divergences that we have already noted.

In view of the smooth behaviour of the ft-values, corrected only for AR and
displayed in Fig. 1, we are encouraged, while abandoning the use of these J™ = 0% —
0% transitions for testing CVC (sce Appendix 3) to hope that the several theoretical
versions of §¢c may cach give a rcasonable account of at least a part of thie misinatch
and then look to the data themselves to tell us the rest by appropriate extrapolation
to Z = 0 at which point, presumably, the mismatch will have fallen away. (Although
extrapolation to Z = 0 is a natural procedure it is not imniediately obvious that it
is there that the true “charge independent” (ft)”-value (ft)g is to be found: (i) the
de facto total mass-splitting within isomultiplets cffectively vanishes closer to Z =1
than to Z = 0; (ii) the procedure has no direct regard for the role of the charge-
dependence of the specifically-nuclear force; however this effect impacts largely upon
the estimate of the smaller component, écar, of é¢, its effect upon the larger Agge
being accounted for through the use there of experimental binding and excitation
cnergies; furthermore, its effect upon écpy will tend to be Z-sensitive and so will tend
to be removed by the incthod of analysis here favoured, about to be presented, which
uses not the theorectical §c themselves but rather their fluctuations from case to case.

The question now arises as to the form, as a function of Z, that the residual
mismatch might be expected to take after correction of the ft--values by the theo-
retical 6c. We have very little guidance here because we do not know in what way
the theoretical é¢ are deficient but it is obvious from Fig. 1 that an overall quadratic
in Z, without any mismatch correction at all, fits quite well so we should not expect
to have to go beyond that in the Maclaurin scries in handling the residual nisinatch
after correction by the theoretical 6. We must also recall, at this stage, our carlier
remark that tlere niay be further radiative corrections in (Za)? not yet accounted
for.

Table 3 now shows the effect of fitting the (ft)*-values, as severally corrected
under the various é:, AR-sects, linearly and quadratically in Z, together with the
respective extrapolations, (ft);, to Z = 0. The Q(x?|v) distribution is scen to be
statistically acceptable for the quadratic fit but the lincar fit is unsatisfactory. The
distribution of (ft)q-values from the quadratic fit is shown in Fig. 2 from which we
carry forward the value:

(ft)y =3135.1 4+ 5.1 sec. (16)

The bulk of the uncertainty quoted in Eq. (16) is due to the experimental errors with
a small addition due to the dispersion in the values deriving from the several é¢,
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Af-sets. It is a striking observation, from Table 3 and Fig. 2, that although, as
we have scen, the ¢ themselves vary so widely from sct to set nevertheless their
associated (ft)g—values show good mutual consistency. We also note that the result
of Eq. (16), the satisfactory quadratic extrapolation to Z = 0 of the éc-corrected
(ft)*-values, is in good accord with Eq. (15) which involves no éc-correction at all.

The magnitude of the quadratic term resulting from these fits may be expressed
as about 0.20(Za)? which we may bear in mind in the context of our earlier remark
that additional radiative corrections of order (Za)? may be present[19]. We also
note, however, that the theoretical éc themsclves display a simnilar quadratic form
[10]; certainly no inference as to the radiative nature of this residual 0.20(Za)? can
be drawn.

Although, as we have seen, application of the full theorctical éc prior to ex-
trapolation to Z = 0 results in consistent values for (ft); across the 6c, AR-sets,
we must recognize the possibility that there may be, concealed within the evident
mutual inconsistencies of those sets themselves, a false common behaviour withh Z
that would invalidate our procedure of extrapolation to Z = 0. It was because of this
that it was suggested, some time ago [33], when the trouble with the theoretical éc
was becoming clearly recognized, that one should, as far as possible, effectively look
to the data themselves for a determination of éc by the method of extrapolation to
Z = 0 but that, prior to this, we should correct the data not by the éc themselves, as
we have just done, but rather by the case-to-case fluctuations, écy, in the éc about
some empirical underlying form, é¢,, smooth in Z. This suggestion was predicated
upon: (i) the observation that although the theoretical éc, variously derived, differed
considerably from author to author their fluctuations 8¢y were remarkably similar
in form and in magnitude; (ii) the hope that although the bulk of the éc may be
deficient or distorted by, for example, inadequate treatment of the mean field or by
inadequate treatment of the contribution to the mismatch from the core and other
spectator nucleons, yet the écy, being due largely to the valence nucleons, whose
behaviour was relatively well understood (sce e.g. Ref. [17]), might be more reliably
estimated by the theoretical treatments.

We therefore make the Ansatz that the fluctuations é¢y, derived from the var-
ious §c of Table 2, arc reliable so that the use of the é¢y, rather than éc, within
Eq. (5) will result in a commeon set of (ft)* with a common extrapolation to (ft)g
at Z = 0 apart, of course, from relatively small differences associated with different
calculational procedures.

This approach will be convincing only if, indeed, the éc; thus extracted from the
various theoretical versions of §c show smaller dispersion, within each Z-value, than
they show differences from Z-value to Z-value. That this is the case is displayed in
Fig. 3 where the “errors” on the mean é¢;-values are given by the usual expression for
a standard deviation but are otherwise purely illustrative. (In the present extraction
of the é¢y from the various éc derived from Table 2 a smooth underlying form é¢; =
aZ + bZ? has been taken. Earlier [1] other reasonable forms for éc; have been
explored; the results from those alternative forms differ only inconsiderably as to
(ft)s from those presented here.)

1t scems that not only are the éc; well-defined in relation to their differences
but that they have a regular behaviour with Z although no point is further made of
this nor of the &¢;.



Our first step based on this fluctuation approach is to repeat the earlier analysis
but using the é¢ rather than the é¢, again using a frec quadratic fit in Z. The results
are given in Table 4 and in Fig. 4. The Q(x*|v) are very satisfactory and we find:

(ft)o =3136.4 £ 5.1 sec (17)

where, as with Eq. (16), the bulk of the uncertainty is due to the expernnental errors.

Equation (17), with its associated error, derives from the asserbly of the 14
individual entries froin Table 4. We may, alternatively, but not, of course, inde-
pendently, perform the quadratic fit upon the averages of the (ft)®- values, for cach
Z-value, over the 14 é¢, AB-sets. The result is shown in Fig. 5 from which we quote:

(ft); = 3134.7 1 5.2 sec. (18)

This fit has Q(x%|v) = 0.60.

We note immediately that the (ft)j-value resulting from this analysis usig
the 8¢y, namely the (ft); =~ 3135.6 sec of Egs. (17) and (18), is very close to the
(ft)g ~ 3135.1 sec of Eq. (16) which uses the full theoretical éc themselves and is,
indeed, close to the (ft)g ~ 3137.4 sec of Eq. (15) which uses no theoretical 6. at all.

Now we have so far perforined free quadratic fits in Z to gain the results of
Eqgs. (17) and (18) but we may now, following our Ansatz that the é¢j-corrected data
should all display the saine basic form with Z, use the implied mutual consistency of
the 14 sets of (ft)° to restrict the details of the fit with Z. We do this by imposing
the condition of a coinmon peaking, at some Z,,,, ou all the 14 data sets. This is
done in two ways: (1) most simply, we take the Z,,,=22.25 from the averaged fit of
Fig. 5 and impose it upon the 14 separate sets of (ft)*; this results in the constrained
columnus of Table 4 and in Fig. 6 which yield, again with very satisfactory Q(x*|v):

(ft); = 3135.5 + 3.7 sec; (19)

(ii) niore generally, we derive Z,,,x from each of the 14 data sets separately and apply
cach such value to the other 13 data sets resulting in a total of 182 values of (ft)]
from which we gain:

(ft)g = 3136.8 £ 4.0 sec. (20)

The x? distribution for these 182 fits is displayed in Fig. 7; it is highly satisfactory.
(There is, as seen, a small aberrant island in Fig. 7, having 12 < x? < 14 and
3130 < (ft); < 3140, contaiing 9 cases (all of which derived from TOB); these
cases, of themselves, would give: (ft); = 3134.3 £3.5s¢¢; their exclusion would make
no seusible differcnce to the result of Eq. (20)).

We have now trcated the experimental data of Table 1 in six ways based on the
method of extrapolation to Z = 0; the resultant ( ft);-values are collected in Table 5;
although their uncertainties are dominated by their common experimental crrors,
from the ft--values of Table 1, we may combine their values with a conventional 1/0*
weighting and quote our final:

(ft); = 3136.0 + 3.5 sec (21)
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m which some shght reduction of the overall error has come about on account of a
global analysis of the contribution to the error from the dispersion of the individual
cutries taken over the entire outcome of the six approaches.

Before proceeding to further discussion we swiftly examine the consequences
of repeating the entire analysis that has just been presented but using, instead of
the 6y of the shell-inodel-based treatment, values derived from the earlier harmonic
oscillator estunates of the nuclear misinatch to which reference was made in passing,.
This we do in order to probe the possible sensitivity of our (ft); to a very different
way of estinating the mnajor part of the éc. For this purpose we use as a starting
point the four scts of harmonic oscillator mismatches [21-24] as listed in Ref. [24].

As stressed in Ref. [24] the harmonic oscillator mismatch is rather sensitive to
the nuclear radius used for its evaluation; we have not, however, attempted to make
any correction on this account since this cannot be done unambiguously, but have
used the various authors’ estimates as they stand; we must anticipate an exaggera-
tion of the dispersion of the results of the analysis in consequence and be the mmore
impressed if we find good internal consistency within the approach.

We now consider these harinonic oscillator mismatches as the analogues of the
bgi of the shell-inodel approaclhies when the ground state of the nucleus of 4 —
1 is taken as unique parent. As a mock-up of the effect of a realistic parentage
spectrum, which obviously cannot easily be incorporated into this harmonic oscillator
approach itself, we multiply these initial mismatch values by the factors, taken from
the shell-model approaches [24,25], by which the 64 of the shell model, using the full
parentage expansions, cxceed those using the 4 — 1 ground state as unique parent.
We now conibine these dgg-equivalents, 5o enhanced, with the écp of Table 2 and the
AM as before into a harmonic-oscillator-shell-model hybrid and repeat all the carlier
exercisces.

Table 6 with Figs. 8, 9 and 10 present the detailed results of the analyses
leading to the analogues of Eqgs. (16), (17) and(19) respectively as summanzed in
Table 7 which also presents the outcome of analyses analogue as those of Eqs. (18)
and (20). (All analyses are completely satisfactory statistically.)

Weighting the results presented in Table 7 as before, we quote the overall result
of this hybrid treatinent of the é¢:

(ft)s = 3139.3 £ 3.6 sec. (22)

When we include, for consistency, the “no é¢” result from the first entry of Table &
we have:

(ft); =3139.1 £ 3.6 sec. (23)

The various results reported in Table 7 are in good accord and their overall
resultant in Eq. (23) is in good accord with the earlier Eq. (21) from the purely shell-
model analysis. As suggested earlier, we should not attempt to combine Egs. (21) and
(23) since the shell-model approach is clearly better-based as well as imore general, but
we note with satisfaction the robustness of the conclusions of the Z = 0 extrapolation
wethod against major changes of the input leading to them.

12



3.1. Note on "0 and '°C

As is immediately obvious from a glance at Figs. 1 or 5, the ft-value for "0
is critical for the method of extrapolation to Z = 0 advocated here; this is true
both in respect of the inferred (ft)j-value and in respect of its crror. Specifically,
for the sake of illustration, keep all the input values behind Fig. 5 as they arc with
the exception of that for 0 and: (i) raise or lower the (ft)*-value for 'O to the
limits of its present error bars (£2.0 sec) keeping its error as at present; (ii) keep the
(ft)*-value for 'O as at present but reduce its error frum its present value to that
for 2A1™(£1.2 sec). The result of operation (i) is to raise or lower (ft); by 4.2 scc
viz. an amplification of the change in (ft)" for '*O by a factor of a little more than 2.
The result of operation (it) is to reduce the error in (ft)5 from £5.2 sec to £3.8 sec.
(Both operations (1) and (ii) being carried out within unconstrained quadratic fitting
in Z.)

Improvements in the input data for '*O are, therefore, much to be desired. The
situation with respect to the lifetime is that two accurate (£0.035 and +£0.040%) and
concordant values exist but the more recent of them dates from 1978 while the not
inconsiderable correction (0.61%) for the Gamow-Teller branch to the ground state
of "N dates from 1966 (sec Ref. (1] for details). While there are no specific rea-
sons for doubting these data the importance of the matter would certainly warrant
remeasurement i1 both cases. The situation with respect to the Qpc-value is unfor-
tunate in that two ostensibly very accurate values (£0.13 and +0.077 keV) may be
alternatively derived from the corpus of data but they differ by as much as 0.8 keV
depending on details of the analysis (sce Refs: [1] and [10] for discussion); because
of this the PDG prescription for inflation of errors |7] has been used in deriving the
Qec-value, and its error [10], lying behind the entry for 'O in Table 1. Expcrimental
resolution of this conflict is highly desirable.

Given the considerable leverage, in the extrapolation method, of data at low
Z-value, the benefit of an accurate point at Z = 5 viz. the super-allowed decay
of '°C to its mirror at 1.74 MeV in '’B, cannot be overstressed. The problem is
that, in contrast to the happy accident for '*QO, where the allowed Ganiow-Teller
transition to the ground state is “accidentally” suppressed, in the case of '°C the
allowed Gamow-Teller transition to the state in '°B at 0.72 McV is fast so that the
desired super-allowed Fermi branch is of only about 1.5%. Present experimental
accuracy in the ft-value has, after using considerable effort, reached about +9 sec
(sec Ref. [34]) which, as may be judged from Figs. 1 or 5, is not yet very nseful. A
good point for 'C would be the most important single contribution to our present
study; the tremendous experiniental effort demanded would be well repayed. To
quantify the cffect on the extraction of the (ft)s-value of a given accuracy in the
(ft)*-value for '°C we cousider: (i) the improvement in the accuracy of the extracted
(ft); -value consequent upon the availability of an (ft)*-value of a given accuracy for
1°C, that (ft)*-value for '°C being supposed to fall on the line shown in Fig. 5 for
the present data-set of Table 1; (ii) the change in the (ft);-value brought about by
a given (ft)*-value for '°C of a given accuracy but falling off the line of Fig. 5. The
answer to (i) is given in Fig. 11 from whicli we see that an accuracy of £3 sec or so
for '°C is necessary in order to achieve a significant sharpening (by 20% or so) in the
accuracy of our present knowledge of (ft);. The answer to (ii) is given in Fig. 12 from
which we sce that, for values of the '°C (ft)*- value falling withiu a resonable range,
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an accuracy of 4 sec or better would be necessary to shift the present (ft);-value
to the limits of its present error bars. From both points of view, (i) and (i), we see
that an accuracy of something like +3 to 4 sec in (ft)” must be aimed for.

4. Unitarity of the Cabibbo-Kobayashi-Maskawa matrix

Before using our value for (ft); given by Eq. (21) for extracting |V, 4|? via Eq. (3)
we must attend to its uncertainty. The +3.5 sec of Eq. (21) has had no regard for
the systematic uncertaintics that we noted at the end of Section 2 as amounting to
some +0.062 to +0.069%); taking these into account raises the uncertainty on (ft);
to +4.0 scc Using Eq. (5) we now have:

|V.al* = 0.9516 £ 0.0012. (24)

Using the PDG [7] recommended values for |V,,[(0.2205 + 0.0018), |V,s/V.4|(0.08 +
0.02) and |V,| (0.040 + 0.005) we have:

[Vas|* + Vi |* = 0.04863 + 0.00079 (25)
which conibines with Eq. (24) to give:
[Vidl* + [Vs? + | Va|* = 1.0003 + 0.0014. (26)

Althiough we have not used the value of (ft); given in Eq. (23) from the hy-
brid harmonic-oscillator-shell-model analysis we may note that it would, of itself,
correspond to a unitarity test of 0.9993 + 0.0014 to compare with Eq. (26).

We also note that if we were to persist in an analysis that did not recognize
the manifest Z-dependence of the (ft)*-values derived from the theoretical é¢, and
were to average the results of (ft)* from the Constant column of Table 3, we should

find: (ft)® =3151.5 £ 2.2 sec where the error derives, somewhat arbitrarily, from
the quadratic sum of the mean of the experimental errors in the fi-values and the

standard deviation of the dispersion in the (ft)"-values. This value of (ft)* would
correspond to a unitarity test of 0.9956 + 0.0012 in clear violation of CKM unitarity.

These remarks complete the quantification of our assertion that a conventional
aunalysis of the present J* = 0% — 0% ft-valucs, using just the theoretical é¢ on a
casc-by-casc basis, 1s not only inconsistent with CVC but also, if onc ignores that
inconsistency, is then inconsistent with unitarity of the CKM matrix whercas the
method of quadratic extrapolation to Z = 0, which takes CVC as given, results in
exccllent mutual consistency as between the several prescriptions for effecting that
extrapolation, and is in excellent accord with CKM unitarity.

6. The value of the operational G},

Our empbhasis so far has been upon the extraction, from the data, of the value
of (ft); with a view to the making of the CKM unitarity test of the previous section.
But there is also evident interest in deriving the best value for the operational Gy, for
use in ordinary nuclear physics. In doing this we must bear in mind the stricture that
for work of the highest accuracy we must take into account Cys, which will vary from
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case to case, as also will C(1), at the same time as using Gy. Specifically, as well
as applying the usual Z-dependent “outer” radiative corrections we should, on using
Gy, additionally multiply the calculated speed of a vector transition by the factor:

+ 2{C(1) — Cuonn + Cns}. Since, as is seen from Table 1, C(1) - Cgorn =~ —0.25
while Cns ranges between +0.5 and —1 for those cases investigated we may anticipate,
in other cases, an uncertainty of the order of 2 in the radiative corrections if C(1)
and Cns are not evaluated. We may here also note that the old “outer” radiative
correction of order a, viz. 3= 9(W, Wo), has become 2422l g(W Wy) S(my,,myz) in the
new formulation of Eq. (6) which corresponds to a further nicrease in the speed of
the transition, due to the introduction of higher powers of a, by 0.0054 g(W, Wy)%.

This being said, we may write:

1

{ + —ﬂ[ln— + 2CB0HN] } 5("‘;”"‘2)] " 27

my

Gy /( hC 2(ft

Using Eq. (21), other values as before and Cpopn = 0.881 £ 0.031 [15] we have:
Gy /(he)® = (1.15155 £ 0.00064) x 10° GeV™*. (28)

(Note that in using Eq. (21) here we do not have to increase its error on account of
those systematic uncertainties, such as those residing in 4 and S(m,,myz), as was
necessary in applying it in Section 4.)

8. Neutron decay

Gerinane to the questions of |V,4| and Gy, that we have been discussing is the
decay of the neutron. This has the enormous advantage that the decay does not suffer
from the uncertainties entrained by éc that, as we have exposed at length, limit the
precision with which we may extract those quantities from the decay of complex
nuclei. (This is not strictly correct in respect of |V,4|, as we note in Appendix B,
because the neutron is a structured object, in the quark sense, just as a complex
nucleus is a structured object in the nucleonic sense; however, as we see in Appendix
B, these structural uncertainties in the case of the neutron are probably at the 0.01%
level whereas for a complex nucleus they are some tens of times larger).

The disadvantage for the neutron is that its decay is mixed vector-axial:

K

t=Grvacy (29)

since |G3 /Gy | ~ 1.26 the contribution to the decay from the axial interaction is some
4.8 times larger than the vector.

(We write G} to emphasize that, as with Gy, this is an operational constant
which includes the axial “inner” radiative correction, whatever that might be; at-
tempt to assess and remove this correction from G% does not arise in our present
context nor that of practical applications of GY.)

The sorting-out of the G}, G terms may be effected through various types of
correlation study of which the best-pursued at the present tune mvolves the asym-
metry i the emission of the electrons from polarized neutrons.
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Both the lifetime incasurement and the asymmetry measurenient are exceed-
ingly delicate and it cannot yet be said that either has settled down to a generally
consensual value. In the case of the lifetime it is best to exclude measureinents
pre-1986 which showed wide scatter and significant inconsistency with subsequent
measurements. A survey down to 1990 but excluding those earlier measureinents
showed good consistency and yielded [35] a inean lifetime:

Tm = 887.6 £ 2.7 sec. (30)
Two measurements subsequent to this survey gave the values: from Ref. [36}:
Tm = 893.6 £ 5.3 sec (31)
and from Ref. [37]
m = 888.4 + 3.3 sec. (32)
The results in Eqgs. (30)-(32) are concordant at: Q(x?*|v) = 0.60 and together yield:
Tm = 888.71 1.9 sec. (33)
More recently we have the further [38]:
m = 882.6 £ 2.7 sec. (34)
Equation (34) sits very uneasily with qu. (33) at Q(x?|v) = 0.065; we do not feel it
wise to combine thein but rather pursue their separate consequences.

The situation in respect of the asymmetry measurements that yield |G3 /Gy | is
somewhat similar. The survey of 1990 (Ref. {35]) yielded:

=1.262 £+ 0.004 (35)

a result dominated by a measurement from ILL [39] but including other, concordant,
work. However, a more recent result from Gatchina [40]:

|G%/Gy| = 1.2544 + 0.0036 (36)

is not in happy agreement with the ILL-dominated result of Eq. (35): Q(x?|v) = 0.16.
(The asymmetry results of Egs. (35) and (36) have been corrected for recoil and other
small effects, including weak magnetisin, but no allowance has been nade for radia-
tive corrections. It is evident that these latter are small, changing the asyinmetry
coefficienc by the order of 0.1% of its own value whereas the present experimental
crror on that quantity is a little over 1% of its own value. It is desirable that this
correction be estimated with better accuracy than is currently available [41] since it
is alrcady on the edge of significance.)

In view of the importance of the issue it is again, as with the lifetime, not
considered wise to combine the two results of Eqs. (35) and (36) but rather to treat
them separately.
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In view of our unwillingness, on such a critical matter, to average data-scts of
necar-incompatibility we combine the two lifctime values of Eqs. (33) and (34) and
the two |G /G| - values of Egs. (35) and (36) in their four possible ways:

I = Egs. (33) and (35) 37
II = Egs. (34) and (36) (38)
I = Eqs. (33)and (36) (39)
IV = Egs. (34) and (35) (40)

Figure 13 shows the results of these combinations I through IV together with
our present result for Gy, from Eq. (28). We sce that we have compatibility between
our value of G}, and neutron decay only for combination 1 above. Since, as we have
scen in Eq. (26), our result is very close to expectation based on the unitarity of
the CKM matrix we may express the results, in that regard, of combinations 11, 1]
and 1V by saying that they violate that unitarity by about 3.6, 2.6 and 2.3 standard
deviations respectively.

If onc insisted upon an averaging procedure for both the lifetime and the asym-
metry, with PDG-type inflation, tliere would result a considerable discrepaicy be-
tween G} derived, as in this paper, from the super-allowed Fermi transitious, or from
the unitarity of the CKM matrix, and from ncutron decay. Such a discrepancy might
be read as a signal for, say, a right-handed W-boson but the view presented here
is that such an interpretation would be premature and that we must wait for the
experimental situation in respect of neutron decay to clarify. In the meantime it is
clear from Fig. 13 and from our discussion that, within the standard model, we must
favour combination I.

(Use of (ft)*=3151.5 sec that we saw would follow fromn a Z-independent anal-
ysis of the (ft)"-values, averaging the (ft)*-values from the Constant column of
Table 3, using only the theorctical é¢ for the nuclear mismatch, corresponds to
Gy /(he)® = 1.14871 x 107° GeV~? which is 2.2 standard deviations away fromn the
Gy —value of combination I (the corresponding discrepancies with combinations I,
111 and IV arc 4.4, 3.5 and 3.3 standard deviations respectively); such analyses of the
super-allowed Fermi data are therefore in severe conflict with any of the analyses of
the neutron data.)

Although not germane to the chief thrust of this paper we may also, of course,
use the data presented here to extract best values for G5 and [G%/G} | (see Appendix
4).

7. Inferences following unitarity of the CKM matrix

As we have scen in Eq. (26), the present analysis of super-allowed Fermi decay
is consistent with the unitarity of the CKM matrix. We may, alternatively, assutne
that unitarity and use our data to draw other inferences. In the notation of this
paper, using Egs. (3), (5) and (25), this assumption of unitarity amounts to:

(ft); = 3136.9 + 2.6 scc. (41)
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7.1.  The mcan charge of the fermionic fields

As we have remarked, a large part of the radiative correction of Eq. (6), namely
the vector part of order a, is eflectively exact by CVC but of the remainder of the
“inner” sector of A, as there written, the axial part that we have discussed at length,
is only approximate depending upon, among other things, the “axial mass” my,
for which we accepted the value given by Eq. (9), and @), the mean charge of the
fermionic ficlds between which the beta-decay takes place. Now within the standard
model we have, of course, Q = };, being the mean charge of the u and d quarks; this
value is implicd within Eq. (6). It is, however, of some interest to ask whether our
beta-decay data, assmning CKM unitarity, can give us a value for @ (wlhich would
be Q = % for the clementary neutrons and protons of the pre-quark cra with V,,
cffectively replaced by sinfc, 8¢ being the Cabibbo angle, with negligible change to
the inferred (ft)g since Vi is so small (see Section 4)).

To approach Q we therefore re write Eq. (6) without the assumption that Q = é:

A = g(S(mp,mz)—1)(1+2§)+S(mp,mz){%[wln%+2C
+ “7(2"’7{") W, o) (42)

We now perform the usual unconstrained quadratic fit in Z to the same é¢ -
corrected data set as lies behind Fig. 5 but using the A of Eq. (42) in place of the
A of Eq. (6) and including the (ft); of Eq. (41) at Z = 0; we do this varying Q
for the range of m-values shown in Fig. 14 with the results there shown. (The fit
minimizes at Q(x?%|v) = 0.60.) Figure 14 also shows our adopted range of Eq. (9) for
m, and the resultant 1o-limit in the m4 — Q plane.

From the ellipsc of Fig. 14 we find:

Q =0.1724+0.060 (43)

in good accord with the Q = 0.167 expected for quarks and clearly excluding the
Q@ = 0.5 of “clementary nucleons”.

7.2.  The value of my

Instead of using our assumed range of m to determine Q) we could reverse this
procedure: we similarly fix Q at é and minimize on m; this yiclds:

" —00+16 (44)

my

which is within our adopted range of Eq. (9) but of so low an accuracy as to be
uninteresting.

7.3.  The scalar coupling constant

The context of our discussion so far has been the V-A of the standard model
with which, under our present analysis, everything is in good accord, at lcast in the
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vector doinain. But, as has been eniphasized [43,44] a possible scalar couphing, from
outside the standard model, would modify the analysis and it is interesting to enquire
as to the degrec to which such a coupling can be excluded.

In the notation of Ref. [43] we expect an effective scalar coupling G s, of strength
relative to the vector Gy measured by:

bp = Gs/Gy, (45)

namely the Fierz interference factor, to reduce the lifetime of the predominantly
vector transition:

ft—=(f)v (1= 2bpy <W™'>) (46)

where (ft)y is that for a pure vector transition. (As pointed out in Ref. [44] this
definition differs by a factor 2 from others in use; the handedness of the possible
scalar interaction is an important question mark.)

In Eq. (46):

y={1-(a2)?)} (47)

and < W' > is the average of W~! over the decay spectrum. Now < W~! > varics
considerably over the eight bodies of our concern (from 0.4375 for O to 0.1539 for
%4Co) which constitutes the leverage by which bg might be approached.

The analysis of Ref. [43] resulted in bp = (0.6 £2.5) x 107% it was, however, as
other analyses with very similar outcomes {45], based upon theoretical values for the
nuclear mismatch éc which, as we have exposed here, are now known to be seriously
discrepant. The analysis of Ref. [44] recognized the effective residual Z-dependence
of the ft-values corrected by the theoretical 8¢ and looked for the influence of a finite
by on the form of that dependence, finding: b < 1.6 x 1072 at 90% confidence level,
not unexpectedly a significantly poorer limit than that derived carlier when trust
reposed 1 the theoretical éc. However we have a priori no reason to expect any
particular functional forim for the effective residual Z-dependence after correction by
the theoretical é¢ or after correction by the fluctuations é.; or after no correction at
all; as we have exposed at length, all these procedures result in (ft)"-distributions
that are very satisfactorily fitted by a quadratic in Z with no call for a terin that
would follow < W=! > .

If, however, we pin down (ft) through the assumption of unitarity of the CKM
matrix we can do much better if we continue to insist that the fit by a quadratic in
Z remain adequate. Such iusistence is, of course, itsclf arbitrary to some degree but
it would smack of a conspiracy if the vector-plus-finite-scalar ( ft)*-distribution were
fitted by a quadratic alone while the underlying pure vector contributions demanded
higher powers of Z.

But before we introduce a finite value of b into our fitting of the (ft)", including
the (ft)g-value of Eq. (41) from CKM unitarity, we must make sure that the latter
value is not itself significantly sensitive to the presence of a possible scalar coupling.
That it is not is indeed the case.

The impact of possible scalar coupling on the partial beta-decay lifetimes of
hyperons and K-mesons, from which |V,,|, and heuce the (ft); of Eq. (41), is ex-
tracted is very much less than the corresponding hnpact on the nuclear lifetimes, that
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we relate to the (ft)) of Eq. (41) iu the present analysis, owing to the < W~! >-
factor. Specifically: (i) from a standard tabulation [46] we find that A — pev and
Y7 — nev are, respectively, 109 and 171 times less gensitive to scalar adinixture
than is n — pev; for comparison with the nuclear decays of Table 1 these factors
become 1667 < W™ > and 2617 < W' > respectively so that the nuclear decays
are somne 30 to 100 times the more sensitive; (ii) in the case of K+ — n%*v we assess
thie impact of a possible scalar coupling by integrating over the Dalitz plot density
(for the latter sce e.g. Eq. (2) of Appendix 1 of Ref. [47]); in the illustrative limit
., my; — 0 we find that K-decay is less affected by scalar admixture than nuclear
decay by the factor Jymg < W' > viz, factors of about 50 to 140 for the cases of
Table 1.

We must also concern ourselves with the impact of possible scalar coupling on
the rate of muon decay and hence on the inferred value of G}, that figures in our
cquations. Assuining pcerft neutrino helicity, muon decay is speeded by the factor
(sce cg. Ref. [48]) 1+ 3 gz;‘; the effect is here of second order in G and so is quite
negligible. (This Gs for the muon refers to an intrinsic coupling and so is different
from that figuring in Eq. (45) which effectively includes also a possible hadronically-
induced scalar coupling (which is a second-class current, zero within the standard
model). So long as we are concerned only with limits this finesse need not detain us.)

We nay therefore use the (ft)j-value of Eq. (41) with confidence as, within its
crror, a fixed point in our questioning of the effect of bg on the nuclear super-allowed
Fermi transitions which we do by performing an unconstrained quadratic fit in Z on
the é¢s-corrected data set lying behind Fig. 5 now including the effect of by following
Eq. (46). Following minimization we find:

bp=(0.0£1.4) %107 (48)

or bp < 2.6 x 107 at the 90% confidence level. (We can, of course, carry out the
present exercise without reference to a (ft)§ derived from unitarity of the CKM
watrix. As expected, the result, by = 0.007 £ 0.013 or br < 3.1 x 107% at the 90%
confidence level, is much weaker than that including the unitarity constraint; the
associated (ft)g = 3106 £ 54 sec is also not useful but it does emphasize the degree
to which our present analysis is predicated upon the V-A structure of the standard
modecl.)
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Appendix A. The ft formula

In Eq. (1) f is the phase-space factor inferred from the experimental ¢)-value for
the beta-decay having regard for a number of detailed effects that have been the object
of recent exposure {1].

Although it is not here appropriate to dwell upon the technicalitics of the trans-
lation of the primary experimental data on the nuclear reaction @-values into the
f-factors it is of interest just to note the rough magnitudes of the various considera-
tions that must be called into account for the eight bodies of our concern; in the most
sensitive Z-case for each effect: (i) atomic excitations in the ¢)-value measurements
(0.02%); (ii) the Coulomb field of the daughter nucleus (a factor 2); (iii) the screening
of the Coulomb field by the orbital electrons (0.2%); (iv) the recoit of the Coulomb
field (0.001%); (v) the finite size of the nucleus (1%); (vi) the finite mass of the nu-
cleus (0.02%); (vii) the departure of the nucleus from a uniform sphere (0.1%); (viii)
the deformation of the nucleus (0.01%); (ix) convolution of the leptonic and nucle-
onic wave functions (0.7%). We similarly note corrections that must be applied to the
experimental lifetime measurements (additional, of course, to overt branching ratios)
before use in the ft-values: (i) atomic excitation (0.01%); (ii) orbital electron capture
(0.1%). In Eq. (1) t has additionally been defined as incorporating those radiative
corrections that do not directly concern themselves with the W, Z-mechanism of the
weak interaction process nor with the axial contribution entrained by the possibility
that two spin flips, one due to the weak process and the other due to a virtual photon
exchange, may cancel out.

The confidence with which these various corrections can be applied has been ex-
tensively discussed [1]; it depends partly upon experimental uncertainties (for example
the < r? >¥-values of the daughter nuclei) and partly upon theoretical uncertaintics:
in the case of the f-values the corrections increase the uncertainty that is due solely
to experimental error in the @Q-values by amounts ranging from a few percent for the
lighter nuclei to a factor 3 for the heaviest; in the overall ft-values the experimental
uncertainties are similarly raised by amounts varying from about 5% to a factor of
about 2.

K is a combination of natural constants having the numerical value: K/(hc)® =
(8.120270 4 0.000010) x 107 GeV~* sec. My is the matrix element for the transition,
having the value v/2 in the ideal world of perfect charge-independence of the forces.

Appendix B. Nucleon structure and quark masses

Equation (2), in respect of Gy, is not strictly correct for thrce reasons: (i) the
nucleon is an extended object and so we must consider the momentum-transfer depen-
dence of the coupling constant; this effect is, at most, about 0.02% in its influence upon
Gy for the most sensitive of the beta-decays that we shall consider {1]; (ii) the nucleon
is a structured object but that structure is not completely charge-independent: there
is, for example, a 0.14% mass splitting between neutron and proton. This means that
the intrinsic vector rate for p — ne*v, differs slightly from the corresponding intrinsic
rate for the underlying u — detw, for the “free quark” that we wish to access to gain
|Vid|. Discussion of this effect, which eventually comes down to the v — d mass dif-
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ference itself, inay be couched in various languages for example, in microscopic terms,
p —w mixing 2,3}, or, more generally, of chiral symmetry breaking [4]; the most recent
estimates [3,4] are that the effect is very tiny, of the order of 0.01%; (iii) the CKM
matrix is primitively unitary only in the approximation that the quark masses are
zero; we should, in fact, consider the effect of these masses at the level of the one-loop
corrections: the CKM matrix should be renormalized. This eflect increascs the rate of
W — ud by only about 0.0017% [5].

Appendix C. The conserved vector current

llistorically, these J* = 0* — 0% super-allowed Fermi transitions have been
of great importance in probing the validity of CVC, as is well-rccognized. However,
as the present analysis demonstrates, we have now reached the point of refinement
in experimentation and understanding of the radiative corrections where we might
be tempted to claim, following the Constant column of Table 3, with its tiny Q(x?|v)
cntries, that CVC is violated. (There is, of course, danger of some logical confusion here
because a major part of the radiative correction, the vector part of the “inner” radiative
correction within the S(my,mz) of Eq. (6), that is involved in constructing Table 3,
itself depends upon CVC; however, it would remain true that overall consistency could
not be reached within CVC). But such a claim would depend upon the adequacy of
our command of the nuclear mismatch éc which it would not be wise; in view of the
inconsistencies that we have exposed, to assert. The position adopted in this paper
is rather to assume the validity of CVC and, in effect, to proceed from there to an
assessment of §c by reference to the data themselves. This position is predicated upon
the universal success of CVC wherever it comes into play elsewhere, most generally
as the background to the standard model. The specific test of CVC most clearly
related to the super-allowed Fermi transitions themselves is the beta-decay of the pion,
mt = 7%*y,, the CVC expectation for the rate of which exceeds the experimental
rate by the factor 1.016 + 0.034 [7,30]. In quoting this result the earlier analysis [30]
has been updated on account of improved values for the 7t — 7° mass differences
|7], for the operational G}, as reported in this paper, and for the relevant radiative
corrections. (The charge-dependence of particle structure that we noted affects, in
principle, nucleon vector decay will also affect that of the pion where its effect will also,
presumably, be slight although we note that the square of the relative mass splitting
within the isomultiplet, that the Behrends-Sirlin-Ademollo-Gatto theorem might seem
to bid us regard as an @ priori gauge of the renormalization of the coupling constant
due to the symmetry-breaking, is more than 500 times larger for the pion than for the
nucleon.) This agrecment between the beta-decay of the pion and the CVC expectation
is very satisfactory but it is yet more impressive, in our present context, to look for
a test of CVC in a field as remote as possible from that of nuclear beta-decay. A
striking example is afforded by the decay: 7= — 7%, which is linked by CVC to
the isovector component of e*e~ — n*x~. The branching ratio for this decay, observed
as 7~ — h~7%,, after a small correction for the measured decay: 7= — K~n%,, is
[31]: 0.2536 + 0.0044. The CVC expectation is {32]: 0.246 £ 0.011 (with which a
recent careful re-evaluation by R.J. Sobic is in essential agreement) so that the ratio
of expeririental to expected branching ratios is: 1.032 + 0.050. Although this r-decay,
re-written as the physically-inaccessible: 7t — 7%r+ v, | is eflectively the same as pion
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beta-decay, the operational hink Lo CVCas very dilferent in Lhe Lwo cases.
Although one abandons with reluctance the role of the super-allowed Permi tran-
sitions in Lesting CVC 1L seems, al s juncture and in view of Lhe strong other support

for CVC just adduced, best o do so 1 order Lo gain more confident access o (ft);
aund hence o |V and Lo Lhe testing of the unitarity of the CKM matrix.

Appendix D. (7 and |G5/Gy,

We may extract % from the dala presented in three ways: (1) from the neutron
data alone: our provisionally-favoured solution, represented by combiuation 1, L. (37)
yields: (5 /(fe)* = (14556 £ 0.0016) x 1073 GeV™2% (i) the |G /Gy ratio of Bq. (35)
plus the (33 - value of Lg. (28) yield: G5/ (khe)® = (1.4533 £ 0.0046) x 107% GeV %
(i) the neutron lifetime of Eq. (33) plus the G- value of Eq. (28) yield: (75 /(he)? =
(14562 £ 0.0019) x 107° GeV™2 Fhiese values are concordant but not, of course,
independent; we adopl: Gy /(he)®) = (14557 £ 0.0015) x 107° GeV™2 brom (iii)
above we extract |G /G| = 12646 £ 0.0019, where the error allows lor the common
role of Gy, n good accord with Lq. (35) with which L may be combined Lo give:
|5 /G ] = 12641 £ 0.0017. (‘The nuimerical reductions hicre and in Section 6 use the
procedures and reconuncudations of Ref. [42]).

Note added 8 December 1994

After this paper had been prepared for publication Chalk River [19] announced
a remarkable imiprovement in the determination of the strength of the super-atlowed
branching in "*C-decay that was discussed in detail in Section 3.1 above. Their result
for the branching ratio, BR=(1.4625 £ 0.0025)% ay be combined with carlier [34,50],
concordant, measurements o yield BR=(1.4638 £ 0.0022)% al Q(x*jv)=0.57. Using
Que = 1907.73 £ 0.09 keV (Ref. {51]), reduced by 90 £ 60 ¢V on account of atomic
excitation iu the (pyn) reaction upon which this Que-value is based [1,10] we have:
= 22996 £ 0.0012. The measured lifetime of '°C is [52]: 19.290 £ 0.012 sec; the
correction for clectron capture raises the lifetime against beta-decay by 0.289% while

atomic excitation [1] elfectively shortens it by 0.024% so that the corrected lifetime
ol the super-atlowed branch becomes: 13213 £ 2.2 sec and: ft = 3038.0 £ 5.3 sec.
Application of Liq. (6) with Cysery = —1.35; Cnssy = —143; C(1) = 0.69 following

the relerences and discussion as above, and with g(W, Wy) = 12.637; 6,=0.185%, lcads
to: (ft)* = 31534 £ 5.3 scc lollowing Ref. [18] and (f1)° = 31528 £+ 5.3 sec
following Refl. [16], the latter modilied for quenching as iu Section 2; these values may
be compared with the previsions of Figs. 1(a) and 1(b) respectively, namely 3149.1 and
3147.1 sec. This shows that '°C falls in line with the expectation of the analysis of this
paper; in particalar, it enhances confidence in the 0O point, the unportance of which
was stressed in Section 3.1, When the above (f1)*-values for '°C are incorporated into
the quadratic fits displayed in Fig. 1 we find: (f£)) = 31413 £ 4.7 see al Q(x*v)
= 0.15 to compare with Eq. (13) and (ft); = 31373 £ 1.7 sec at Q(x*v) = 0.23 Lo
compare with L. (14); the changes are small and are i line with the expectations of
Iigs. 11 and 12, 1L is not possible Lo carry out the analyses based on the theoretical
8¢ and the 8¢ in the same way as in Section 3 because the appropriate material is
uol available. However, 1tas hikely that E for 'C would be quite small on account of
its low Z-value so we may take b =0 and repeat the anatysis that eads Lo lq. (18)
finding: (J1)5 = 3136.8 £ 1.7 sec at Q(x*v)=0.47 in close agrecment with the carlier
figure. We tiay also carry oul a constrained fit using Z,,.c=23.32 which derives [rom
the mean of the 14 Z,.,  values of the individual b5 corrected data sets as discussed
in the main text; this yields: (ft)) = 3137.8 £3.3 scc at Q(x*|v) = 0.70. If we combine
the above (ft); values as before, with a 1/o? weighting, we find: (ft) = 31379 £ 3.3
sec i accord with Bq. (21). tn arriving al a new final (ft)§ value we must have
regard for the necessarily incomplete nature of the analysis that incorporates '°C; we
adopl: (ft);, = 3136.8 £ 3.3 sce. The uncertainty is raised to £3.8 sec by systemalic
uncertainties as in Section 4; this leads o: [V |* = 09514 £ 0.00LL and so Lo the
unitarity Lest of [Vig|* 4 [Vis]* + [Vao|* = 1.0000 £ 0.0014.

We have seen that inclusion of the new result for '°C [19] strengthens the conclu-
sions of this paper namely that one should look to the data themselves Lo determine the
magnitude of the vuclear mismatcl and that, when this is done, exeellent consistency
is found between alternative wethods of handling thoese data to reveal this misinatch
and that the result, as o [Vig|, is itsell in close accord with unitarily of the CRkM
malrix.
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Table 1. The ft are the experimental values corrected for branching, for orbital clec-
tron capture and for atomic excitations; they derive from a great number of sources,
largely as detailed in Refl. [1], most importantly A.E.R.E. Harwell (masses and life-
times), Munich and Auckland (masses), Brookhaven National Laboratory (lifetimes)
and, especially, Chalk River (masses and lifetimes); they are as quoted in Ref. [10] with
very small corrections for **Mn and **Co on account of weak Gamow-Teller branches
recently reported froin Chalk River [28]. The stated uncertainties in these ft-values
include not only those due to the experiments themselves but also those sternining from
the reduction of the experimental data (chiefly in respect of the f-factors [1]. C(1) is
the nominally 1-nucleon contribution to the axial radiative correction in Eq. (6) follow-
ing Towner [15,18]. Cnsery is the associated 2-nucleon contribution following ‘Towner
and Cnses) that following Rel. {16] moderated by the factor 0.83 representing the inean
of the quenching factors as suggested by Towner {I18]. Ay and Ay are the total ra-
diative corrections independent of Z given in Eq. (6) incorporating Cns¢ty and Cnss)
respectively. 8, is the total Z-dependent radiative correction following Ref. [1] and +
the estimated uncertainty in §,. (Ar, Ag, é, and + are in percent).

Body St sec C(l) Cnsry Cnsp) Ar Ay 5, +

10 3039.2+ 2.0 0.66 -0.88 -1.18 3.510 3.439 0.235 0.006
BAI™  J038.4+ 1.2 0.64 0.20 0.35 3578 3.614 0.346 0.0]l
H1Cl 3050.0+ 2.2 0.61 -0.13 -0.11 3382  3.386 0418 0.016
HKm 3049.1+ 34  0.59 -0.09 -0.08 3347  3.350 0.451 0.018
418 J045.8+ 1.3  0.62 0.40 0.51 3446 3.472 0487 0.022
€y 3046.0+ 1.9  0.62 0.14 0.26 3348  3.377  0.513  0.025
oM 3044.4+ 1.6 0.61 0.14 0.26 3316  3.345 0.540 0.029
%Co 30499+ 1.7 0.60 0.17 0.30 3293 3324 0566 0.034

—
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Table 2. Theoretical estimates of the nuclear niismatch §¢ = oar +6uz; under b¢py the
column headed T is from Ref. [24] for %0, *Al™ and **Cl, by private communication
from Dr. 1.S. Towner for **Sc and from Rel. [28] for the remainder; the colunm headed
O is from Ref. [27] for the first five entries and by private communication fromn Dr.
W.L. Ormand for *?Sc the entries in brackets being taken froni the T colurun following
discussion in Ref. {28]; under égg the column headed W is from Ref. [25] updated for
"0 by the use of current parameterization for the Saxon-Woods potential emiployed
and for **Mn and **Co by the use of present more extensive experimental data on the
relevant parent states; the column headed T is from Rel. [24] and that headed O is
from Rel. {27]. The coluinu headed B is from Ref. [29].

Body bom Sue ¢
T 0 w T 0 B
10 0.00 0.01 0.29 0.28 0.18 0.12
Am 0.06 0.01 0.35 0.27 0.23 0.05
H4Cl 0.02 0.06 0.57 0.62 0.42 0.11
K™ 0.10 0.1l 0.34 0.54 0.38 0.10
425¢ 0.05 0.11 0.31 0.35 0.28 0.12
oy 0.09 0.09 0.31 0.46 0.20 0.05
0Mn 0.07 (0.07) 041 0.40 0.28 0.05
*Co 0.05 (0.05) 0.47 0.56 0.34 0.05
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Table 3. Analysis of the ft-values of Table 1 reduced to (ft)*-values following Eq. (%)
using shell-model sources of the §c. The first letter of the group of three under Set,
when W, T or O, signifies the use of the corresponding colurnn under égg of Table
2; the second letter, when T or O indicates the use of that column under écpr; when
both first and second letters are B column éc of Table 2 is implied; the third letter
indicates the use of the associated column under Cns of Table 1 in constructing AKX
The columns headed Constant refer to the direct averaging of the (ft)*-values from
the 8 Z-values for cach set with the associated confidence level Q(x?|v); the columns
headed Linear and Quadratic refer to fits to the (ft)"-values linear and quadratic,
respectively, in Z (of the daughter nucleus) with the (ft); the extrapolations to Z =0
and the Q(x?|v) the respective confidence levels. (z(~y) signifies  x 107V).

Set Constant Linear Quadratic
U0 Q6w U Qua) Ubs QW)
WTT 3148.9 1.6(-6) 3140.5 6.2(-3) 3131.4 0.013
WTB 31495 4.3(-8) 3139.9 5.0(-3) 3127.0 0.039
TTT 3148.5 4.7(-3) 3143.9 0.029 3135.0 0.060
TTB 3149.1 1.0(-4) 3143.1 4.4(-3) 3130.2 0.037
orr 3152.0 5.3(-4) 3143.9 0.46 3140.3 0.39
OB 3152.6 1.6(-5) 3143.1 0.37 3135.9 0.51
WOT 3148.8 1.3(-3) J141.8 0.18 3135.0 0.23
WOB 31493 2.3(-5) 3141.0 . 0.063 3130.3 0.21
TOT 3148.4 0.049 3145.2 0.088 3138.3 0.11
TOB 3149.0 7.3(-1) 3144.3 5.0(-3) 3133.6 0.018
ooT 3151.9 0.020 3145.0 0.89 3143.6 0.82
00oB 3152.5 5.0(-4) 3144.2 0.50 3139.2 0.50
BBT 3159.9 2.1(-10) 3146.9 0.29 3138.2 0.50
BBB 3160.5 1.1(-13) 3146.0 0.068 3133.8 0.37
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Table 4. Analysis of the ft-values of Table | reduced to (ft)"-values following Eq. (5)
but using (ft)* = ft(1 + AR)(1 = écy). The notation is as for Table 3, the first two
letters indicating the respective origins of the égg and é¢py from the fluctuations, é¢y,
in whose 8¢ = épg + bcm the (ft)" arc derived. The columns headed Unconstrained
result from a free quadratic fit in Z; the columns hecaded Constrained require the
qnadratic fit to peak at Zna, = 22.25 as detailed in the text.

Set Unconstrained Constrained
U Q) Uk Q)
WTT 3135.3 0.14 3136.3 0.21
WTB 3130.4 0.25 3132.7 0.33
TTT 3137.8 0.27 3137.6 0.38
TTB 3132.8 0.14 3134.0 0.20
OTT J141.7 0.54 3135.9 0.39
orTnB 3136.7 0.63 3132.2 0.57
WOT 3136.7 0.46 3137.5 0.58
WOB 3131.5 0.42 3133.7 0.50
TOT 3139.5 0.18 3139.0 0.26
1ToB 31343 0.033 3135.2 0.058
ooT 3143.3 0.82 3137.2 0.58
00B 3138.4 0.54 3133.6 0.46
BBT 3137.8 0.61 3138.0 0.73
BBB 3132.7 0.43 3134.3 0.54

Table 5. Results of treating the experimental ft-values of Table 1 using different
methods of extrapolation to (ft); at Z = 0 as described in the text using various
shell-model é¢-values. The column Eq. gives the cquation reference to the resuit in
the text. The letter U means that the fit is an unconstrained quadratic in Z; C means
that the fit has been constrained by Z,,.,-values variously derived as explained in the
text.

Method Eq. (ft)g sec

No §c-correction (/) 15 31374 £ 5.7
Full theoretical é¢ (U) 16 3135.1 £ 5.1
bcy individual (U) 17 31364 £ 5.1
b¢y averaged (U) 18 3134.7 £ 5.2
8¢y individual (C) 19 3135.5 £ 3.7
8¢y individual (C) 20 3136.8 £ 4.0
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Table 6. Analysis of the ft-values of T'able | reduced to (ft)"-values following liq. (5)
using hybrid harmonic-oscillator-shell-model sources for the é¢. The notation under
Set follows that described for Table 4 except that the first letter refers to the source of
the harmonic oscillator mismatch used for deriving the analogue of égg as described in
the text: D = Ref. [21}; F' = Rel. {22]; L = Ref. [23]; T = Ref. [24]. The entries are the
(ft)s-values in seconds. The column headed ¢ refers to the use of the full theoretical
bc in Eq. (5); that headed 8¢ 4(U) refers to the unconstrained quadratic fit in Z of the
(ft)*-values derived from the use of the é¢cy in Eq. (5); that headed 8c4(C) derives
from the same (ft)°-values as for éc;(U) but with the quadratic fits constrained by
the Zgax—value given by the fit to the average of the 16 sets of (ft)"-values for each
Z-value.

Set ¢ scy(U) bcy (C)
DTT 3142.8 3140.6 3139.9
DTB 3138.3 3135.6 3137.2
DOT 3146.2 3143.0 3137.1
DOB 3141.6 3138.0 3134.5
Lrr 3141.5 3140.3 3139.2
LTB 3137.0 3135.2 3136.5
LoT 3144.9 3141.5 3140.7
LOB 3140.3 ' 3136.6 3138.0
FTT 3141.7 3139.4 3138.5
FTB 3137.1 3134.3 3135.9
FOT 3145.0 3140.5 3140.3
ros 3140.5 3135.4 3137.6
TTT 3144.6 3141.6 3139.3
TTB 3140.1 3136.6 3136.6
TOT 3148.1 3144.2 3141.2
TOB 3143.5 3139.1 3138.6

Table 7. As Table 5 but using the hybrid harmonic-oscillator-shell-model 8¢-values
as described in the text. (The first of the constrained entries refers to constraint by
the Z,.,,~value derived from the average of the éc-corrected values; the second of the
constrained entries derives from the 240 separate fits using the 16 values of Z,,., as
described in the text for the shell-model-based treatinent.)

Method (ft)g sec

I‘ull theoretical §¢ (U) 3142.1 £ 5.2
b¢y individual (V) 3139.0 £ 5.3
d¢y averaged (U) 31389 £ 5.6
b¢y dividual (C) 3138.2 £ 3.7

bcy individual (C) 31392 + 4.2
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Figure Captions

L,

The experimental ft-values of Table | adjusted only for the radiative correction,
AR = A +6,, taken from Table 1: (ft)* = ft(1 + AR). For Fig. 1(a) Ar, with
Cns(ry in Egs. (6) and (10), is used for A in AR; for Fig. 1(b) Cng(s) takes the
place of Cns(r) to give Ag. The curves are free quadratic fits in Z resulting in
the (ft); intercepts at Z = 0 given in the text. (Z refers to the daughter body.)

. The intercepts (ft)g at Z = 0 of fits freely quadratic in Z to the values (ft)* =

ft(1 + AR)(1-6¢c) where the shell-model 6, AR- sets are as described in the text
aud in the heading to Table 3.

. The mean fluctuations E resulting from fitting the various sets of é¢, derived

froin all combinations given by Table 2, individually to the form éc, = aZ + 62
so that 6(;] =ébc — bc,-

. As for Fig. 2 but using (ft)* = ft(1 + AR)(1-é¢y).

5. I'ree quadratic fitting in Z to the averages of the 14 sets of (ft)* = ft(1+A®)(1-

10.

L1

é¢y) for each Z-value.

As Fig. 4 but constraining the quadratic fitting by Z., = 22.25 from the fit
shown in Fig. 5.

. The (ft)§-x* distribution for the 182 constrained quadratic fits given by imposing

the Znax derived from each 8¢, A®-set upon the other 13 using (ft)* = ft(l +
AR (1 — b¢y).

As Fig. 2 but using hybrid harmonic-oscillator-shell-model 6c, Af - sets. The
labelling is as described in the heading to Table 6.

As Fig. 4 but using hybrid 6., A® - sets as in Fig. 8.

As Iig. 6 but using hybrid éc, A®-sets as in Figs. 8 and 9. constrained by Zya,
from the hybrid analogue of Fig. 5.

The effect on the accuracy, £(ft)3, of the extraction of the (ft);-value by uncon-
strained quadratic fitting in Z, as in Fig. 5, of adding a '°C (ft)"-value to the
present data-set, of accuracy '°C and falling on the line of Fig. 5. The dashed
line shows the accuracy alforded by the present data-set of 'Table 1.

. The effect on the inferred (ft);-value of a determination of the (ft)*-value for

9C of an accuracy given by the numbers (£sec) labelling the lines. A'C is the
amount by which the (ft)*-value for '°C exceeds that corresponding to Z =5
on the line of Iig. 5 (3147.5 sec); A(ft)g is the amount by which (ft)] is raised
by such a determination.

. Comparison of the G} -value from the present analysis of super-allowed Fermi

decay (the vertical band) following Eq. (28) with the ellipses of uncertainty in
the G5 — Gy plane resulting from the four combinations of neutron lifetime and
decay-asymmetry data defined in the text by Eqs. (37) through (40). (The units
for tne ordinate are as for the abscissa.)

. The mean charge, Q, of the fermionic fields between which beta-decay takes place

inferred as function of the axial mass m4 of Eq. (42). The full lines derive from
a free quadratic fit to the (ft)*-values from super-allowed Fernii decay together
with the constraint (ft)5 of Eq. (41) implied by unitarity of the CKM matrix.
‘I'he dashed lines are at the lo-values of the axial mass m4 as adopted in Eq. (9).
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