
_ TRU P-93-63!sented at Eighth Conference on Real- Time Computer ApplicationsI
June 1993r, Particle and Plasma Physics, Vancou\"er, June 8- 11

E787 DATA ACQUISITION SOFTWARE ARCHITECTURE

M. Burke, L. Felawka, R. Poutissou,
TRIUMF, 4004 Wesbrook Mall , Vancouver, BC,

.J
 V6T 2A2 , Canada co 0">
and 0">

-«
~

-J N
;>

S. Adler, J. Haggerty, R . Strzelinski, C. Witzig, C>
Physics, Brookhaven National Laboratory, Upton, NY , ~ '11973, USA 	 a: Lw" UJ a

I I LL
1'(,

versatile and industry standard Unix-based operating sysI tem, and a high-speed I/O subsystem including two SCSI
BNL Experiment 787's second generation Unix-based buses and a VME bus integrated into its internal architec

data aquisition system is comprised of several independent ture . A clear upgrade path exists from this architecture to
programs, each of which controls a specific aspect of the SGI 's new Challenge architecture.
experiment . These programs include packages for reading In our 1992 data-taking run , the computer configuration
events from the hardware systems , analyzing and reduc included the Irix 4 .0 operating system , two R3000 CPUs,
ing the data, distributing the results to various data con and four Exabyte 8mm tape drives (three model 8200s,
sumers, and logging the data to tape or disk. Most of these

and one model 8500) . can be run in stand-alone mode, for ease of development
The front-end electronics were not changed to accomoand testing. There are also a number of daemon processes

date the new data acquisition system . In particular, SSPs for writing special data records to the data streams, and
[IJ continue to be used to accumulate data from the FASTseveral monitor programs for evaluating and controlling
BUS crates during the one second of beam in each 3.2 ~cthe progress of the whole . Coordination of these processes
ond spill. A trigger SSP notifies the secondary SSPs when is achieved through a combination of pipes, signals, shared
an event of interest has occurred, and signals them to read memory, and FIFOs , overseen by the user through a Mo
out data from their respective FASTBUS crates into memtif graphical user interface . The system runs on a Silicon
ory. Between the bursts of beam, a master SSP takes over Graphics 4D/320, interfaced to a Fastbus system through
the process of building events and transferring them over the BNL Fastbus/VME interface (BBFC), and runs under
th e branch bus to the SGI. A new high-speed fastbus to Irix and Motif/X-windows .
branch bus interface (BBFC) [2J was designed , coupling the

1. 	 REQUIREMENTS front end electronics to the SGI 's VME backplane. Data
transfer between FASTBUS and the SGI memory was mea

Brookhaven AGS Experiment 787's first generation data sured at approximately 17 Mb/s in each direction .
acquisition system was MicroVax 3200/QBUS based, and
relied on a farm of 68020-based ACP nodes for online data B. Software
processing and compaction. The QBUS bandwidth of 1.5
Mb/s, and the ultimate throughput of 233 kb/s to two Communication with t.he BBFC was facilitated with a
tapes were adequate for the first phase of the experiment, new device driver [3), which , along with the standard high
ending in 1991. Upgrades starting at that time included level IEEE FASTBUS routines, and the BNLSSP routines
a new beam line, offering three times the beam intensity [4], were ported to the SGI. These packages eased the port
as before, and a detector upgrade with new instrumenta ing of other code that interacts with hardware on this sys
tion, inc1udin:; 1000 channels of CCD transient digitizers. tem .
The event size is expected to triple once the second phase A philosophical decision was made to develop the online
is complete. The old data acquisition system could not system as a suite of independent processes, rather than
handle this throughput, 80 we undertook to design a new as a single, monolithic program. The advantages included
online system in the spring of 1992. The goals were to greater exploitation of the multi-CPU SGI architecture ,
maximize event throughput within the constraints of the and greatly simplified development and testing, since each
front-end electronics, the periodic beam cycle of the AGS, component is devoted to a single task and can in principle
and a tripled beam intensity. work as a stand-alone program. The main disadvantage ,

namely the management and synchronization of numerous
A. Hardware

processes in a multi-tasking environment, is largely han
We decided on Silicon Graphics' (SGI) Power Series dled by the Unix operating system and its built-in facilities

4D/320 computer to serve as the computing engine of the for inter-process communication.
new data acquisition system. Advantages of this system in Our software wish list included an XII/Motif user in
cluded multiple, high-performance, upgradeable CPUs, a terface to the system, in order to enhance ease of operator

training, idiot-proofing, and overall trendin ess. The XDe
signer CASE tool [5] was selected as a Motif user interface
development tool, and facilitated rapid protot.yping and
changes to the visual appearance of the system . Network
ing support was also desired , to off-load non-essential , but
CPU intensive, tasks to rem ote computers.

These features were all available under Unix/lrix . By
using the built-in facilities of this operating system , we
minimized the amount of low-level system programming
and development that was necessary, and were able to fo
cus our programming efforts exclusively on the higher-level
online tasks .

II. ARCHITECTURE

r a

,

,

. .

pipe
eignal
DCOM
FIFO
DSM
other

~....

~l
I ~

1
'-. ___________ .. . ___ .. _ _ _________________ • ____ __ --_ _ ..._._....1

Fig. 1. The E787 online system architecture.

A. Data Flow Management

The problems of moving th,. data through the online sys
tem were addressed using three systems based in shared
memory. The first was the DSM (data shared memory
manager) whose job was to rapidly transfer data into our
data reduction (DR) programs. Speed is a priority in this
serial process, and little manipulation of the data is re
quired.

Later in the system, it is necessary to gather events from
these various programs (called producers, since they inject
new data into the system) and then redistribute them to
an arbitrary number of programs (called consumers) who
request events of specific types. Speed at this point is not
as much of a concern as orderly control of the data flow .
This is managed by a svstem of FIFO buffers called the DD

(data distributor) [6] . The FIPOs are used to pass event
pointers around until all the consumers who want events
of a class have had a chance to use them . Consumers can
access the DD over TCPlIP using a special server program .

The third shared memory system in plMe is the DeOM
(data communication) , a shared memory area that is
largely used for inter-process communication . Typi cal us
age involves each process recording its current status and
operating parameters in this area for other processes to
examine and then adjust their behaviour accordingly.

B . Processes

B . l . DJ (data input)

Only a single instance of the DI is running at any given
time . Once started , it simply runs in an infinite loop, read
ing large (l00 kb) data blocks out of the FASTBUS mod
ules over the Branch Bus and BBFC . These data blocks
can contain multiple events . They are passed to the DRs
(see below) system via DSM .

B .2. DR (data reducer)

Up to sixteen instances of this producer process are per
mitted to run simultaneously, although four was the de
fault number during the 1992 data run. The DRs decom
press the data coming from the DI , and break it down into
individual events. Online event analysis and data process
ing can occur at this stage, including rejection of unaccept
able events (this stage is known as our Level 3 Trigger) .
Good events are passed into the DD .

B .3. Data Consumers

Data consumers attach to the DD and request events of
certain classes (determined by the hardware triggers that
are generated by each event) . A consumer can therefore
be configured to select every event that passes through
the system, or only a very limited subset of those events,
as appropriate to its task. Events are shared among con
sumers, so that an event will eventually get passed to every
consumer that requests it.

The DPO process manages the logging of data to a single
device . Multiple instances are allowed if there are multiple
destinations (eg. several tape drives) for the data . The
DPOs are configured to accept only certain event classes,
which are different for each instance of the process. The
result is that they perform online event sorting to different
tapes, a function that was previously performed off-line .
This stage was formerly known as Pass 0, which gave rise
to the name of this process (DPO = "data pass 0").

Other data consumers are not essential to the data ac
quisition process, but can be helpful for diagnostic pur
poses . For example, graphical event display packages can
request the occasional event coming through the system
and display it for the userloperator. A Quality of Data
(QOD) diagnostic package is regularly run using incom
ing data to quickly assess problems with the instrumenta
tion or software. These consumers are often CPU intensive
(QOD, for example, will happily impose a 100% CPU load
on the system) , but can be off-loaded to remote nodes since
the DD is accessible via TCP lIP.

2

--

.. .

··;&QJO
IW : 1000
E_to I" !VI: 0
~o I" "": 0.000
"""'1"11 Uooe : O:03:S7

VI Sll~ : \enlinaud
Wtp,rt ",,1_: tr....,."

d, ; IIO"'rlc: SIGIIIT ~
<J-<); _Ie; SIGIHl r
drl; _ie; SIGIHl r
dr2 : _,e: SICIHT r
dr3: _Ie: SICIHT ,.
ddi::tl: ,....,.Ic: SICIHT
d,; IIO"'r l c: SIGIIIT rot
1lJ1; _Id net ~
0.: _ric: SICIIIT ,..,
OJ: _ric: SIGIHT ,..,

Splllr
E..,u I" OI'ill
kbwt.. In 01'111
SpIlIU..

Iknr
Isclo.td

ItdlOMJ

ling
Itdctt'st

Itddac
I~SlM1 a

>elect ., ____iet.e (i I. ;""" u.
..1.,tiC>"> bo>< (0" _t U. cIof..,lt)
n elicit on (00.

If tII!re 1 • ., ernr In the ~

~. JJI IWII ~ IjIlU (roo

I'trtirtg • ,.., nil . In \.h i........ t

_ ot-Id C>CJrT«t 01..'-- ext.rN1

","",,1_ II I,..h~t.od . n t.r\j .in.

QCi

Q

OK I I ~p

Fig. 2. The DUI (user interlace).

B .. { Special Record Daemons

The special record daemons are a special type of data
producer that are invoked at certain times to write special
records to the data stream . Four types of special records
are currently supported: comments , which are written at
the beginning of every run and any other time at the user's
discretion; scalers , which are written once per spill; begin
runs, which are written at the start of every run; and en
druns , which are written at the end of every run . These
records are generated and broadcast to all data consumers
by daemon-like processes that sleep until signalled by the
DUI (see below) .

B .5. DUI (user interface)

The user interface is an XII/Motif program that allows
the operator to automatically start up and initialize all the
various processes of the system, quickly and easily navi
gate the states of the online system, initialize hardware,
and monitor the progress of the runs . It polls the DCOM
area to track the states of the various online processes and
reports relevant information to the user through a status
window. It also monitors pipes that are attached to each
of the processes in order to pick up messages and display
them for the operator.

At any t ime the dui is in one of seven states: initializa
tion, start-up, beginrun , active, paused , endrun, or shut
down. The appearance of the user interface changes in
each state to show the operator only those options and
state transitions that are available at that time .

Initialize

i

3

~

,II

-... Startup

\!I
Begin Run

t
Active

W
End Run

. ..- - I Shutdown
I

. ... Paused- -

. -
Fig. 3. State wagram for the online system .

I
I
J

Development and testing of the DUI was greatly sim
plified by the XDesigner user interface builder tool. It
proved so effective for generating graphical user interfaces
that snappy little GUls were written for most of our mon
itor and testing programs. Several, including applications
to monitor the DD system status and an interface to the
DPOs, have become integral components of the online sys
tem .

http:I,..h~t.od
http:Isclo.td

------ -

III. COMMUNICATION 	 V . REFERENCES

A variety of inter-process communication methods are
used to coordinate the online processes.

All processes/systems started by the DUI (including DI,
DD, and DRs) remain connected to it through pipes. This
allows the DUI to easily monitor and display error mes
sages and other output. It also allows the child processes
to be designed as simple command-driven programs, which
makes for simple development and t.esting. Most of these
programs can therefore be- run in stand-alone mode with
keyboard input. When incorporated into the online sys
tem, the DUI hijacks the standard input of the program
and writes the command strings itself; no special changes
to the child process are needed to make it realize it is now
part of a complex system of processes.

Signals are used in a few circumstances, namely to wake
up the special record daemons, to get the DI to pause its
data-reading loop or read a command, and to notify data
consumers that a special record is available for reading.

Shared memory is used to pass data and to keep other
processes apprised of a program's progress.

Semaphores are used in the DD system to access an
event in a FIFO . Because Unix prevents more than one
process from using a semaphore at a time, this facility
provides a built-in FI FO-Iocking and unlocking mechanism
that prevents collisions and data corruption by competing
processes.

IV. PERFORMANCE

Tests in the- 1992 data run resulted in a maximum
throughput rate to tape of 1.1 Mb/s. These tests were con
ducted with four 8mm tape drives logging the data, one of
which was an Exabyte- 8500 high-density drive . CPU us
age varied from 30% (half of which was system activity) for
large numbers of small events to 50% (one third of which
was system activity) for smaller numbers of large- events.
The largest CPU consumer appeared to be the DPOs and
their costly semaphore operations.

The main performance bottlenecks in the system were:
Insufficient SSP Memory. This bottleneck was the most

limiting factor in the above throughput figure. Enlarged
SSP memory is planned.

Tape Speed. This bottleneck is easily alleviated by writ
ing to several tape drives at once . Performance of the
model 8500 drive was observed to be only 70% of the max
imum 500 kb/s due to the less than optimum record size of
8 kb that was used . Record sizes of at least 32 kb have been
shown to be necessary to obtain maximum performance,
and are planned in future runs.

CPU. Although the system was not CPU-limited in the
1992 configuration, fut.ure online analysis and data reduc
tion will cause CPU power to become a factor. Some
reduction of the CPU load was achieved by off-loading
non-essential data consumer processes to remote nodes,
and further reduction is possible by eliminating the little
endian data format that now results in a large amount of
byte-swapping occuring during the online process. Oth
erwise, it is straight forward to simply upgrade the SGI's
CPU configuration.

4

[1] 	 Brafman, H., et aJ., "The SLAC Scanner Processor: A
FASTBUS Module for Data Collection and Process
ing", IEEE Trans. Nuc. Science, Vol. 32, I, 1985.

[2] 	 Haggerty, J., et aJ., "A High Spe-e-d FASTBUS In
terface for VME", presented at RT93, Vancouver,
Canada, June 8-11, 1993.

[3] 	 original device driver due to Michael Isely, FERMI
LAB.

[4) 	 see "BNL Access Rout.ines for the SSP User's Guide",
by Robert Hackenburg, BNL.

[5) 	 VI Corp, 47 Pleasant Street, Northampton , MA,
01060.

[6) 	 Witzig, C. and Adler, S. "The E787 Unix Based
Event Buffer Manager", presented at RT93, Vancou
ver, Canada, June 8-11,1993.

-(-~.-- i
I

i
1-------- '--1-- - '

--- :
}-
T

. . . -1-._
t
I

. __.- l

. , ..
~... _._-_. .-- , .

~

..

