Paper presented at Exclusive Reactions at High Momentum Transfer,

Elba, June 24-27 July 1993

Color Transparency

B.K. Jennings
TRIUMEF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 2AS, Canada

and

G.A. Miller
Department of Physics, FM-15, University of Washington, Seattle, WA 98195, USA

Abstract

The anomously large transmission of nucleons through a nucleus following a hard collision
is explored. This effect, known as color transparency, is believed to be a prediction of
QCD. In this talk we discuss the necessary conditions for its occurrence and the effects
that must be included in a realistic calculation.

1. Introduction

In this talk we consider hard exclusive reactions on a nuclear target. The idea is to use
the nucleus to analyze the size (or interactions) of a nucleon immediately before or after a
hard interaction. The expectation is that it may be different"? then predicted by the naive
Glauber theory. The original motivation behind this was to test a prediction of perturbative
QCD and check its validity.

The expectation is that after a hard interaction, interactions with the nucleus will be
reduced. This is based on three ideas:

1. A small object is produced in a hard reaction.
2. Small objects interact weakly with the nuclear medium.

3. The expansion time is sufficiently long that the object can exit the nucleus before it
expands.

This reduction in the interactions with the nucleus is known as color transparency. It is the
first of these three ideas that we really wish to check. However it turns out that is it the third
that causes the most uncertainty and unfortunately has the least intrinsic interest. We will
consider the three ideas in turn.

2. Hard interactions produce small objects

Perturbative QCD based arguments lead to the conclusion that small objects are pro-
duced in hard interactions. The idea is quite simple and we refer to Fig. 1a. For all the quarks
in the hadron to go in the same direction after a hard interaction the momentum must be
shared between the constituents (two in the diagram) of the hadron. The gluon responsible
for the sharing is highly virtual and hence can not travel very far. Thus the constituents
must be close together in the transverse direction. In fact the size distribution goes like
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Fig. 1. Perturbative QCD (a) and end point singularity (b) diagrams
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There are alternate processes that can be imagined to contribute to hard interactions.
For example in fig. 1b we show another diagram that can in principle contribute. In this
diagram the momentum can be redistributed without any particle being far off shell.” This
occurs when the spectator has zero momentum and is sometimes referred as an end point
singularity. In this case since the particles are all almost on shell we can not use perturbative
QCD to estimate this diagram but must use also the confining potential. Naively this diagram
does not require the constituents to be close together.

Now the controversy starts. Is this second diagram important? At some energy it must
be suppressed. If a charged particle under goes a hard interaction it will bremsstrahlung off
photons. Similarly if a color charged object under goes a hard interaction it will bremsstrahlung
off gluons. This leads to inelastic processes and not to the exclusive reaction under consider-
ation. The net effect is that this diagram will be suppressed. Actually more is achieved. All
processes where the colored constitutions are not close together will be suppressed. This is
known as as Sudakov suppression and was discussed by Carlson at this meeting. The only
question is at what energy does this suppression occur. There is no consensus on this ques-
tion.*¥ Thus this diagram may make a contribution that is not spatially small. If this is
dominant we would not see color transparency. One of the interests in color transparency is
to see if such diagrams are important. However in the numerical work described in this talk
these diagrams will be ignored.

An additional contribution is shown in fig. 3. This is known as the Landshoff term and
should contribute to proton-proton scattering. Like the end point singularity it should be
suppressed by Sudakov effects. Again we do not know at what energy this suppression will
occur. However one thing we do know is that the proton-proton 90° scattering data is not
given by the §'° predicted by perturbative QCD but rather oscillates around this value.® The
interference between the Landshoff term and the perturbative QCD term will generate such
an oscillation.® Other sources for the oscillation have been suggested. For example Brodsky”
has suggest that the wiggles arise from the opening of the strangeness and charm thresholds.
With this approach is he is able to fit both the cross-section and spin observables. It is also
possible to fit the spin observables with the Landshoff term as shown by Carlson et al.”
Both approaches to describing the oscillations have two interfering terms one of which is
the perturbative QCD term and other which presumably does not have a small spatial size.
We thus expect the second term to have normal distortions. This, as we will see later, has
a significant impact on the observed color transparency. In principle the (p,2p) reaction on



M TN

(__
.

Fig. 2. The Landshofl diagram

a nucleus can distinguish between these two alternatives but currently neither the data nor
theory are sufficiently precise.

3. Small Objects Interact Weakly

A gluon will only interact strongly with a colorless object only if its wavelength is less
then or approximately equal to the color separation. Thus for small objects we expect the
interactions to be small. Other processes, for example pion exchange, must also be considered.
This has been done by Strikman et al® who argues that all interactions are suppressed for
small objects. Even the Skyrme model predicts small objects interact weakly.” This is the best
founded and least controversial of the three assumptions needed to get color transparency.

4. The Expansion Time
4.1. Small Objects Ezpand Rapidly!

Let us consider the form factor in the laboratory frame. The photon four momentum is
(go, §)- The outgoing (on shell nucleon) has four momentum (£, §) with E? — §* = m®. The
on shell condition leads to Q? = §? - ¢ = ¢° — E} - m + 2mE, = 2m(E, — m) ~ 2mg The
small object produced has transverse size the order of 1/Q hence transverse momenta the
order of Q and is off shell by amount +/Q7 + ¢? — vm? + ¢° = Q*/2¢ = m. Thus it lives for a
time 1/m and can travel a distance of ¢/m = 0.2fm. With this kinematics a small object will
expand rapidly for any incident energy! This problem must be overcome if we are to have
color transparency. As we will see shortly the solutions comes from considering the complete
problem.

This example also gives a warning for other problems. Never assume that the frozen
approximation is valid just because the incident energy is large. It must be checked in every
case.

Even if the above estimate is off by an order of magnitude the expansion is still too
fast. The argument relies on just the uncertainty principle so it should be quite robust. The
important point is that the small object is far off shell so non-quantum treatments are of no
use.

This rapid expansion is actually useful. It means that we can use factorization. The
hard interaction is over and done with before the particle has time to move one nucleon radius

Fig. 3. First order correction term

and interact with the other nucleons.
4.2.  Perturbative Treatment

To see how rapid the expansion time is we treat the interactions with the medium
as a perturbation. In fig. 3 we show the first order correction to the amplitude. For color
transparency this term should vanish.

Notice that we have two interactions. First we have the hard interaction that makes the
small object. Second we have the interaction with nuclear medium. This second interaction
give the final state interactions. It must also convert the small object to the nucleon that is
observed in the detector,'®!!

The contribution to the amplitude to second order can be written:

Ms = By + 8T;.

B, (FITw(Q)la) = F(Q*)(F - qla),
ST, (FIU G Ty(Q)la),

(1)

where B, is the Born amplitude, F(Q?) the nucleon form factor, and a labels the nuclear
state. Notice the form of the second term; it has U, G and T. If G were not there we would
have UT which is zero (or at least small) since this is just the statement that a hard interaction
produces a weakly interacting object. The expansion is in the propagator G. The propagator
depends on both the internal degrees of freedom and center of mass coordinate. We use a
spectral representation of G = Y, [ d°¢'|n, ¢ > /(Ey(g) — E.(¢') + i€) < n,§'| where n
denotes the intrinsic excited states and ¢’ is the center of mass momentum. The condition
to have just UT is that we can use closure on the sum over intermediate states n. The hard
interaction produces very high energy intermediate states n which by them self would not
permit the use of closure. However U prefers low lying states and if we are lucky will cut off
the sum at sufficiently low energies to permit the use of closure. Thus the expansion time
is more a property of U then of T (although of course both are involved). This is a useful
observation since there are other reactions such as total cross-sections that allow the study
of U.'? In fact'® for the total cross-section calculation the frozen approximation is not good.
This is quite worrying for color transparency.

An alternate way of looking at the problem is as follows: The energies can be written

as E* = \/m2 + ¢? and E = \/m} + ¢. Thus the intermediate state is off shell by AE =



E — E =~ (m"?* — m?)/2q and travels a distance R = 2¢/(m*? — m?). Transparency requires
that the nuclear size must be less then R. As with the closure argument the whole question
of expansion time comes down to which states are important.

If we take a simple harmonic oscillator model'®'' and use U « r? only two states
will appear in the sumn since r* only connects the ground state to ground state and the
second excited state. This is an interesting example since it shows that it possible to get the
cancellation in the scattering amplitude with only two states in spite of the fact we need
many states to get a small size. The second point is that it is U that cuts off the sum.

Unfortunately the oscillator model is not necessarily a good approximation. However
there is some experimental data available. We need (n|Tx(Q)|n = 0) which is related to the
transition form factor {or the nucleon form factor for n=0). We also need Uy, (B, Z) which
is related to diffractive disassociation. Unfortunately what we need are matrix elements for
specific states while all we have experimentally are cross-section for fixed mass m. Assuming
the matrix elements are just square roots of cross-sections and add coherently gives contri-
butions at very large mass m. However we know that the hard interaction and diffractive
dissassociation produce different states at the same energy (the pion multiplicities are dif-
ferent) so we introduce a cutoff'* which we constrain by requiring that color transparency
is exact in the closure limit. It is quite worrying that the rather add hoc cut off is all that
makes color transparency work.

In some calculations the extreme frozen approximation is used where all effects of the
expansion are ignored. In the hadron matrix element approach this does not happen and we
can not imagine a reasonable scenario where it would be valid at the energies under discussion.
There are simply not the necessary states at very low energy.

5. Results

So far we have considered just the results to first order in perturbation theory. We take
the higher order terms approximately into account using an exponentiating technique.'' The
approach has been checked numerically and found quite accurate.'®

The results are shown in fig. 4. There is little transparency in the Q2 range of the SLAC
experiment.'® The results from that experiment, presented at his workshop, fall between the
two limits for different cuts off given in this figure and are thus nicely in agreement with our
calculations. The results are also in the same ball park as the Brookhaven results.'”

So far we have considered only quasifree kinematics. This, of course, is optimized for
nucleon production. Since color transparency arises by a cancellation between nucleon and
resonant states we can enhance color transparency by shifting off the quasi-elastic peak in
a direction to optimize for the production of excited states. This can be done by varying
the Bjorken =5 or by transferring momentum to the residual nucleus as in the Brookhaven
experiment. This should have been obvious from the beginning but we did not realize it until
it was pointed out by Boris Kolepiovich'® who discussed in the context of the role of Fermi
motion (see also Bianconi'®).

The z 5 dependence is shown in fig. 5. Only the values of 5 near one should be taken
seriously. For comparison with experiment it is probably better to do as in fig. 5b and just
compare above the quasi-elastic peak with below the quasi-elastic beak.

So now we come to our final calculation.?® We inciude in this calculation the basic
color transparency, the distributed mass with a power law cut off, the Landshoff term as
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Fig. 4. (2) The transparency, Tr, for the (e, e'p) reaction. The solid line represents the standard
Glauber calculation (g.y; = 0},). The lines are as follows dashed: sharp cutoff g(M}), dotted: eq. (5)
with M, = 1.44GeV, dash-dot: power law g(M%). (b) Energy dependence of the transparency T'r.
The data points are from Carroll et al..'” The area shaded vertically is obtained from the mechanism
of Ref.5 and amplitude of Ref..” The area shaded horizontally is obtained from the mechanism of
Ref..% In each case the upper bound uses the sharp cutoff for g(M3%) and the lower bound a power
law. The solid curve assumes no color transparency.
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Fig. 5. (a) The nuclear transparency as a function of zy. The curves correspond to Q? of 7 GeV?
(long dashed curve), 15 GeV? and 30 GeV?. The dash-dotted curve is the Glauber model. (b) The
nuclear transparency as a function of Q2. The solid curve is for zg < 1 while the dashed curve is for
zp > 1. The dash-dotted curve is the Glauber model.


http:calculation.20

- k/M A dependence A dependence
=0.1 o 0.1 03 0.3 rvv ey AF o8 P -
. T (RESE Lada T T p ] T _q
08 W -
X L =]
_ooe _N.-.ﬂ,‘:.“l-ff4,+11-:ﬁf,‘4-——,~]r.*—%i 3 R
E :'A o -o8 -01 ° 0.1 E fu |
Be HO GeV/c 4% e,
ECEE = 4 N NFTT
B e E - ]
PSS =3 3%l ]
LAY = 1 il | i - u ]
Y T T T T + ]
b 12 GeV/c B
L) ‘ ot |- ca
03 f- -
STt yre——mamoo o o —
i 3 } y: g % o
o1 b K S .1. = 2% L L 1 o 1 iz |
0o Bl | 1 1 ¢ L] 10 " . 0 10 e
© Tas ok -0 ° o Pua (Ga¥/3) Py (GeV¥/e)

Fig. 6. Transparency for (p,2p). Solid-curve full calculation, dashed-curve without the Ralston-Pire
effect, dotted-curve Glauber.

fit by Ralston and Pire,” and the kinematic effect relating to z;. The results are shown
in the next figures. In the calculations the energy dependence is more reliable then the
normalization. Also there is an uncertainty in the normalization of the experimental data. In
the figure we have therefore shifted the data down by about one standard deviation of the
quota experimental normalization error. For the ?"Al data we have not used the conventional
presentation employing a py,, effective. Instead we show the data separately at each incident
momenta. This is because the effective p;,, approach assumes that there is only one energy
scale in the problem, namely 5. Certainly when the expansion time is important this is not
correct. Part of the downward slope in the 12 GeV data comes about precisely because of the
breakdown of the concept of effective piq5. We strongly discourage the use of this concept.

The down turm in the data in fig. 6b and ¢ is due to the Landhoff term (or the threshold
effects). We believe that both this term and the proper treatment of the kinematic effects are
necessary in order to describe the data.

The agreement while not perfect is certainly at least qualitative. Thus it is possible to
describe simultanecusly the SLAC and Brookhaven data. That latter give an indication that
color transparency has been seen and its main features understood.

In conclusion we think color transparency has indeed been seen at in the Brookhaven
experiment. Although it will have to be confirmed by more precise experiments. The SLAC
experiment is at too low an energy to see much effect but their results as presented at this
conference are consistent with our calculations. It is thus possible to have qualitative agree-
ment with both the SLAC and Brookhaven experiments. More data is however desperately
needed.
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