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Abstract 

We present BI1 effective theory describing the low-energy properties of an in
teracting 20 electron g8.8 at large non-integer filling factors II ~ 1. Assuming 
that the interaction is sufficiently weak, r, < 1, we integrate out eJl the fMt 
degrees of freedom , and derive the effective Hamiltonian acting in the Fock 
space of the partially filled Landau level only. This theory enables lU! to find 
two energy scales controUing the electron dynamics at energ;es less than Tiwe. 

The first energy scale, (Tiwe /II) In (IIr,) , appe8.1"8 in the one electron spectreJ 
density 8.8 the width of "pseudogap. The second sceJe, r,Tiwe, is pare.met
riClllly lRrger; it characteri:zes the exchBl1ge-enhBl1ced spin .plitting and the 
thermodynamic density of states . 

PACS numbers : 73.20.0x, 73.40.Hm, 73.40.Gk 
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I. INTRODUCTION 

Since the discovery of the fractional qU6l1tum Hall effect I, the properties of two
dimensional (20) interacting electron systems in a strong magnet ic field have attract.ed 
persistent attention. Historically, almost all the efforts ~re directed toward the study of 
the strong magnetic field C88e when only the lowest L6I1dau level is occupied . Some attempts 
were undertaken2 to extend the a.nalysis to a larger filling factor II > 1. However, they were 
all limited to the ce.se when the energy of the electron-electron interaction is much smflller 
th6l1 the inter- Landau level8pacing, T.we ;$> e2 /(Kl) , with eand It being the magnetic lengt.h 
and the background dielectric COll8tant respectively. Under this condition , one can dl'scribe 
the system in terms of one L6I1dau level only; the effect of mixing of the other Landau levels 
was either neglected or taken into account by perturbation theory3 . 

In a weak magnetic field , the typical Coulomb energy exceeds the cyclotron energy fiwe . 

In this C88e , one can start from the Fermi liquid theory in zero magnetic field . The concp.pt 
of Fermi liquid usually enables one to neglect the interactions between quasi particles whl'n 
determining their energy spectrum in the vicinity of the Fermi level. This concept is ba~E'rl, 
first, on the screening of Coulomb interaction, and, second, on the constraint on thp. phASe 
space allowed for a scattering event4. Landau quantization of the non-interacting qUf\Sipar
ticles in two dimensions creates a system of discrete levels . The existence of ener!1J' gflpS 
between the levels affects adversely the screening, which involves the low-energy excitat.ions 
of the electron system. In addition, if the Fermi level coincides with a Landflu level , the 
system of non-interacting quasiparticles becomes infinitely degenerate, and even a wenk in
teraction lifts this degeneracy. This may result in a non-trivia.l fine structure of the pnrtifllly 
filled Landau level (PFLL). 

In this paper, we study the low-energy properties of the system with a partially filled high 
L6I1dau level5 (the level index N ::t> 1 equals to the integer part of [1I/2J) . By integrating Ollt 
all the other degrees of freedom , we derive the effective interaction between the electrons 
occupying this level. This procedure is valid for a wea.ldy interacting electron gf\S r, :s 1, 
a.nd at sufficiently large filling factors, Nr, ;$> 1. (Here r, == V2e2/lthvF" is the conventional 
parameter characterizing the interaction strength.) 

The effective Hamiltoni6l1 enables us to develop a microscopic theory of the thermody
namic and tunnelling densities of states, and a description of spin excitations. In the tun· 
nelling density of states, we find a pseudo-gap with a characterist ic width (hwe/2N) In(N r .• ), 
which confirms the result of the hydrodynamic approach6 . The thermodynamic density of 
states and spin excitations are characterized by the energy scale r,hwe. Both energies In e 
smaller than hwe · It makes our theory complementary to the conventional Fermi liquid 
picture7 which is va.lid in the energy range E ;;: hwe. 

The paper is arranged 118 follows. Sec. " is a qualitative discussion of the energy scnles 
relevant for the problem, and the summary of our main results. Sec. III is devoted to 
the rigorous derivation of the effective Hamiltonian describing the low-energy physics . In 
Sees. IV and V we apply the effective Hamiltonian to study the thermodynamic and the 
tunnelling density of states. The spin excitations are discussed in Sec. VI. 
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II. QUALITATIVE DISCUSSION AND RESULTS 

Let us first consider an incompressible electron liquid with an integer filling factor II = 
2N . Because of the gap Tiwe in the spectrum, an external in-plane electric field E can not 
be screened by the 2D electron system. Instead, it caUSE!! only a finite polarization per 
unit area, 'P = xE . The polarizability of the incompressible 2D electron liquid reducE!! the 
interaction U(r) between two point charges embedded into it, 

rPq 211'e2_1_eiqr , (2.1) U(r) = ! (211')2 ItQ o(q) 

where the two-dimensional dielectric function o(q) is related to the polarizability X by8 

211'q
E(q) = 1 + -;-X(q). (2.2) 

At small wave vectors, the matrix elements of the dipolar moment between adjacent 
Landau levels, dN.N-I, give the main contribution to the polarizability, X ~ nLldN,N- tl 2 /1iwc; 

here nl. = 1/211'e' is the electron density on a Landau level. The characteristic spreading of 
the electron wave function on a high Landau level is equal to the cyclotron radius ~ == vp/we, 
and the estimate of the dipolar moment is dN .N - 1 ~ e~. Substituting X into Eq. (2 .2), one 
finds9 : 

R2 
c(q) = 1 + -.E.q, (2.3) 

ClB 

where ClB = ,,'I</me' is the Bohr radius. Eq. (2 .3) is valid only at small wave vectors, 
qRe « 1. In the opposite limit, q~ » 1, a large number of Landau levels participate 
in pol!nization of the 2D electron liquid. Therefore, the standard Thomas-Fenni screening 

holds: 

2 
E(q) = 1+-. (2.4)

aBq 

Formulas (2 .3) and (2.4) match at q~ ~ 1; the coITE!!ponding value of the dielectric constant, 
c( q ~ 1/Re) ~ ~/aB' is large in the weak magnetic field limit, where ~ »aB. The 
dielectric function for arbitrary q is given by Eq. (3.26), see Sec. III . 

As it follows from Eq. (2.3), polarization is irrelevant only for interactions on a very large 
lengt.h ~cale, r » R~/aB' where U(r) is given by the unscreened Coulomb interaction, see 
Fig.!. At a sm"lIer !1Cale, Re <t:: r <t:: R~/ClB' pols.rization is important, and Eqs . (2.1) and 
(2.3) yield : 

1iw (R2)U(r) '" ---= In _e . (2.5)
2N ClBr 

A t OR « r « ~, according to Eq. (2 .4), Thomas-Fermi screening takes placer, and the 
potential has the form 

U(r) '" e2a~ (2.6)
r3 . 
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The renormalized potential Eq. (2.1) is significantly smaller than 1iwe . Therefore, unlike 
the bare Coulomb potential, the renormalized interaction does not mix Landau levels . This 
observation enables us to construct an effective theory of the low energy properties of the 
electron system. Similar to the strong magnetic field case, II < 1, the corresponding Hamil
tonian Is just the energy of interaction between the electrons restricted to a single , partially 
filled Landau level. The main difference is that in our case the interaction potential (2 .1) 
is much smaller than bare Coulomb potential , and the PFLL has a high index N » 1. Al
though still unsolvable, this low-energy theory is much simpler than the original one, where 
all the Landau levels were relevant . 

Armed with the effective theory, we are able to estimate the characteristic energy scales 
which control tbe low-energy dynamics. In order to make these estimates, we employ the 
Hartree-Fock trial function, baaed on the one-electron wave functions of the N -th Landau 
level. (See Sees. IV and V for more details.) At small electron concentration on the PFLL,
n: ;S 1/R~, the separation between electrons on this level exceeds the size of the wa\'C 
function, ~. In this C88e the system under consideration is equivalent to a classical crystal 
of point charges interacting via potential (2.1). In the extremely dilute limit, n: « Cl~/ R~, 
the polarization is not important, and the usual Coulomb repulsion between the electrons 
of the PFLL is not mod ified. In this limit the electron system of the PFLL does not differ 
from a Wigner crystal of electrons of the lowest Landau level in the strong magnetic field 
regime. However, due to the polarization effect, there is a wide region of electron densities 
in the weak field regime, Cl~/~ ;S n: ;S 1/ R~ , where the Coulomb repulsion in thc crystal is 
replaced by the logarithmic potential (2.5). In this case, the static properties of the electron 
crystal are equivalent to those of the vortex lattice in a thin superconducting film 10 

We apply the developed picture to study of the energy dependence of the tunnelling 
density of states. We find a sllPpression of the tunnelling density of states (one-electron 
spectral delUlity) at energies close to the Fermi level EF , which is similar to the known 

13rE!!ultsll - for a Bmall filling factor, II ;S 1. In the latter case, despite rather different 
approaches, all the authorsll - 13 find a "gap" region of width tlg '" e2n!/2/1< (here n, == n:~ o 
is the total electron density at II < 1) . Such a gap can be easily understood : tlg equals 
the Coulomb interaction energy of an extra electron with a "frozen" 2D electron systcm . If 
there were no relaxation of the system at all, the density of slates would vanish at energies 
IE - EFI ;S tl,. The relaxation proce88e8 smear out the threshold in the density of states; 
however, the supprE!!8ion is still strong at these energies, because the characteristic relaxation 
time exceeds ,,/ tl, in a strong magnetic field. For a weo.k magnetic field, there are two 
stages in the evolution of the system after an electron tunnelled in . On thc short time 
scale, t ....,.w~l, the polarization of the medium is formed, and the potential induced by the 
additional electron acquires the form (2.1). At larger time scalE!!, only the electrons of the 
PFLL can be re-distributed . The latter processes are slow, which caUSE!! the suppression of 
the tunnelling density of statE!! . The corresponding gap is determined by the interaction of 

the tunneled electron with its nearE!!t neighbors, tlg'" U(r '" 1/ ,;;;f). For a broad range 

of the filling factors of the PFLL, Cl~/~ <t:: n: <t:: 1/ R~, the width of the gap is: 

Tiwc I (~n:)A (2.7)<->g '" 4N n Cl1 . 

It. is worth noticing that tlg depends on the interaction strength and on the electron dcnsity 
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on the PFLL only logArithmically. 
At larger concentrations. n~ ~ R;l. the single electron wave functions are still orthogo

nal to each other , but the densities corresponding to these wave functions have a significant 
spatial overlap. Because of the strong repulsion between electrons at short distances, one 
could naively expect that the interaction on the8e distances gives the main contribution to 
the energy of the many-electron state. However. for the fully spin polarized electron system 
of the PFLL, the orbital part of the many-electron wave function is antisymmetric. and 
vanishes whenever two electrons have the same coordinates. This suppression of the wave 
function amplitude compensates the large value of the interaction potential at r ~ aBo At 
larger distances, aB ~ r ~ Re. the interaction (2.6) decays rapidly. and the cOrTel!ponding 
contribution to the Hartree-Fock energy turns out to be smaller than the contribution of 
the long-range interaction (2.5). see Sees. IV and V. This results in the saturation of the 
logarithmic growth of the gap ti, with the electron density: at n~ ~ R;l the gap in the 
tunnelling density of states is 

Tiwc )ti, ~ 2N In (r,N . (2.8) 

This estimate was obtained previously in the hamework of the hydrodynamic approachs . 
We turn now to the discussion of the spin-flip excitations. The orbital part of the many

electron wave function of such an excited state is no longer antisymmetric. Therefore, the 
energy of such an excitation, ti" is determined not only by the bare Zeeman energy but also 
by the extra interaction energy associated with the change in the structure of the orbital wave 
function. Because the orbital part of the wave function is not antisymmetric, the interaction 
on a short range (r ~ a8) now does contribute to the energy of the state. This corresponds 
to t.he well known exchange enhancement of the g-factor I4 

• Following Ref. 15 we analyze 
the exactly solvable C6Be of a PFLL which has a completely filled spin-polarized sublevel. 
Flipping the spin of a single electron affects the exchange interaction of this electron with all 
the other electrons of the same Landau level. All the lower Landau level8 carry equal number 
of electrons of both spin polarizations. and do not contribute to the energy 8BBOCiated with 
the spin flip. Therefore. only 1/2N-th haction of the total electron density participates 
in the exchange enhancement, and the corresponding contribution to ti, is approximately 
N times smaller than the exchange energy per electron at zero magnetic field . For a 20 
electron gas with Fermi wave vector kr, the latter energy is of the order e1kr//t, and the 
contribution to ti, is of the order e'kr//tN. The rigorous result obtained in Sec. VI differs 
from this estimate only by a logarithmic factor . For the effective g-factor defined by the 
relation 

ti, 
(2.9)ge/f == Tiw ' c 

we obt.ain 

?,3/l)~In (-, (2.10)gofl=go+ v'2". r, 

if the filling factor II is odd . Here go is determined by the Zeeman splitting in the absence 
of the interaction. and it i~ usually small (in GaAs the value of go is only 0.029) . For the 
even filling factors, the value of ti, is determined solely by go14. 
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We see that in the weak magnetic field. the energy scale of charge excit.ations Ttwc / N is 
parametrically smaller than the energy scale for spin excitations r,Ttwc ' This is qualitatively 
different hom the situation at low filling factor. II ~ 1. where both these excitations are 
characterized by the same energy scale e1/ d . 

III. EFFECTIVE HAMILTONIAN 

We start hom the full Hamiltonian of the system 

H = Ho + H'"t, (3.1) 

where the Hamiltonian for non-interacting electrons, flo , is given by 

Ho = L [nTiwc - JlI1/l~.t"'n,. (3.2)n,. 
Here n and k are the Landau level index and the guiding center coordinate respectively (we 
adopt the Landau gauge). The fermionic field operators in Eq. (3.2) satisfy the standard 

anticommutation relations {1/In.t,1/Im.q} = O. {"'!.• , "'m.q} = limnlitq , and Jl is the chemical 
potential (we include the energy Tiwc/2 into It) . To simplify the notation , we omit the spin 
indices. We will also neglect the Zeeman term goa1twc/2 in all the intermediate calculations. 
This is legitimate because !10 « 1 and therefore all the effects associated with the small 
Zeeman energy can be included in the effective Hamiltonian after the fast degrees of freedom 
are integrated out. 

Electron-electron interaction is described by 

• e
1 If rflr.rflr. .) .

H'n' = 2/t Ir. _ r.1 : (p(r. - n,) (p(r.) - ne) : (3.3) 

where : ... : stands for the normal ordering. p is the electron density operator, p(r) = 

\II1(r)\II(r). and ne is the average electron density. The electron annihilation operator \II 
is related to the operators "'n.• by \II(r) = L:n.• "'n.I:'I'n.• (r), where 'l'nAr) are the single 
electron wave functions in a magnetic field . 

In order to develop the effective low-energy theory. we notice that the expression for the 
partition function. Z = Trexp( -13H). can be written as 

Z = TrN (Tr~ exp( -13ff)) , (34) 

where TrN is the trace over the Fock space of the PFLL (N is the index of the PFLL, 13 
is the inverse temperature) and Tr~ means trace over all the other Landau levels. At low 
temperatures, 131twe » 1, Eq. (3.4) acquires the form 

Z = TrN exp( -13H,,,), (3..5) 

where the effective Hamiltonian He" is defined as 

. 1·.
H", = - ~~oo ~ In 1\(130). 1\(130) = Tr~ {e-iJoii} . (3 .6) 
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Let us emphasize that, in general, the low frequency properties can be described only 
by means of the effective action which includes a retarded interaction, The description by 
an effective Hamiltonian with instantaneous interaction is possible only if the characteristic 
time of the retardation is much smaller than hi Ee, where Ee is the maximal energy seale 
which is considered within the effective theory, This condition is met for the problem under 
consideration. Indeed, the summation in Eq, (3.6) involves inter-Landau level transitions 
only, These transitions are associated with the energy gaps not smaller than hwe , Corre
spondingly, the characteristic time of the retardation related to such a transition is t :s w~ I. 

On the ot.her hand, we saw at the Sec. II that the largest characteristic energy Ee = 6, is 
still parametrically smaller than hwe , which enables us to neglect the retardation, 

We now turn to the calculation of the effective Hamiltonian (3,6). The simplest way 
to proceed is to use the Hubbard-Stratonovich transformation: first, we introduce auxiliary 
scalar field ¢(r, r) to decouple quartic in 'II interaction part of the Hamiltonian; second, we 
perform the summation over all the fermionic degrees of freedom not belonging to PFLL. 
After that, we int.egrate out auxiliary fields by means of the saddle point approximation and 
thus obtain the effective Hamiltonian H.". 

Below we implement this procedure. Performing the first step of the Hubbard
Stratonovich transformation, we find for /I from Eq. (3.6) 

A(fJo) = fV¢ex p Gfd3Efd3E'¢(E)¢(E')K(E-E')) x 

Tr',; {e-iJoHOTTexp ( - f d3E¢(E) (p(E) -n.)) }, (3.7) 

where TT is the imaginary time ordering, and 3D vector E represents time and space coor
dinates, E = (r, r). The domain of integration over E is: r E [0, fJo], x E [0, L.], y E [0, Lv], 
where L. x L. is the geometrical size of the 20 system, We will omit the Planck constant 
in all the intermediate calculations, 

The measure of the functional integral in Eq, (3,7) is determined by the condition 

fv¢ exp Gfd3E. f d3E.¢(E.)¢(E.)K(E. - E.)) = I, (3,8) 

and t.he function K is defined by the equation 

f d3E3K(E. -E
3 

) e'~(r3 -r,.) = 6( E. -E.). (3,9) 
It r 3 -r:ll 

The density operator is 

p(r, r) = "'(r, r + f)W(r, r), f -+ +0, (3,10) 

whprp the fermionic opprators in Matsubara representation are W(r) = ed/oWe-TH., and 
$(r) = Wf( -r). By introducing the infinitesimal positive time shift f into definit.ion (3.10) 
we preserve the normal ordering of the fermionic operators in 'the interaction Hamiltonian, 
see Eq. (3.3). 

After t.he decoupling is performed, the fermionic part of the Hamiltonian in Eq. (3.7) 
becomes quadratic, which enables us to make the second step of the Hubbard-Strat.onovich 
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transformation, i.e. to carry out the trace Tr',; over the "fast" fermionic degrees of freedom. 
The result depends solely on the variables belonging to the PFLL: 

A(fJo) = e-iJoH~fV¢ e-F.'.ITT {e-tol~'~N Ie- F,{ ~''''N''''''} } , 

Fo{¢} = fd3 Ef.(E, E) - ~ f~E¢(E) 
-~fd3E. f ~E,¢(E.)¢(E.) (K(E. -E.)  4GN(E.. E.)G~(E., E,)) , 

(3.lIa) 

(3.llb) 

Fd¢,PN} = f ~E¢(E) (PN(E) - n~), (3.lIc) 

F, {¢, 'liN, "'N} = f d3E. f ~E. ["'N(E;)WN(E,) - 2GN(E.. E.)1¢(E.)G~(E" E.)¢(E,), (3.lld) 

GN(E" E.) = _PN(r"r.)e(,.,-n)(Nw,-"lO(rl -r, - d, (3.lIe) 

where the 3D vector E+ is (r + f,r). In Eqs. (3.11) 'liN is the projection of the fermionic 
operator (in Matsubara representation) on the PFLL, 'II N(E) = eT("-Nw,l Lk l/lN,k'PN,k(r), 
operator "'N(r) is defined as -PN(r) = W~(-r), Projections of the density operator P 
and of the Hamiltonian flo on the PFLL are given by PN(E) = "'N(e+)WN(E) and by fit' = 

(Nwe - Il) J ~rpN( r) respectively, In Eq, (3, lie), PN(r" r.) is the projection operator onto 
the PFLU5 ; n:' = n. - N/"rrf2 is the average electron concentration on the PFLL. Operator 
F, in Eq, (3, lid) is defined in such a way TTF, = F" This follows from the anticommutation 

relation for the fermionic operators {WN(r.), W~(r.)} = PN(r" r.). 

The Green's function G.(E., E.) is the kernel of the integral operator: 

• '.L [a We -.L" .Lj-I -.L
G~=PN -ar+Il+2-PN'H.~PN PN, (3.12) 

Here P!; is the project ion operator onto the space of functions orlhoqonal to the st.ates of the 
PFLL I6 , and i£~ is the Hamiltonian of an electron in the magnetic field and in thp extern!'1 
potential ¢: 

• (-i'V+~A)' +¢(r,r). (3.13)'H.~ = 2m 

The function G~ describes the evolution in the external field ¢ of electron states constrainen 
to the Landau levels n f. N. This constraint is implemented by the introduction of t.he 
projection operators P!; into Eq, (3,12). At rl = r, the function G~ is defined as 

G~(rl,rtl-+ G~(rl,rl + f) (3.14) 

in accordance with Eq. (3,10), 
The first term in Eq. (3.lIb) results from the summation over the fermionic states wit.h 

n f. N, and represents the "thermodynamic potential" of electrons in these states in the 
field ¢' The function f~(E" E.) is defined as the kernel of the operator 

i~ = 2InG~, (3.15) 
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with Co, from Eq. (3.12). Here, the factor 2 comes from the spin degeneracy. 
In or<i<>r to perform the integration over the auxiliary field in Eq . (3. lIa), we employ 

the sruidk point approximation. It means that one has to expand the functional Fo!4>}, see 

Eq. (3 . lIb), an<lthe operator F2 {4>, 'liN , ~N}' see Eq. (3 . lId), up to the second order in 4>. 
We st.art. from the expansion of the operator F2 {4>, 'liN, WN} ' It containa explicitly a 

factor, which is bilinear in t/J, an<ltherefore we can replace C~ in Eq. (3.lld) by the Green's 
fllnction Co of an electron in the absence of an external field , 4> = O. Then, Eq. (3 .12) 
enabk, liS to find the explicit form of Co: 

Co(r"T,;r2,T2) = L cp~,.(r2)cp",.(rtJe("'-")("",<-~1 
•."#N 

x 10h - Tt}O(N - n) -O(TI - T2)0(n - N)]. (3.16) 

Whrn expanding the first term in Fo!4>}, we use definition (3 .15) and the solution of 
E'1s. (3.12), (3.13) up to the second order in 4>, and we obtain: 

1d~eJ.,(e, e) '" I3ono+ ,;1dJe4>(e)+ 

+1dJe, 1dJe,4>(e, )4>(e,)Co(e" e,)Co(e" e,), (3.17) 

where 110 = I(N - I )ru.;,/2 - III N L. L./rrfl is the thermodynamic potent.ial of the syst.em 
of nonint.rrad.ing electrons on the completely filled Landau levels. The third t.erm in t.he 
fllnctional Fo!4>}, sec E'1. (3. llb), is already bilinear in 4>. 

Snbstitnt.ion of E'1 . (3.17) into E'1' (3 .11 b) yif'ldR 

Fo!4>} = (Jnl1o -:1111dJe,d~e,4>(e,)S(e, - e,)4>(e,), (3.18) 

where t.he .second term describes fluctuations of the field 4> which are renormalized due to 
t he int , e~rRt.erl Ollt dr~rees of freedom . The kernel S equals to 

S(r, T) = 1dwrJlq Kq .(2rr)J z;2c(q,w)e'Qr-iwT (3.19) 
e ' 

whNr d'l.w) coincides wit.h the dielectric fundion calculated in the random phil.'" 
I-l.l l l)roximaf.ion I7 

: 

2rre2 

dq,w) = 1 - -n(q,w). (3.20)
Kq 

Here, thr polnrizat.ion opNRtor n(q,w) in Eq. (3.20) is given by 

n(q ,w) = 21 d2rdTe-iqr+iw' [Co(r,T;O, O)+ 

GN (r, T;O,O)] [Co(O,O;r,T) + GN(O,O;r,Tl] , (3 .2 1) 

",hNe the fUllct.ions Go and G N ar~ defin~d by E'1s . (3.16) and (3.lle) rrspect ivdv Thr 
expli .. it fOrIll and t.he ,,-,ymptot.ic behavior of n(q,w) are presentl'd in Appelldix A. 
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Within the approximations made, we can transform Eq. (3.lla) t.o t.he form of a Gaussian 
int.p~ral OVer the auxiliary field 4>. The result is 

"(130) = e-Po(flo+ ilt')1D4> T, [e- F,(6.'",'-Pl'(6.",,,, ..i-,, I] 

x e~p G1dJe, 1dJe,t/J(e,)4>(e,)S(e, -e,») , (3 .22) 

where i1 is obtained from operator F2 , see Eq . (3.lld) , by replacing C., wit.h Co 
Before we proceed further, let us emphR..~ize that the saddle point approximat.ion can he 

justified only if the characteristic value of the fluctllations of the auxiliary fidd 4> is small 
enough. The estimate which will be presented later in this section shows that the expansion 
quruiratic in 4> is parametrically valid for t.he weakly interacting cie<'tron system at lar~e 
filling factors. 

Now, we are in the position to perform the actual integration in Eq. (3 .22) . Operator F 
see Eq. (3.llc), is a linear functional of 4>, where,,-' operator i1, see Eq. (3.lld), is C]IIMlrnt.ic " 
in 4>; because the fluctuations of field 4> arc .'mall, the typical value of F2 is much smAller 
than that of F,. If we neglect the term i1 at all, t.he functioml integration in Eq. (1.22) 
can be easily performed. The caklliation is flirt her simplified if we approximat.e S( T) "" 
05(T) f S(T)dT. It is valid approximation for t.he descript.ion of the low-rnergy dYllfUnics of 
electrons belonging t.o PFLL: S is rapidly decayin~ fllnction of t imr: S( T) <X rxp( -WelT I) at 
T;::: w;', a' it follows from Eqs. (3.19) - (:3.21). Thr integratioll over field t/J thrn resllits ill 

an rxponent.ial exp (-(Joil;!/) , wit.h the Hamilt.onian of drnsity-drnsit.y illlrmction, 

2il7!.' = ~ 11 d r,d2r,U(r, - r,) (:12:1) 

x: (PN(r,) - ,,:) (PN(r,)  "n :. 
The operat.or (3.23) acts within the Fock space of PFLL, Rnd the renormflli7",d pair illIN
Rction U(r) is rclat.oo to See) by 

1dJe,S(e, -eJ)U(h -r,i) = b( r , -r,) . (:l2~) 

Substitut.ion of EC] . (3.19) int.o Eq. (3 .24) yields : 

1 d2 
q 2rrr-2 I iqrU( r ) -- -----c (:l2!l)(2rr)2 "q c(q) ' . 

Berc I.he stalic dielectric function €(q) =c(q,w = 0) drscrihes the re llormalizal.ion of t.1". 
bare Conlomb potenl.ial dne 1.0 I.he integratrd out. drgrees of fr"edom . This funrtion ..all loe 
eA.sily fOllnd wil.h t.he help of E'1s. (3 .20) Rnd (A 7a) , alld it ha, t.h" form 

d'l) = 1+ ~ [I -..7ei ('IRcl] (:l.2G)
'Illn 

for t.hr lar~" fillin~ factor N » I and for values of wave vect.or q milch smallrr t.han Frrmi 
wave \,(·dor. k, . In E'l . (3 .2G), IlR = fl. 2 ,,/mr2 i.~ tilr Oohr radills ilnd ..7o(x) is th" zernt.h 
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order Bessel function. Asymptotic behavior of the renormalized potential U(r) was discussed 
in Sec. II, see also Fig. I. 

The term f1 from Eq. (3.22) can be taken into consideration by means of the perturbation 
theory using the small parameters r. and liN. We show in Appendix B that this operator 
generates term of the effective Hamiltonian which is linear in density. This linear term 
can be trivially included into the free electron Hamiltonian if~ by a shift of the chemical 
potential. 

Finally, substituting t.he resulting expression for 1\ in Eq. (3.6) and restoring the Zeeman 
energy t.erm, we obtain the expression for the effective Hamiltonian: 

if'lf = !1 - 1-'. ! d'rpN(r) + if:!!+ 	 (3.27) 

~gOfiwc! tf2r (~~.l(r), ~N.I(r) - >V~.I(r), >VN.I(r)) , 

where if7!.' is defined by Eq. (3.23), the explicit expression for 'the shifted chemical potential 
I'· is presented in Appendix B, see Eq. (B3O), and the thermodynamic potential n of the 
electrons on the filled Landau levels is given by Eq. (B26). We will not need concrete values 
of I'· and !1 in the further calculations. 

Hamiltonian (3.27) is the main result of this section. The physical meaning of this 
Hamiltonian is that the low-frequency dynamics of the system is described by the electrons 
belonging to the upper Landau level. Interaction between these electrons is renormalized 
due to the large polarizability of all the other Landau levels. 

Let us now discuss the condit.ion of the validity of the approximations we made. As we 
mentioned earlier, the saddle point approximation can be justified only if the characteristic 
vallie of the Ructuations of the auxiliary field rjJ is small enough. Below we show that the 
Ructuations at all the spatial and time scales are parametrically small for a weakly interacting 
electron syst.em at large filling factors. 

The magnitude of the Ructuations localized within the spatial range r and within the 
time interval T can be estimated from Eqs. (3.22) and (3.19) as 

2 
Ii ( e ) (3.28)("") •.• ~:;: KTE(r-1,T- I ) . 

Further estimates depend on the relation between the scale r and the cyclotron radius ~. 
If this spatial scale is large, r » ~, only the dipole transitions between the nearest Lan

,hw levels R.Te induced. The corresponding off-diagonal matrix elements of the Hamiltonian 
are of the order of (~/r)I"'I. The mixing of the Landau levels by the field'" is small if 

W) •.r (~)'« 1 (3.29)
(fiwc+ lilT )2 r . 

Combining Eq. (3.28) with Eq. (3.29) and using the results (3.20) and (A7c) for the dielectric 
fundion, we find the condition of small Ructuations 

T,N» I. 	 (3.30a) 

Therefore, the long-range RlJctuations are not "dangerous" in the weak magnetic field regime. 

II 

Let liS now analyze the short range Ructuations, r « Re· In this CMe transitions b~tween 
distant Landau levels are possible, and the requirement of the smRllness o[ Ructuations 
coincides with the standard one [or the validity of the random phase approximation at zero 
magnetic field, 

r, « I. 	 (3.30b) 

Thus, the saddle point approximation is valid for the weakly interacting electrons in a weak 
magnetic field. 

In the following sections, we will apply the effective Hamiltonian (3.27) to describe vRriollS 
physical effects associated with the PFLL. 

IV. 	GROUND STATE ENERGY AND THERMODYNAMIC DENSITY OF 
STATES 

In this section, we evaluate the ground state energy and thermodynamic density of stat.es 
&n,181-' as a function of the filling factor of the partially filled Landau level t;II = II - 2N. 
We consider explicitly the case t;II $ I. System at the filling factors I < t;II $ 2 can be 
analyzed with the help of the electron-hole symmetry, and the the thermodynamic density 
of states for this case can be obtained from the results for t;II $ I by the replacement 
t;II"'" 2 - t;II. 

We assume that the grOllnd state is spin polarized at t;II $ 1, and thus omit the irrelevant. 
Zeeman term ls . The chemical potential 1-'. for the given electron concentration on the PFLL 
n:' = MI L.Lv is fOllnd by differentiating the ground state energy of Hamiltonian (3 .27) wit.h 
respect to the number of electrons M: 

8Eu(M) (01 if7!.'10) M , 
(41 )1-'. =----aM' Eo(M) = (010) M 

where 10) M is the wave function of the ground state of the system with M electrons on the 
PFLL. 

Evidently, it is sufficient to consider only the filling factors t;II $ 1/2. At larger filling 
factors, 1(2 < t;II $ I, one can use the electron-hole transformation within the spin sublev~l. 
~~ = ~N, and study the system of holes with the filling factor 1 - t;II described by the 
Hamiltonian 

" ,... "h ()) H"'IfH'If = " - I-'• ! d'r (I2"(l - PN r + ;n" 	 (4 .2) 

if:!.' = -t;"! d'r C:f2 ~ p~(r)) + 

~!!d".,d"',U(r, -r,): [~(r,) - n~l [p~(r,) - n~l: 

Here 1>"" = (~~) t ~';, is the hole density operator ~ and nr: = 1/(2"e') - n:' is the average 

density or holes at the PFLL. The first term in if:!.' corresponds to the shift of the chemical 
pot.ential or t.he completely filled Landau level due to the ~xchang~ interaction 14.15, 
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6 .. = he' 1d'rU(r)PN(r,O)PN(O,r). (4.3) 

Here PN(rl , r,) is the projector operator on the PFLU6. The integration in Eq. (4.3) can 
be performed with the help of the explicit form (B21) for PN(rl' r2). Under the conditions 
(3.30), t.he calculation yields 

6 = raw r, (ilI2)
ex cy'211" In -r, . ( 4.4) 

It follows from Eq. (4.2) that filling of one spin sublevel results in the shift -6.. of the 
chemical potential . This enables us to find the average thermodynamic density of states 
which is defined by the relation 

(ane) 1/211[2 li (4.5)ap' = p.(611=I-li)-p.(611=li)' ->+0. 

With the help of Eq. (4.4), we obtain 

-(an) [ (23/2))-1ma: = - r;; V2r, In -;:; (4.6) 

It is worth noticing, that the thermodynamic density of states (4 .6) does not depend on 
magnetic field at all. We will see below that for a broad range of filling factors of the PFLL 
611, the actual value of the thermodynamic density of states is close to the average one given 
by Eq. (46). 

The true ground state of the Hamiltonian (3.27) for non-integer filling factors is not 
known. In order to estimate the ground state energy, we use the Hartree-Fock trial function 
anfllogous to that used by Mald and Zotosl 9 for the lowest Landau level 

M 

/0) M = n,j,ltJ /0)0' ( 4.7) 
j=1 

,j,lt = 1btl>R(r)"'~(r), ( 4.8) 

where 4>R(r) is the normalized one-electron wave function of a coherent state20 on the PFLL 
wit.h the glliding center localized about point R. In the Landau gauge, A. = - Bx, A, = 0, 
this function has t.he form . 

4>R(r) = ~e-il.. Rla/'I'+'%.I't'9 (r - R), 

9 (r) = I . (!.::iM)N e- r ' /41' (4.9)7Ni .,I2t . 

The overlap between two functions (4.9) rapidly decreases with the distance between 
their guiding centNS: 

1d2r4>;",(r)4>R,(r) = e-iIRpR,laIU'e-tR,-R,I' /4t' . (4 .10) 
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Equation (4.10) shows that the overlap is exponentially small even when the distance between 
the guiding centers is smaller than R" and the electrons are not separated in space. 

For 8ITIall filling factors 611 < 1/2, we can choose the guiding centers R; separated by 
the distance much larger than the magnetic length t which enables us to neglect the non
orthogoriality of the coherent states. Then, the expression for the energy Eo( M) given by 
Eq. (4.1) acquires a simple form 

1 M MnN . 
2

Eo(M) = 2E VHFOR. - R j !} - T 1d rU(r), 
j~J 

VHF(R) = VH(R) - VF(R), (411) 

where Hartree VH and Fock VF potentials are given by 

VH(R)=JjJ2r d'r' U(r -r') /4>o(r)/'/4>R(r' )/' 

2 
= 1 J2q 211"e _1_ [LN ( 

q2 e')]2 e-o't'+iqR (4.12)
(211)2 KlI E(q) 2 

and 

VdR) =Jjd2r d'r' U(r -r')4>~(r)4>;"(r')4>O(r')4>R( r) 

2 2=1 J2q 211"e I [LN (q,e )]' e-O'I'-qR-R'I,t', 
. (211")2 Itq E(q) 2 

(4.13) 

respectively. Here L,,(x) is the Laguerre polynomial" . We used Eqs. (3.25) and (4.9), when 
deriving Eqs. (4 .12) and (4.13). Small corrections appearing due to the non-orthogonality 
of the functions (4.9) were discussed in Ref. 19. 

Now, the energy given by Eq. (4.11) should be minimized with respect to the posit.ions of 
the guiding centers RJ . The best configuration corresponds to 'the guiding centers arranged 
in a triangular lattice l9 . Below we present analytical results for the energy of the variational 
ground state (4.7) in different domains of filling factor 611. 

Dilute system, 611 « N- 1 - In this case, the lattice constant a = (y'3n~ /2) -II' is 

large, a ~ R~, so that the Fock potential (4 .13) is exponentially small and the Hartree term 
VH(R) coincides with the interaction potential U(R). In this limit, two situations may be 
distinguished. 

For an extremely dilute system, 611« N- 3r;', the lattice constant is larger than R~/aB ' 
and therefore the Coulomb potential is not renoTlllalized . In this case, the ground state 
energy coincide!< with that of the Wigner crystal on a neutralizing background, 

e2 M3/ 2 
Eo(M) = -0- ( 4.14)

Itt M~/2 

where 0 = 0.782 .. . is a numerical constant22 , and M. = L x D./211"f.'Z is the numbPT of states 
on a Landau level. The use of Eq. (4.1) immediately yields for the thermodynamic density 
of st.at.es in t.his regime 
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on. = 0.542 ~_ (611)1/2. (4.15)
h2Oil T. N 

The negative thermodynamic density of states for an analogous system was considered earlier 

in Ref 23. 
For a mod~rately dilute system N-J T;2 « 611 « N- 1

• the typical distance between 
electrons on t.he PFLL is much smaller than R:/as · At such distances the potential of 
intera.c:tion is strongly renormalized by the screening and it is given by Eq. (2.5) . With the 
logarit.hmic accuracy the energy of the system is given by 

M Tiw. [J 2 M 1 ( 4.16) Eo (M) ~ - 8N In N T, M. 

Rnrl, corre~pondingly. the thermodynamic density of states for moderately dilute system 

t.Rkes th~ form : 

on. 4 m - = --O'I (6I1N) . ( 4.17) 
Oil 1r h 

"Deme" limit, N- 1 « 611 « 1/2 - In this case the distance between the nearest guiding 
c('nt.er~ i~ smRller than Re. The asymptotic behavior of the Hartree and Fock potentials 
drpend~ on the rehttion between the magnetic length eand the Bohr radius as . We restrict 

ourselves to the case e» as. or 

(4 .18) NT: » 1. 

which enahlrs us to simplify Eqs. (4 .12) and (4.\3). 

2 2 
e as 3e2as (R.) e as (R.)

VH(R) = 2rrR.R + 41r2R~ In Ii + R[ In as • 

2e as (419)
VdR) = 2rrR.R(1 + Ras/2(2) 

for the rRng~ of nistances e« R « R.. 
The re.sulting potential VHdR) = VH(R) - VdR) is a smooth function of R at 

R « ,2/an. This enables us to find the analytical expression for the grounrl state en
ergy (4.11) in the region N- 1T;2 « 611 « 1/2. First. we can approximate L;..o VHdRj) "" 
n~ f d2RVIIF (R) - VHda). as the potential varies only logarithmically over the lattice cell. 
Second . we not.ice thRt t.he spRtial average of the Hartree potential is exactly equal to the 
avrrRge of the hare potential U(T), and these two terms cancel each other in Eq. (4.11) for 
Eo(M) . FinRlly. the integral of the Fock potential is proportional to the exchange shift. 6 ... 
sec E'l (~ .4) . The resulting energy of the system is 

M2 
(4 .20) Eo(M) = - 2M. 6 •• 

1 ] hwc [3-8 (M-M N )+ In (NT,) + ----r,;M - 2 In ,
4N rr. y2rrT, 

which yirld~ t h~ thermodYnRmic density of states of the form 
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~. 

On. m[ (23/2)]-'- = -- ,nT,ln  x 
h2Oil T, 

I _ 3\1'2 (6I1N)-'] . ( 4.21) [ 321rT,ln (T;I) 

The leading term in Eq. (4 .21) coincides with Eq. (4 .6) . 
The filling factors 611 > 1/2 can be considered simihuly by using the electron-holr 

symmetry. see Eq. (4.2), and the trial function of type (4.7) . The overall depennenre of the 
thermodynamic density of states on the filling factor is shown in Fig. 2. 

V. SPECTRAL DENSITY 

The value of the one electron spectral density A(() can be meRSured in the tunnelling 
•2sexperiments24 . For the electron states on the PFLL. A(() is defined by relations: 

A(c) = A~(c) + A-(c) . (5 .1 ) 

A~(d = ~ L I(m ItPklVl 0)1 
2 

6(Em - Eo - c).
• t.'" 

1 2 - 
A-(() = M L I(m ItPt,IVI 0)1 6(Eo - Em - d 

• t .m 

Here. 1m) is an eigenstate of the full Hamiltonian (3 .1) . Em is the corresponning eigrnVRlu~ 
and m = 0 stands for the ground state of the system. Function~ A~(c) Rnd A- (f) ncscriile 
the introduction of an extra electron or an extra hole onto the PFLL respectively. 

We are interesten in the spectral density at energies lei « hw,. All the bchRvior of the 
system at Buch low energies can be descrihed by the effective Hamiltonian (3 .27) . Following 
the method of Sec. III. we can express the spectral rlensity (5 .1) in terms of the eigl'nst.Rte.R 
of the effective Hamiltonian as 

A~(()= ~ LI(mltP!.1V10)1
2 

6(Em -Eo-(). 
• i,m 

Z~ 2
A- (c) = M ~ I(m ItPklVl 0)1 6(£0 - Em - d. (5.2) 

·I:,m 

where m denotes the eigenstates of the effective HamiltoniRn (3 .27) and Em is the corre
sponding eigenvalue. m = 0 is the ground state. The Z -factor in Eq. (5.2) describes th.. 
overlap betwren the low-energy eigenstates of the full HRmiltoniRn and the eigenstRte~ of 
the effective Hamilt.onian. The value of Z-faclor coincides with the quasipRrticie weight for 
a 20 rlegenerate plR.~ma in the absence of the mRgnetic field . 

Z = I-~. 
rr\1'2 

Now we w;e Eq. (5 .2) to evalua.te the spectral denRity. Our analysis is based on the triRI 
function (4 .7) . Even though we are not able to find the details of the energy depenrlenre of 
thr Rp"rt.rRl dr-nsity, this Rpproach provides a reliable estimate for the energy scales involved. 
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Decitu,e the trial function (4 .7) is constructed from the coherent states (4 .9), it is con
venient to rewrite Eq. (5 .2) in terms of the operators 1/JR, 1/J~, see Eq. (4 .8) , creating or 
annihilat.in~ an dectron in the coherent state: 

A*«(} = ~ f dte- i
., f[~9*(R, t}, 	 (5 .3a) 

9+(R, t} = (Ole-j!H,I1hteUH'"1/J~1 0), 	 (5.3b) 

g-(R, t} = (OI1/J~e -itfl·I1/JReitli·"lo) . (5.3c) 

Here we used the representation of the projection operator in terms of the coherent states 
(4 .9) : 

PN(r" r.} = f ~~ cflit(r.}cflR(r.}. 

Let. liS concentrate below on the crucuJation of the spectral density for the hole excitations 
A- (i}. (The calculation procedure for A+(f) is similar and will be brieRy outlined later.} 

At small time t, expression (5.&) can be approximated by the formula 

g-(R, t} "" g - (R. 0) exp (itE-(R) - ~ ItD(R»)2) (5.4) 

with parameter, 

n L - •• L	\ -~', nJJIO)1 I I .. 

(5.5) 

_ [E - (R}r 

Sub,titut.ion of Eq. (5.4) int.o Eq. (5.3a) gives the result 

_ Z fJ2R g-(R,O} {(E-(R)-(}'} 
A (f) = v"ii LrL~ D(R} exp 2ID(RW (5 .6) 

for the sppctml oensity. 

Now we lise Maki-Zotos trial state (4.7) to find the functions. in the integrand in Eq. (5.6). 
At R ,mitll filling of the PFLL, C1v « 1, we obtain with the help of Eq. (4 . IO) 

9-(R.0) = Le-(R- R.,l'/2/', (5.7) 
It, 

which oP,aibes the "density of the centers of orbits" in the Wigner r.rystal. Energy E- (R) 
ocfillPrl in Eq. (5 .5) turns out to be independent on the position R becRllse all the electrons 
in th" Wigncr crystRI have the same energy: 

E- = 	 L VHF(iR;1) - n~f d2rU(r} - /1' (58) 
RdO 
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Here the Hartree - Fock energy VHF is defined by Eq . (4 .11), ano the second term dc,cribcs 
the neutralizing ba.ckground . The parameter D(R} i, also independent of R and it i, given 
by 

D' = I' L IVVHdlR;I)!'· 	 (5.9) 
R.,.O 

Because none of the parameters in the exponent in Eq. (5.6) depend on R, the integration 
can be easily performed, and it yields: 

A-(f) = C1v ~ exp {_ (E - _f)2} (5.1O)
v21fD 2D2 ' 

Let us now discuss the physical meaning of the energies E-, D. After an electron i~ 

removed from the PFLL, the system a.cquires extra energy equal to - E- (R} due to the 
interaction between the hole and all the electrons of the PFLL. If all the other electrons of 
the PFLL were "frozen", this state would give a contribution ex 0«( - E- (R)) to the spectral 
density. (Claasical model of the frozen electrons WAS used in Ref. 12 for the electrons on 
the lowest Landau level.) However, the state formed right after the tunnelling is not an 
eigenfunction. The decay of this initial state leads to the finite quantum width D of the 
spectral density, see Fig. 3 a. 

To find the region of applicability of expre~ion (5 .1O) we notice that the expansion in t we 
used in Eq . (5.4) is valid for ItI « IE-1D21. The chara.cteri,tic time determining th(' valuc of 
the integral in Eq. (5 .3a) can be estimated as t ~ If - E-II D2 . Combining these two condi
tions, we find that Eq. (5 .10) is applicable for k - E-I « IE-I. At thc boundary of applicit
bility, the spectral density (5 . \O) is proportional to p.xp I-(E-1 D}2), and therefore Eq. (5 .10) 
describes the main contribution to the spectral density only if IE-I» D. Substituting the 
explicit expression for Hartree-Fock potential (4.11) into Eqs. (5 .8) and (5.9), we see thitt 
the ratio D/IE- I is maximal at C1v ~ 1/2, where its value is D/IE-I ~ O.I(ln N}-1/2« 1. 
Furthermore, we believe that the use of the Hartree-Fock function sets the upper limit for D. 
This is because trial fllnction (4. 7) does not take into acCOUllt the correlations in the motion 
of centers of orbits, and thus overestimates zero-point fluctuations of the electron densi ty. 
The use of a more sophisticated26 trial function, or of a phenomenological model t.hat has 
the correct spectrum of excitations of the Wigner crystaJl3 would restrict the summation in 
Eq. (5.9) to the nearest neighbors only, and further reduce the value of D. 

The spectral density of holes hM a sharp peak, because a hole corresponds to it vacancy 
in the Wigner crystal . In contrast, the tunnelling electron may create an inter~titiitl itt an 
arbitrary position in the elementary cell. This gives rise to a finite width of the spedral 
density A+«() , even for the "frozen", D = 0, crystal . The energy band for an interstitial is 
given by 

+ ) ~[ VHF(iR; - RI) ] N/ 2 ,
E (R = t l_e-(R- R.,l'/U' -no d rU(r) -I' . (5 .11 ) 

The Icaoing term in the quantum width D for electrons does not depend on R, ano it i. 
still given by Eq. (5 .9) . 

To <'Rleulat.e the spectral density A+(f}, one can use Eq. (5.6) with E-(R} and g-(R,O) 
rcplflr.po by E+(R) fllld l-g- (R,O} respectively. The width of the electron spectral den.ity 
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is det.ermined by the energy band (5 .11). The abrupt edge of the spectral density at ( = 

minR {E+(R)) is smeared only by a small quantum width D, see Fig. 3 a. 
The minimal energy necessary to crel\te an interstitial, min {E+(R)), is of the order of 

energy IE - I needed to crel\te a vacanr.y. Therefore the difference tog = min {E+ (R)) - E
exceeds significantly D and thus determines the pseudogap in the spectral density (5 .1). 
Using Eqs , (5 .8) , (5 .11), and the asymptotic behavior of the Hl\rtree-Fock potential VH".{R), 
see Sec. IV, we obtain the width of the pseudogap for different filling factors: 

! 
e2 

:e ;j~' toll « N- J r;2 

to.= Tiw, . P.!1ln [NJr~tolll, N- J r;2 « toll « N-I (5.12) 

2N In (Nr,), N- 1 « toll « 1/2, 

The leading term in the width of the gap agrees with the result of Ref. 6 for the broad range 
of filling factors toll 2: liN. The overall dependence of the characteristic energy scales on 
I.he filling factor toll is shown in Fig. 3 b. 

It is important to notice that in the dominant region of filling factors, toll > liN, the 
widt.h of the gap tog is determined by the renormalized interaction (2 .5) at distances r :e Re, 
which are large compared to the characteristic distance between the electrons of PFLL. The 
gap i~ inscnsil,iv.e t.o the short range correlations in the wave function of the ground state. 
Thereforf', we anticipate that the value of tog we found is robust: it is not an artifact of the 
Maki-Zot.os trial function , but it should be the same (with logarithmic accuracy) for any 
state homogeneous on the macroscopic scale r 2: Re· 

VI. SPIN EXCITATIONS 

In this section we anl\lyze the simplest excitations of the PFLL at toll = 1. This problem 
is similar to the one studied in Ref. 15. The only difference is that the interaction potential 
i~ rrnormali7.ed due to the polarizability of the other Landau levels . Our goal is to study 
how this renormalization affects the spin excitations. 

The cnNgy of the fully spin polarized ground statel8 1M = M"" S, = M",/2) at toll = I 
i~ 

Ep = !1 - Mil> (Jl' + toez +/ohwc 
) , (6.1) 

where to" is defined by Eq. (4.4) , The eigenstates of the Hamiltonian with an extra electron 
or hole 

, 1M"') Ih) = !/IN.•. , 1M., ~.)Ie) = !/IN.•. I M"" "2 ' 

hl\vP th", energies 

EI = Ep - It' + ~goTiw" 
E, = Ep + Jl' + to•• + ~gohw, (6 .2) 

19 

.. 


respectively. Equations (6.2) enable us to relate the width of the spin gap to, = EI +E, - 2Ep 
to the value of toez , i.e , to, = to.. +goTiwc' Substituting to, in Eq , (2.9) and using Eq. (4.4). 
we obtl\in the result (2.10) for the effective g·factor. 

It is worth noticing that the effective g-foctor is independent on N in the limit of a weak 
magnetic field due to the Thomas-Fermi screening21 , (Without screening, this fACtor would 
logarithmically diverge with N ..... 00.) 

The exchange enhancement is maximal if the filling factor is odd. When the both ~pin 
sublevels are either empty or completely filled (ll is even), the spin splitting is det('rmined 
by the bare 9 - factor'~ . 

28Let us turn to the consideration of neutral excitations - spin waves l5 . which at toll = 1 
are described by the wave functions: 

ISW, k) = '" L.... ei.•ll''!/IN1 .... I!/JN.•,- ••. , 1M M.) .., "2 (6 ,3) ., 
Wave functions (6.3) are eigenstates ofthe Hamiltonian (3 .27) with the energies Ep+Esw(k) 
where the energy of the spin wave Esw (k) is given by 

Esw(k) = g'ffTiwo- (6.4) 

tflq 2u
2 

_1_ [LN (q2f2)]2 e-q'I' / Hikql' .

/ (211')2 Kq f'(q) 2 

For small wave vectors , kRe « I, the spin wave has a qUaOratic dispersion relation which is 
typical for ferromagnets : 

e2 Re
Esw(k) = gohw, + _k2

. (6 .5)11'K 

At k ..... 0 the energy of the spin wave is determined by the bare g·factor in agreement with 
Larmor's theorem. It is worth mentioning that the long· wavelength domain of the spin wnve 
spectrum is controlled by the bare Coulomb interaction, This is because the spatial sCl\le 
kf2 important for the spectrum, see Eq. (6.4), is much smitller than the scrrening rarliu~ aR 

In the region R; I « k « kF the energy of the spin wave reveals oscillatory behavior 

E (k) = Tiw ~ [c (kt2) _Sin(2k Re)]
sw g.ff c + 11'KRe ag 2kRe ' (6.6) 

Here C(x) is a smooth function with asymptotes 

x«1 
-1.

C(x) = { Inx, 
x » 12.' 

Spin waves with extremely large wave vectors, k » kF, correspond to almost independent 
electron and hole , see Eq. (6 .2) . In this limit, the energy Esw approaches to, : 

to, - Esw(k) = U(kn :s ~c In Nr, . (6.7) 
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VII. CONCLUSION 

In this paper we canstructed a theary describing law-energy excitatians in a 20 electron 
liquid in a weak magnetic field. We have shawn that all the excitations with energy smaller 
than cyclotron energy Tiwe can be described by the effective Hamiltonian 8{;ting in the Fock 
space of the partially filled Landau level only. Starting from first principles, we obtained 
the explicit form af this Hamiltonian by integrating out all the other degrees of freedam. 

Armed with this effective theory, we have been able to make important predictians: 
I) We faund that the thermodynamic density of states is negative far non-integer filling 
factors. For a braad range af filling f8{;tars, the value af the thermadynamic density af 
stat.es wa.~ faund to. be independent on the value af magnetic field, see Eq. (4 .6) . This effect 
may be revealed in magnetacap8{;itance measurements29 in the weak magnetic field regime. 
2) The tunnelling density of states was shown to have a gap at the Fermi level. For a broad 
range of filling f8{;tors, the width of the gap, see Eq. (2 .8) , was shown to be consistent with 
that predicted by hydrodynamic approach of Ref. 6. The gap' can be observed in tunnelling 
experimcnts24 in a weak magnetic field . Evidence of suppression of the tunnelling density af 
stat.es far the filling factors u ~ 9 W8.'l reparted recently by Turner ct . al. 25 . This suppression 
may be 8.'5oeiated with the gap predicted by our theory. Hawever, the observed width af 
the gap is twice larger than that given by Eq. (2 .8) . 
3) The exchange enhancement of the effective g-f8{;tar remains strong in the weak field 
regime, and at all add filling f8{;tors it takes a universal value, see Eq. (2.10). We faund 
that the energy scale af charge excitatians is parametrically smaller than the energy scale 
far spin excit.ations. This is qualitatively different from the situatian at low filling factors, 

2u ~ I, where bath these excitations are characterized by the same energy scale e / 111.. 
Nane of the aforement.ianed effects could be obtained in the framewark af the Landau 

quantizatian af the spectra af quasiparticles in the conventional Fermi liquid theory. This 
theory describes adequately the excitations with energies larger than Tiwe. Thus, our de
scription of the law-energy properties of inter8{;ting 20 electron g8.'l is complementary to 
t.he Fermi liquid picture. 
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APPENDIX A: EVALUATION OF n(w. QJ. 

IlItcgmtiaTl in Eq. (3 .21) immediately yields 

2m /</-\ co [(-I)(,,-,.J(n - n ) 
n(q.w) = L L 1-- 2 11 X 

'If ", =0,,=/</ (w /wel + (n2 - nd 

21 

q2 2 
L"'-"' (q2f) L"' -" ( e ) e-Q'll/2] (AI)", 2 n., 2 ' 

where L;:'(i) is the Laguerre polynamial2t. 

Further simplificatian is possible far q «: kp . Under this candition, we can usc the 
asymptotic expressian for the Laguerre palynomial2) 

(n + m)!e'/2.1m (J2x(2n + m + I))
L;:'(x) :::e 12 (A2)

n! (x(n + m/ 2 + 1/ 2)r 

where .1m(x) is the Bessel function . This expressian is applicable if x «: n. Using Eq. (A2) 
and introducing a new index j = n2 - n\ we approximate expressian (AI) as: 

2m co [ j
n(q,w) = ---;-?; ~2 + p 

(A3)
X ",=m~-j,o) [.1j (qeJ2n, + j + 1)1'] . 

The terms giving the main cantribution to the sum in Eq. (A3) sue charact.crized by value 
j ~ qe,fN «: N . This enables us to approximate 2n + j + I '" 2N and perfarm t.he 
summation aver n, . This yieldsJQ 

2m co / 2 
n(q,w) = -- L ( / )2 +21Jj (qRdl (A1) 

'If i=' W W e J 

Equatian (A3) can be transformed into an integral form : substitut.ing the ident.ity 

2 r dy (. Y)1.1,(xll = 10 -;- cos ny.1o 2x sm 2 (A;') 

into. Eq. (A3) and performing the summatian over j, anc easily abtains 

1- )"'- cosh "'-Y] . (A6)n(q,w)=--m [/0'dy.1o(2qRcco~~ w'. h w, 
7r 0 2 sm 1f~ 

Equation (A6) enables one to obtain the BBymptatic farm af the polarizatian aperatar ill 
different regimes . In the static limit, W «: w" ane finds fram Eqs. (A6) and (A5) 

n(q,W) = - ~ [I -.1~ (qRc) + a (~)]. (A7,,) 

For the high-frequency domain. w » We. only a small vicinity af t.he paint Y = 'If con t rihut.rs 
to. the integral in Eq. (A6), and n(q.w) caincides with the result far 20 elect.ron gM in the 
absence of t.he magnetic field :J ' 

n(q ' W)=-~[I- Iwl +O(W~)] . (A71» 
'If Jw2 + q211} W 
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In t.he hyororlynamic limit. qR, « I, one can expand the Bessel function in Eq. (A6) in a 
Taylor series. which yields 

2 2 
m [ q v ]n(q, w) = --2 ~ + O(q4~) . (A7c)

11" W +we 

In the opposite limit, R;' « q « kF • the main contribution to the integral in Eq. (A6) 
comes from the vicinities of points y = 0 and y = 11". The calculation gives 

n(q,W) '" _~ [1- 8( )wcoth (11"~)11'" q,w e

.jw2 + q2v} 

(~) sin 2qRe ] 
qVF sinh 1r~ , 

2 2 2 ( 2 2
8(q,w) = 1 + q VFWe 4w - q v}) (A7d)

8 (w2+ q2V})J 

APPENDIX B: PARAMETERS OF THE EFFECTIVE HAMILTONIAN 

In this Appendix we present the details of the derivation of the effective Hamiltonian 
(3.27). 

We start from Eq. (3.22). We notice that operators t, and f1, see Eqs. (3.llc) and 
(3.1ld), arc integrals of the Matsubara operators over the time interval [0, 1Jo). Let us divide 
this time interval into M small intervals [rm_!,rm),m = 1,2 ... M - I, where rm = m6r 
and 6r = (io/M. We imply thRt 6r must be smaller than the charact.eristic time of the low
"lIergy dynamics, but much larger than w;! . Then, the chronologically ordered exponent in 
Eq. (3 .22) CRn be factorized as 

T, {e-F,-fi'} = fl, T, {e-F.'~)-t!~l (BI) 

where operators tim) and tJm) have the form 

tim) = jd3(¢(() (PN(() - n~) 9 (I{o - rm-d[rm _ {OJ) , 

frJm) = j d3
(, j d3

(, [.j,N((;)IlI N ((,) - 2G N ((,,(,)] x 

¢((. )Go((" (,)¢((,)9 (I{? - rm_ d[rm - {?j) . (B2) 

D"finitions (82) differ from the corresponding definit.ions (3.lIc) and (3.110) oy the con
st.raint on the time oomRin of integration . We do not need to impose an additional con
str;,int 011 the time component of (, in the second of Eqs. (82) because Go decays rapioly 
Rt I~? - ~gl > I/w" see Eq. (3.16). 

Now. we substitut.e Eq. (81) into Eq . (3.22) and perform the integration over the field 
¢ . It yirlds 

23 

.. .... 


A(IJo) = e-Oo(no+lln+Hi") fl, (T, {e-r,~I-F:~I}) , (83) 

where average (F) of an arbitrary functional F {¢} over the field ¢ is defined n.~ 

(F) = eOolIn jV¢ F {¢} x 

(B4)exp Gjd3
(, j d3(,¢((,)¢((,)S((, -(,i) . 

The normalization factor ello lln describes the fluctuations of field ¢ Rround the saddle point. 

Ilolln= (B5)e- jv¢ ex p ( ~ jd3t,jd3t,'¢(()¢((')S(( - F.')) . 

An explicit expression for 6fl is presented in Subsection B I. 
Because 6r is small, we can expand every factor in Eq. (B3) up to the first order in 6r 

( T, {e-'t!0' -F,"Ol}) '" 1 - 6rHI - {-IlI N (rn), IlI N (rn) } . (B6) 

This relation defines the operator HI Let us notice th"t this operRt.or actually oops not. 
depend on rn because it contains the same number of c.rcation and annihilation operRtors 
taken at the same moment of time. Having this in mind, we substitute Eq . (BG) into E'l (B3) 

and obtain 

A(IJo) = e- llo(no+lln+Hi") (I _~HI) M . (137) 

Finally, we take the limit M -> 00 in Eq. (B7) and substit.ute the result in E'l (3.6). It 

yields 

(138)H." = flo + 6fl +Hi: + HI 
Now, one has to perform the actual calculation of the average in the left hand side of 

Eq. (B6) in order to find the operator HI. It can be done by usin~ pprturbat.ion theory. Th" 
leading terms in the small parameters r, and I/N are 

(T, {e-Po°'-tjO
'}) '" 1- (WI + tJn)) 

(B9)+~ (T, (W) + tt)n· 
To find the operator HI, only terms linear in 6r should be retRined 

Calculation of the right-hand side of Eq. (B9) is carried out with the help of E'ls (132) 
ano of the correlation functions of the field ¢ . 

(¢) = 0, (BIO) 
2e

(¢(r,r)¢(O.O)) = - K1r1t'i(r)

j dwil'q (211"e
2)2 n(q.w)e;"' -"'''. 

(211")3 Kq E(q,W) 
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Tho. latt.er cxpression follows from Eq. (84) and (3.19). In the second of Eqs. (810), we 
explicitly separat.~d a term which is singular at , = O. 

The averages that. give the leading contribution to the effective Hamiltonian are 

(ttl) = 6., (J.t ... + /.Ie) f d2rpN(r), (811) 

~ (T, (ttln = -6., (if;!! + /.lp f ~rpN(r)) , 
where the operator if~!/ is defined by Eq. (3 .23). 

In Eqs. (BII) , /.I,,,, coincides with the well-known exchange correction to the chemical 
pot.ential: 

2 
2f 2 e /.I.. = -2rrf dr-Go (r,O; 0, f --+ +0) PN (0, r), (812)

Itr 

where Go is defined by Eq. (3.16), and /.Ie,/.lp are the correlation corrections to the chemical 
pot.ential found in the random phase approximation: 

f dw~q (2rre2)2n(q,w) we(N - n) 
/Ie=- (2rr)J -;;q e(q,w)n~w2+w~(N-n)2 

x (_I)(N-n) L~ -n ( q2t) LN-N (q:e) e-q't' /2, (813) 

I.." = rrf2 f d2rPN (O,r) PN (r,O) (U(r) - ::). (814) 

When drriving Eqs. (812), (BI3), we use Eqs. (3.14) and (3.16). 
Finally, slIbstitutionof Eq. (BII) into Eq. (89) enables us to find the operator if/. 

Comparing Eq . (88) and Eq. (3.27), we obtain the expressions for the parameters of the 
Hamilt.onian H" r 

fl = flo + 6.fl, (815) 

/.I' = /.I - NT'u..Je - /.I"" - /.Ie - /.lp. (816) 

The following slIbsections are devoted 1.(1 the explicit calculation of the parameters of the 
dkctivc Hamilt.onian in terms of the filling factor and interaction strength . We will assume 
t.hat condit ion (4.18) is met. 

1. Calculation of COO. 

Equations (85), (3.8) and (3.19) yield 

tifl I f dw~q
Lx L• = 2 (2rr)3 In(e(q,w)). (BI7) 

Wit.h t.h(' help of E;qs. (3.20), (3.21) and (3.14), one can transform Eq. (BI7) into a more 
convenient form : 
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tifl = tifl.. + tifle, (818) 
2

6.fl.. f 2 e - ) ' (0 )G -- = - d r-Go(r,O;O,f 0 0, ;r,( , (819)
LzL. Itr 

tifle __ ~ f'dafdw~q (2rre
2 
)2 on2(~ , w) 

LzL. - 210 (2rr)3 Itq 1-02:: n(q,w)' 

(820) 

Expression (819) corresponds to the first order exchange correction to the ground Rtate 
energy, and f --+ +0. Equation (820) is the correlation correction to the ground state 
energy equivalent to the sum of ring diagramsJ2. 

First, we evaluate the exchange energy (819). Using the explicit expression for the 
Green's function (3.16), the property of the Landau level wave functions, 

Pn(rl, r2) = L <p~.k(r2)<p".k(r.) = (821) 
k 

_1_ ei(.,-.,)(z,h,)/U'-lr,-r tl' /4t'L (Ir2 - r112)
2rr(1 n 2(1 , 

and the identity for the Laguerre polynomials, 

n

L Li(x) = L~(x), (822) 
'=0 

we obtain 

2 
tifl.. = __e__ [''''' dxe- r'/2 [L~ (~)]2 (fJ23)
LzL. Itf(2rr(1)10 - I 2 

Integration in Eq . (823) can be eMily performed, which yields for N » I: 

2
6.fl.. _ e 3/2 In N[2 (I)] (824)LzL. - - Itrr2fJ '3 (2N) + 16(2N)I/2 +0 NI/2 . 

The first term in brackets coincides with the exchange energy of 20 electron gft,q at zero 
magnetic field, and the second term appears due to the confinement of the electron wave 
functions by the magnetic field. The logarithmical factor In N ~ In (kFR,,) Rrises dnc to 
the integration over relatively large spAtial scales kFI « r ;S R" in Eq. (BI9) . On th~se 
scales, the screened interaction potential is significantly smaller than the bare potential 
appearing in Eq. (819). Therefore, it is plauRible to anticipate that the correlation tPrm 
of the thermodynamic potential, which accounts for the screening effect, should partially 
compensate the large logarithmic factor in Eq. (824), and lead to the replacement Re --+ an 
in the argument of the logarithm. The calculation of the correlation energy (820) explicitly 
demonstrat.es this. 

In zero magnet.ic field the contribution of the correlation energy32 is only of the order 
of O(r~). The situation changes in the magnetic field , where a contribution proportional 
t.o r,ln(Nr,) appears. This term arises mainly from integration over the domain of wave 
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vectors R;I « q « aliI in Eq. (B20), where we can use the 88ymptotic expression (A7d) 

for n(q, wi . It yields with the logarithmic accuracy 

6!1, e2 
(B25)L,Lu = KR.JfN (1611"(2) In (Nr,) + O(r~) , 

Finally, with the help of Eqs, (B24) and (B25), we obtain for the thermodynamic poten

tial (BI5), 

!1 = LzLu { N(N - 1) _ N
1ft2 nwc 2 J.L 

2 
e [2 I ( -I)]}3/ 2 	 (B26)",d 3(2N) + 16(2N)l/2 In r, . 

This re5ult cont.radicts Ref. 33 where the contributions (BI9) and (B20) were evaluated and 

a correction ex r;/4 was obtained instead of r,\ln r,\. 

2. Calculation of 1-1°. 

We ~I.art from the calculation of the exchange correction to the chemical potential. With 
t.h" help of Eqs. (3.16), (B21) and (B22) we transform Eq. (BI2) to the form 

e2 ["" (X2) (X2) (B27)J.L" = --;;e 10 dxe-"/2 LL, 2" LN 2" . 

After int."IVRt.ion in Eq. (B27) we obtain for N » 1 with logarithmic accurM'Y: 

2 
_ e (2 ' / 2 1 ) 	 (B28)Jiez - --;;e ; (2N) - 211"(2N)1/2 In N . 

Thf' correlation shift of the chemical potentia\, Eq. (BI4), is calculated with the help of 
Eqs . (B21) and (3.25) . With the logarithmic accuracy, the calculation gives 

e2 1 (B29)I'p = --;;e 211"(2N)'/2 In (Nr,) . 

It. enn he chrrkpd by Em explicit calculation that the other correlat.ion correction to the 
chemical pot.enti a l, I'c, sec Eq. (BI3), contains an additional small fact.or in comparison with 
E'l (B29) I', "" 1"'/N. and. therefore, it can be neglected. Finally, with the logarithmic 
""curacy, wc have for 1,0 appearing in Eq. (BI6) the result: 

1,0 = Ji _ Nnwc + ~ (~(2N)1/2 _ In (T;I) ) (B30)
Kt 11" 211"(2N)'/2 . 
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FIGURES 

FIG. 1. The renormalized pair interaction U(r) given by Eq. (325) as the function of the 
inter-electron distance (solid line). Dashed line i. the bare Coulomb potential . The 8.,ymptotic 

behavior of the renormalized potential is given by Eq. (2.5) and (2.6) 

FIG . 2. The thermodynamic dellBi ty of state!! 88 a funct ion of the filling factor of the partil\lly 
filled La.ndau level in the domain 0 ~ II ~ 1. The asymptotic behavior of the thermodYTla.mic 

density of.tales i. given by Eq • . (4.15), (4 .17), a.nd (4 .21) 

FIG. 3. (a) : The spectral density as a function of energy. (b): The dependence of the char

acteristic energy scales on filling factor of the partially filled Landau level ClII . The asymptotic 
behavior of the width of the pseudogap, Clg is given by Eq. (5.12). The width of the peak in the 
one-electron .pectral density Clp is determined by the var iation of the interstitial energy "nd it is 

smaller tha.n rowc/2N at all filling facto11!. 
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