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Abstract: ‘ ‘
We reinvestigate perturbative light cone ¢*-theory, concentrating on the zero
mode sector with longitudinal momentum p* = 0. We show that an appro-
 priate quantisation program, taking the constraints of the theory carefully into
ayccount,‘ necessarily yields a nonﬁanishing zero mode of the scalar field. This
zero mode operator enters the hamiltonian and induces additional nonlocal in-
teractions. We explicity calculate the second order mass correction stemming
from a nontrivial zero mode sector. We show that these corrections manifest
themselves as finite size effects and tend to zero in a continuum version of the
theory. As long as there is no evidence that the zero mode corrections may
be neglected a priox'i; light cone pertux:bafion theory has to be regarded more
involved than previously believed. '
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1. Ihtroduction

Light cone quantxsat:on has been regarded as a powerful tool for the perturbat:ve treatment
of field theories[1]. The requirement that the speetrum of the Poincaré generators P* should be
conta.med in the forward light cone lmphes that for massive particles the longltudmal momentum-

~p* must be p031t1ve ‘This ensures that the exact ground state of the system is the bare Fock

space vacuum of the canonical quanta. The triviality of the light cone ground state is much
preferred for the calculation of deep inelastic structure functlons form factors and many other
sub]ects of particle physics in the perturba.tive domain. A trivial vacuum state however, seems
to exclude nonperturbative phenomena, due to the common knowledge that ‘nonperturbative
physics is intrinsically related to a nontrivial ground state. ‘ ’

In the last few years attempts have been made to extend light cone quantisation to the
nonperturbative domain of field theories. This has been done within the discretisation method
of Brodsky, Pauli et. al.[2], later followed by hght cone Tamm-Dancoff techniques[3]. In a recent

 series of publications the light cone vacuum puzzle has been resolved for the Schwinger model[4,5]

and for self-interacting scalar field theories[6,7]. This success is closely related to the observation
that the study of nonperturbative light cone physics requires a careful remvestxgatlon of the
quantxsatxon procedure: Treating light cone field theories as constrained systems and carefully
taking the zero mode structure at p* = 0 into account, permxts to discuss quantum induced
vacuum expectation values, effective potentlals, phase transitions etc. [7] In contrast to the
conventional approach, nonperturbative phenomena on the light cone are no longer related to
a comphcated strueture of the vacuum state vector, but are determined by a highly nontnwa.l

- operator structure of the theory’s zero mode sector[7]

The appearence of zero mode operators, however, is not restricted to the nonperturbatwe

domain. These operators are also present in perturbation theory, which we are going to show in o

this paper. In section 2, we properly regulate the characteristic light cone infrared singularities[8]
by enclosing the system in a spatial box of length 2L Furthermore, we derive the complete set

of constramts and review the Dirac brackets. In section 3, we present the perturbative structure

of the zero mode sector and show that quantising via a correspondence principle is plagued by

an operator ordenng problem. In the last section, we discuss the consequences of a nontrivial
zero mode sector for the hamiltonian and,calculatek_the second order mass corrections stemming
from a nontrivial zero mode of ¢. We illustrate, that these corrections are finite size effects,
which tend to zero after performing the infinite volume limit,L — oo. We ﬁnaﬂy conclude, that
light cone perturba.txon theory — within a consistent quantisation procedure — is technically
more dlﬂicu]t than usually believed(1,9]. o .




2. Dirac "quantisation

In this sectlon, we briefly review the Dirac quantisation program c of light cone ¢%-theory in
'1+1 dimensions. For a more detailed discussion the reader i is referred to ref.[6,7].

' The lagrangian den31ty reads

L= 2a+¢a_¢--m $2 — ¢4 . @1)

where 9, = l(c')o + 61) is the time derivative and 9- = 2(60 — 0,) is the spatial derivative in
light cone coordinates. Note that (2.1) is linear in the velocity, 04 ¢, i.e. maximally singular[10].
Therefore, other than in the conventional approach, light cone ¢*-theory is a constrained system.
Quantising such a system is known[11] to be a nontrivial task: To obtain the physical subspace ,
“of the (classmal) phase space, the complete set of constraints has to be deduced. Since these
constraints reduce the number of independent degrees of freedom, the Poisson brackets no
>longer represent the canonical brackets of the physical phasé space, but have to be replaced by
the so-called Dirac brackets[10]. The corresponding quantum theory' is finally obtained via a
correspondence principle[10]. | ' | )

The light cone infrared singularity at longitudinal momentum p+ = 0 requires a careful
treatment of the system’s zero mode sector[4-7,12]. To this end, we enclose the system in a
spatial box extending from 2= = —L to 2~ = L and impose periodic boundary conditions for all
the phase space variables in z~ = z. In a finite spatial box the longitudinal momenta become
discrete aﬁd a clear cut separation of the zero mode (p"’ = 0) and the nonzero mode sector
(p* >0)is possible. This prescription permits to properly regulate the infrared singularity and
simultaneously takes the zero mode contributations into account. At the phase space level, this is
- technically achieved by decomposing the scalar field variable ¢ into two orthogonal components |

a zero mode part

L
1 .
- { dz §(z) | (2:2)
‘and a nonzero mode part
pa) = d(z) —w. - @3

The conjugate canonical momenta 7, and m, do not depend on the velocity and yield two

primary constraints: -

61(z) = mp(z) — D_p(z) ~ 0,
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" By applying the Dirac-Bergmann a;l-gorithm[lﬂ]; we obtain a secondary constraint:

X1 _ - ,
b =m -é—- —E { gp(a:) + w ~0. B | (2.5)

i

The existence of 03 has first been recogmsed by Maskawa and Yamawak:[l?:] and later by Wxtt-‘
man[14] This constra.mt is the zero mode of the equatxon of motion,

[4¢9+3_+m]¢(x)+ ¢3(a:) 0, | | (26)',

and permits to express the zero mode w of the scalar ﬁeld variable in terms of the ﬂuctuatmg -
field . Due to 03 the light cone ¢3-zero mode sector is no longer stuck at the classical level once
and forever, but will be influenced by loop correctxons['?} Note, that integrating the equation of

‘motion provides an alternative approach to 85 and to calculate w. For lxght cone Yukawa theory,

this has been done by McCartor and Robertson[12] to determine the system’s bosonic zero mode.
In the framework of the Dirm—Bergmann algorithm 65 completes the set of constraints[6,7] and
the Dirac brackets may now be evaluated. The field algebra of the nonzero mode sector is

(@) so(y)}*=——§ | goente - x;;’] o
o= §[en-5], en
() = jo- (s -]
In the zero-mode sector, we obtain an abel'ian field algebra:
01" = o ) —from) =0, ey

In addition, we get a nontrivial Dirac bracket

L .
@) = 57 1Ay { dy {o(e), o))" 2 [zw(y)+sa2<y)] @)

-

with the abbreviation

M’(é,w);m2+ [w+——/dw (y)] o (210),



- The complicated Dirac bracket in (2.9) is due to a coupling of the zero mode and the nonzero
‘mode sector, which is caused by 63. Since the quantisation of the system is performed by

applying the correspondence principle,

14, Bl=i{4 B}, B ‘ CA)

for any two opera.tors A, B this highly nontnvual couplmg 1s preserved at the quantum level.
In the nonperturbatwe approach of ref.[7] the infinite volume limit, L — o0, has to be perfor-
med at the very end of any calculation, in order to determine the quantum induced vacuum
contributions, correctly. Since in this paper we study the corresponding perturbative domam,
“the box descriptien has also to be retained for the quantum ¢*-theory. The prize one has to
 pay for this consistent regularisation is an operator ordering problem for [&, ¢(z)]: Applying
the correspondence principle to the Dirac bracket in (2.9), the R.H.S of this formula becomes
operator-valued and an appropnate operator ordering is by no means clear.

In the following section, we solve 85 for & within perturbation theory. Provided with an

explicit solution for @, we calculate the correct quantum commutator [&, ¢(z)] to O(A2). The

- result is compared to the quantum analogue of (2.9), 111ustratmg that the correct operator

ordermg can not be obtained from the correspondence principle.

3. Perturbative structure of the zero mode sector

In a recent paper[7] we have shown that the nonperturbative regime of light cone ¢*-theory 7
is‘dominated by the zero mode sector of the system: The key role is played by the quantum

version of 63,

L .- o -

. A 1 o .
s L T / [6%(2) + $(2)0 + $(2)0 $(2) +6@%()] = 0. (3.)
Formula (3.1) is again the zero mode of the equatien of motion and therefore also present in

perturbation theory. To solve it for @ explicity, we define this operator as a series in A:

= Z A" . , (3.2)
n=1

The unknown operators, Wy, are determined recurswely, by inserting (3.2) into the identity
(3.1). A straightforward calculation leads to
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Co=b o’ (21;)2 f dzdy | “”(x)eo"‘(y)ﬂo(z)so (y)¢(x)+<p3(y)¢2($)]

All higher order contnbutlons to @ may be evaluated in the same way. It is easy to see that the
operator structure of @ excludes a nonva.mshmg vacuum expectatxon value, ie. ‘

(Ow]0) = A(Giwlla)+A2(0]w2|0)+0()«3) LU - (3.4)"

This is phys:cally expected thhm a perturbatwe treatment of the zero mode sector and coincides
with ref.[7]. Nevertheless, the operatot structure of & is highly nontnvml and modxﬁes light cone
#*-theory. This will be exphcxtly demonstrated in the next section.

In the remaining part of this section, we study the derivation of the commutator that
couples the zero mode and the nonzero mode sector. We calculate the correct commutator
to O()\?) using the knowledge of & from (3.3) and then compare this result with- [ , <p(:1:)] ,
obtained from the corresponding Dlrmc bracket. (3. 3) yields

&, ¢(z)] =A «p(z)] + X an, 9(2)] + ow) :

(@1,
AL
2m

i

f dy [w(z), W) ¢* () -

~ T (‘25)“'[ ,dy dz19(2), sa(y)] OLORE OO ERC)

' L
- Tom @y [ dydz [9(2), PW [P F W) + 0(2) W) 9(2) +
| + 5@ ()]

Altematively, the commutator, [&, :p(a:)] is obtained from the Dirac bracket in (2. 9) Since
the R.H.S of (2.9) becomes operator-valued, an operator ordering has to be defined. To ensure



hermicity a Weyl prescription.seems to be the \only appropriate operator ordering. We finally

get
(@, 8)] = 3 | Mz(l 5500+ T )B(x)] )
with the a.bbrev:atxon o |
| \ L ' v |
B(z):=} j dy1§(z), $()] ($2(0) +6$) +$W)5) . (37)

Expandmg in the couphng constant A, we have

L
&,96)) =5 57 / dy[9(2), )] $*(w)—
-L

- Z’z’i')‘[ i 66), 601 (P60 + S0P O] @9
Lo |
- gg @‘L—)zl dydz [¢(z), $(y)] [¢°(2) #*(y) + #*(v) $°(2)] -

Comparing (3.5) with (3.8), one immediately sees that both commutators do not coincide.
Formula (3.8) differs from the exact result in (3.5) by a term proportional to

L ’ , :
2 , ' ; :
GEF { dydz (§(z), $(1)]$() () #(2) - 69
This discussion explicitly demonstrates the shortcoming of the Dirac-Bergmann algorithm for
‘theories with nonlinear interactions: The zero mode of the (nonlinear) equation of motion
appears as a constraint, and yields a field dependent Dirac bracket, which couples the zero
mode and the nonzero mode sector (c.f. (2.9)). Transforming this bracket into a commutator
~ via the correspondence principle results in an operator ordering, however, which is far from
being the correct one. Since we believe that the quantum description is more fundamental than
the classical one, this ordering problem can only be resolved by first quantising the theory and
~then imposing and solving the (operator) constraints of the system This has been done in a
few cases for theories with a finite number of degrees of freedom([15]. For field theories, however,
~ this is a very ambitious program, which has hardly been considered in the literature[16].
Fortunately, this operator brdering problem does not really impede an extensive discussion
of ¢*-theory in the perturbatlve as well as in the nonperturbative domain,; as  we can obtain

(@, (p(:c)] by solving b5 = 0 for &.
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4. Second order mass correction

A nonvanishing operat.or @, a8 obtamed in the ptev:ous sectmn, dehmtely modifies the

'ha.mﬂtonxa.n
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with the abbreviation

i Y3

N S £ T
Pcorr:“/dz[zmzwz“”“ﬁ(‘p ‘P + o ’P3+W?‘P?+‘P2ww+
2T ,

The additional term P __ is derived making use of the operator identity 63 =0. Notethe.t in

 the lowest order of the coupling constant, A, a pure $%-hamiltonian is reproduced, since & is at

least of order A. The second order, hoWevet,’ is altered by a zero mode correction:

o= 221;/ dedy [90(:8) (y)sa’(z)+¢2(z)¢3(y)¢(z)].‘ 43).

Due to a nontnvxal w, all orders of the couphng constant are involved i zn the ha.zmltoman and

induce additional nonlocal interactions as in (4.3). From this observation, we conclude that a

discretised version of light cone perturbation theory is no longer equwalent to the conventional
¢*-theory as previously beheved[l 9. '

To illustrate the consequences stemrmng frorn a nontrivial zero mode, we calculate the - |

correspondxng second order mass correction. To this end we consider the full one—parhcle

propagator in the framework of 'old-fashioned’ perturbation theory. Since the zero que of the

scalar field operator has xm vacuum expectation value, the full propagator reads

iRz = OIT [3@W)] 10 = OIT* (b@e@1 0. @44) o

In terms of Fock operators the scalar field ¢(z) is ‘

', $(z) =)

) n=1

Here, at (a,) creates (a.nmhxlates) a particle thh discrete longxtudmal momentum k“' = 2nn/L,

Virn

and

[n, dl] = bum - - (46)°

B e T A L
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(41)

a’eq-a@@g:)].. (4.2)

[ _,k:z-,/z+aleek,‘:if/2], - - (4.5)



With (4.5) th’e Fourier representation of the propagator is

1

~tk,. z iky -2 : » .’
et = 3 g [t e ]@, 6

where we have used the abbreviations kn := (k~, k), and [n) := a'(k} )IO) We also introduced
a subtracted hatmltoma.n, P“ = P~ —E, with E being the vacuum expectation value of the

hamiltonian:
P~10) = EJ0) . | L (48)
To proceed, we define the free one-particle propagator - |

. 1

Gy := - , - 4.9
°. k= — P, +ie : | (4.9)
with
‘ ) L ‘ . L | .
1!?1,'a = 5mzfata: [¢2_(0|¢2|0)]*= 5m2 /da: N7 P (4.10)
-L ~L ‘

The one-particle Fock space a.mphtude in (4. 7) ﬁna.lly reads

) s 1 . ~ ~ ~ A ‘ ~ ~ ~ ~ ,\ : ‘v o
(nlk_ 5= +z,€|n) = (n|Goln) + (n|Go V, Goln) + (n|Go V, Go Vi Goln) +... . (4.11)

In formula (4.11) we have introduced a subtracted interaction hamiltonian, V, := P — P,
Note that in a properly regularised version of light cone quantisation, a single point, p* =0, is

excluded from the longitudinal momentum spectrum of the free one-particle amplitude, Go(k»),

. n . 1 ] _ ’732
Gg(kn) = (anoln) = m s kn = F . (4.12)

This fact is preserved, even after performing the infinite volume limit, L — oo. The reader,
who is interested in more technical details, is referred to ref.[4]. The free one-particle light
~ cone propagator therefore dlﬁ'ers from the corresponding conventional propagator in contrast to
common knowledge[1,9]. ‘

The zero mode contribution to the second order mass shxft is

M yry = [(an;Si’ln) — (0| PS210)] . (4.13)

corr



A straightforward calculation leads to o o . a

: 22 n-1 ‘ 0o 1 : .
£ .2 — +
brmcorr = " 6m? (47r)3 [ Z  (n— m)m 4 g (n+m)m | b

-
inz (4‘;)3 2 37+ ¥(n) +20(1+ )] B}

| (4.14)'

where 4 is Euler’s constant and ¥ the Dlgamma-functlon[17] This example demonstrates that
the zero mode corrections are indeed nonvanishing and deﬁmtely alter the results of discretised
perturbatlon theory. This results contradicts the common knowledge that light cone scalar
field theory is equivalent to the ‘conventional approach[1,9]. There is, however, a loophole: It
may be possible that the perturbatlve zero mode corrections only modify the box description
of perturba.tion theory, i.e. these corrections are finite size effects. To check this argument ’
we study the continuum version of §m?,,,. To study the L-dependence of (4.14) exphc:tly, we

rewrite §m?, . in terms of the momenta k}:

L
or

pm?_—_ A 1 1
corr — T 32 161rk+ L

~ Since in the infinite volume limit, L — oo, the longitudinal momenta, k}, remain ﬁnite, the

[3 +\I/(k ———)+2\Il(1+k (4.15)
Digamma function, ¥, is dominated by its asymptotic behaviour[17]

_l_ 1 N 1
12z2 12024

- ¥(z) ~1In(2) - +... (2 — 00 in | "ar'g(z) |<m). (4._16)
To determme the infinite volume hmit of émZ,,,, it is therefore sufficient to insert (4 16) into
(4.15). A stra,lghtforwa,rd calculation ylelds

| | FE U T A T 1 .
: Lh_{n m?,,,. = ~37 6nkF le;o I 3y + In(ky ﬂ) +2In(1+k; -—;) +. - = 0. (4.17)

Note that the same results can be obtained by replacmg the sums in (4.14) by their correspondlng v

momentum integrals. \
Due to its L-dependence the second order mass correctlon 6mco,, is identified as a finite

size effect and therefore, in a continuum version, the second order mass shift is equlvalent to
the conventional result. However, light cone perturbatlon theory becomes technically more
difficult than previously beheved[l 9]: Since there is no ev1dence that the perturbative zero
mode structure of light cone ¢*-theory may be neglected a pnon, all zero mode corrections
have to be taken into account. Finally, at the very end of any calculation the infinite volume
limit, L — oo, has to be performed, to decide which of the zero mode correct:ons drop outin a .

contmuum versmn

0



5. Conclusions

To handle the infrared structure of light cone field theories carefully, it is necessary to
regulate the theory. The discretisation method discussed in this paper, is a convenient procedure
to regularise the infrared singularity of light cone field theory and additionally does not omit
the zero mode structure. This is an important feature, since the zero mode sector is known -
" to dominate nonperturbative hght cone physics[7] and cannot be excluded in a perturbative
approach a priori. The previous investigation has shown, that in a discretised version of light
cone ¢*- theory, the zero inode sector is nontrivial. The corresponding contributions to the
perturbative approach have been discussed for the second order mass shift. We have been able
to identify the 2nd order zero mode mass corrections as finite size effects, but we have not
been able to give a general proof, which permlts to neglect zero mode corrections from the very
beginning. As long as such a proof is mlssmg, light cone perturbation theory is technically more
difficult than prev1ously beheved[l 9.
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