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Abstract

A general solution of the modified Altarelli-Parisi equations in moment represen-
tation satisfied by the parton distributions of photon, inclucding a general form of
Born term, is obtained by using the variation cocfficient procedure. The result shows
that it is necessary to apply the general solution to find the a- and @*-dependence
of photon structure fitnction, espeeially for experimentally relevant Q7 values.
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I. Introduction

For the past ten years or so, the photon structure fuuction has considerably raised
theoretical and experimental interest. For its pointlike portion, the strong interac-
tion correction to the Fermi-Weizacker-Williamns (FWW) approximation in QED was
studied by using various methods including the operator product expansion [1], lad-
der technigues {2] and the modified Altarelli-Parisi (MAP) equations [3,4]. It has
been found that the strong interaction effect in color space does not modify the Q?-
dependence, but it changes the r-dependence. Since then many interesting papers
have been published [5,6].

However, it should be noticed that in general the FWW approximation includes
non-logarithmie terms and these terms are quite important for experimentally rele-
vt Q? values £ 100 GeV? [7,8). In this paper, we investigate the first-order strong
interaction effect on the parton distributions in the photon by using the MAP scheme
in which the general FWW approximation is considered. The master equations are
listed in See. 2. lu See. 3, we obtain the general solution for the MAP equation in mo-
ment representation. In a special case it can be reduced to the form which was found
carlier [3 ~ 5]. The general solution shows that even taking the leading-logarithinic
approximation of FWW for the photon structure function, the first-order strong in-
teraction effect modifies not only its r-dependence but also its Q%-dependence. In See.
4, we investigate carefully the singnlarity of the solution and list the procedure for
the reproduction of - dependence of the parton distributions in the photon. Finally,
the numerical result and the discussion are given i Sec. 5.

I1. Modified Altarelli-Parisi equations

The moment representation of the equations satisfed by the gquark and gluon
distributions in the photon can he written as
d N e NS o s d FH
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(214

where t = In(In(Q* /A /1n(Q5/A%)). the moments of the splitting fimetions or the
anomalons dinension matrix clements ean he found, for example, in Ref 4]

In this paper, as an example, we use the FEP distribution [8] as the general Born
term:
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Q*-dependence of the effective photon approximation in QED (~ i(Q?/A?), but it
changes the r-dependence |1 ~ 6], However, in the general case the picture for the
photon structure function is quite different. The solution in Eq.(10) and (12) show
that even for the leading- logarithmic approximation the first-order strong interaction
in color space affects not ouly its r-dependence bt also its Q*-dependence.

IV. Singularity and polynomial expansion

In order to find the w-dependent distribution, we use the method proposed car-
lier [3]. After factoring out the singular hehavior at r ~ 0 the distribution can be
expressed in a series of Jacobi Polynomials.

From Eq.(14), the rightmost singularity in the complex n-plane of the moments
occurs at 1 =AY =0 or n = 1.596 (N; = 4) [3]. However, to do this in the general
case we should he very eareful. In fact, according to Eq.(12), ¢,(1,#) and G,(n,t) do
not possess singularity when 1 - AF = 0, because

1-— (.-u-.\.t)z
i — =1, 15
A=+ 1- /\: (19)
However, if noting that % = 07, d# = 1/xb, 7 = d% = 400 and A7 = 07 when
n— +1or A = oo, we have
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It means that the rightmost singnlarity in complex n-plane for the correction portion
of parton distribution of photon oceurs at n = 1. Thus the distribution can be written

as

Q! p
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and the strong interaction correction termn can he obtained from the following quite

v, (QF
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sitmple formula [9]: (7 = g or ¢)
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V. Numerical result and discussion

In the five-term approximation, the coeflicients C; (¢ = 0 ~ 4) for the first-order
strong interaction correction of the gquark and gluon distributions in a photon at
Q? = 10, 10%, 10" GeV?E are listed iu Table 1. We wish to point out that the five-
tern polynomial forn can reproduce the values of the moments given by Eq.(10)
accurately. For the first sixteen moments of j’;ﬁ(.:-,(}") (¢ = 2/3, Q% = 10 GeV?),
for example, the difference between the value given by the five-term expression and
Eq.(10) is less than 1%. The full Born term .rfq';w(r,()") , correction distribution
£f250r, Q%) and the total distribution 7 fo,, (r,Q*) for the case of ¢ = 2/3, Q* =
10 GeV? are shown in Fig. 1. In Fig. 2, we plot the quark distribution 1 f,/,(z,Q?)
for the ease of ¢ = 2/3,1/3 and the gluon distribution rfy,.(r,Q*) at three energy
scales. In our caleulation we set Ny = 4. Fig. 2 shows that the strong interaction
effect on the r- and Q*-dependence should all he noticed, especially for the region
of experimentally relevant Q* values (< 100 GeV?). One of the most important
factors which cause the larger effect is due to an important contribution of the non-
logarithmic terms in Born term o Eq.(4). The corvection distribution caused by
strong interaction, illustrated in Fig. 1, has a small positive value in the sinall
region and a relatively large negative value in the Luge » region. Thus the total
distribution increases in small - region and deereases in large @ region due to the
cffeet of strong interaction. This resnlt can be interpreted from Fig. 3, which shows
the ratio of moment of the strong interaction correction to Born distribution. The
values of ratio inerease as ninereases. It implies that the strong interaction effeet
makes the quark distribution in the photon ¢, falling at large r but rising at sinall r.
We can also see from Fig. 2 and Fig.3 that the correction from the strong interaction
does increase with the inereasing encrgy and at last approach to a limit ease (see the
curve for Q = 10" GeV?in Fig. 3), whichi has heeu predieted i the carly papers.
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qu/7(q=2/3)

Table 1: Coefficients of the five-terin expansion for the stroug iteraction correction ~0.1 E . ]
of parton distributions in a photon f35 (1 = g or g) at three energy scales [ N ]
: g b L e ]
_ » 0.0 0.5 1.0
Q) 1y Cy C, Cy Cy Cq X
q=2/3 0.0176 0.3134 -1.6728 2.4300 -1.3779 Fig. 1
10 GeV? ¢=1/3 0.0159 0.01806 -0.3162 0.5484 -0.3402
g 0.1245 -0.7863 2.1093 -2.4840 1.0434
¢=2/3 0.0426 0.2634 -1.9004 3.1434 -1.9827
102 GeVE ¢ =1/3 00420 02004 03300  -0.2217  -0.0567 20 e
g 0.2298 -1.7226 5.0577 -6.2412 2.6952
qg=2/3 0.0843 -0.0351 -1.2903 2.9493 -2.3133 5
10" GeV* ¢=1/3 0.0792 -0.5103 1.1976 -1.1448 0.2325 . '
g (.3603 -2.9739 9.0720 -11.368 4.9443 s
x
- = e S x .10
Figure captions IS
Fig. 1. Full Boru distribution « £ (dashed line), correction distribution from the * I
first-order stromg imteraction « f25 (dash-dot line) and total distribution £/, (solid 05 i
line) for the case of ¢ = 2/3, * = 10 GeV4 r
Fig. 2. Total quark distributions for ¢ = 2/3 (above curves), ¢ = 1/3 (lower curves) -
and gluon distributions (curves in small o region) in the photon at @Q* = 10 (solid .00
lines), 102 (dashed lines), 100 GeVeé (dash-dot lines). 0
Fig. 3. The ratio of woment value of the correction distribution frown strong in-
teraction to the Booi distribution for the cases of Q¢ = 10 (solid line) , 10% (dashed
liue), 10Y (dashi-dot line), and 10 GeV? (dash-dot-dot line). Fig. 2 Fig. 3
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