
- Irr - ,Nt J f\J "j - C{ J. - :34 -r-


THEORETICAL PHYSICS INSTITUTE 
UNIVERSITY OF MINNESOTA 

TPI-MINN-92/39-T 
August '92 

New model of solid-liquid transition in a 
strong magnetic field 

I.M. Ruzin • 

Theoretical Physics Institute 
School of Physics and Astronomy 


University of Minnesota 

116 Church St. SE 


Minneapolis, Minnesota 55455 

.­

, . 
! -_ . 

f . " 

'-., 

. ., 

r, ...... -,~ ,- ....... ,. 

~I .­ -~ 

' -.
J.­ 001-_·PACS numbers: 7L45 .Lr, 73.40.Qv, 73.50.Jt 

C\ 
 o 1160 0010838 5 
New model of solid-liquid transition a ~lI UII5 II 1"511C'1 U':' ••CIU 

I.M.Ruzin 

Theoretical Physics Institute, University ofMinnesota, Minneapolis, MN 55455 

Trial functions for the Wigner crystal which undergoes a continuous 

transition to the incompressible liquid when approaching the point v = 
1/(2m+I) from either direction are suggested. This model may explain the 

reentrance-phase effect observed recently in a number of works. 

PACS numbers: 71.45.Lr, 73.40.Qv, 73.50.1t 

The quantum Hall effect at certain fractional values of the filling factor v (FQHE) 

manifests the existence of a set of incompressible states of a many-electron system, This 

phenomenon was explained by Laughlin I who suggested a variational model of an 

incompressible quantum liquid at v =vm = 1/(2m+ I). The states with v less or larger than 

vm were generated with the use of point-like excitations (quasi holes or quasielectrons) 

existing on the incompressible background. Later, this theory was generalized for filling 

factors v =p/(2m+ I) 2-4. Historically. first attempts to explain FQHE employed the Wigner 

crystal of electrons which is clearly the ground-state of an electron system with repulsion at 

smallest v. After it was realized that the crystal is always pinned even by a weakest disorder 

and, hence, cannot provide finite quantized values of O'.ty 5. the general belief is that the 

Wigner crystal has no relation to FQHE states, Apan from this, existing models of a crystal 

state6-9 demonstrate a continuous dependence of the correlation energy on v. so that this 

state is everywhere compressible. According to the model of a weakly anharmonic 

crystal8.9• the crystal has lower energy than the interpolated energy of the Laughlin liquid • 

in the case of Coulomb repulsion, at v < 1/5.6. 

Recent experiments on GaAs structures discovered remarkable fact which is 

generally interpreted as a melting transition: The electron system behaves like a solid on 

both sides of Hall plateau at v = 1/5 W-13. A similar reentrance effect is observed in GaAs 

hole channel at v = 1/3 14 and in Si devices at some values v> I 15, Conventional 

interpretation of this effect is based on the concept of an "accidental" flTst-order transition: 

The crystal term which happens to be, at v =vm, somewhat higher than the incompressible 

liquid energy. crosses both quasihole and quasielectron branches very closely to their 

staning point vm. According to this idea. were the form of the interaction potential slightly 
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different (e.g. due to a different channel width). this double rransition would not take place. 

The most striking feature of cited experiments is the sharp change of crystal parameters 

(threshold voltage. melting temperature. noise magnitude) with v approaching vm 10.11. 

This so-ongly suggests the existence of a second-order rather than a flfst-order transition. 

In this letter. I propose a variational model for a Wigner crystal which experiences a 

continuous (second-order) transition to the incompressible liquid at v = vm. The order 

parameter of such a state (the magnitude of the density oscillations) vanishes gradually 

when approaching Vm from either direction. The phase consists from two parts: "left 

phase" (v < vm) and "right phase" (v> vm) which are determined by two different wave 

functions. Each of this states cannot be compressed (expanded) in order to cross the 

limiting point v = vm• so that the total dependence of the correlation energy on v must 

exhibit a cusp. Thus. two crystalline phases represent a possible alternative for the 

quasi hole and quasielectron states. respectively. Based on the idea of cooperative ring 

exchange. me existence of incompressible points in the Wigner crystal phase was supposed 

by Kivelson et 01. 16. 

In what follows I restrict myself to the first Landau level. The model wave function 

for the "left" crystalline phase (v < v m) is given by 

- ~Ij IZjl2 [ (1-2mV .)] IT 2 (I)'l'm.vlz} = e det exp -2- ZiRt . (Zj-Zj) m • 
1<') 

where Zi are complex coordinates of eleco-ons. points Ri form a triangular lattice with a 

density v !2rr. and the determinant provides anti symmetrization (all coordinates here and 

below are given in units of the magnetic length). At m = D. the right-hand side of Eq. (l) 

coincides with me well-known function suggested by Maki and lotos (MZ)7. 

First. in order to demonstrate that 'f'm .v describes a uniform crystal with the 

density v /2rr. I neglect with the antisymmetrizalion in (I). Replacing the determinant by 

the product n; exp[(I/2 -mv)zjRt)] yields 

l'f'm.vI2 = exp(-H/2m). (2) 

z . IH = 2m T + (2m)2I 210g--- - 2m(l-2mv) L R;zj , (3)I 2 

. . Iz; -Zj I 
1<.) 

where vector notation for Zj and Rj is used. The effective Hamiltonian (3) describes the 

two-dimensional plasma on an attractive background1 with the "external field" (I-2mv)R; 

acting on ith particle. If the state has a unifonn density v/2rr, the repulsion between 

panicles described by the second term in (3) is equivalent to the one-particle potential of the 

unifonnly charged disc with the charge density 2mv!2rr. Hamiltonian (3) is then reduced 10 

the effective one-panicle Hamiltonian 

(4)V=2m(l-2mv) I [~ -ZiRi]. 
i 

The energy (4) has, at v < l!2m, a stable minimum at Zj = Rj . The fmite "temperature" 2m 

in Eq. (2) causes fluctuations of eleen-on positions around the lattice points Rj. The fact that 

we replaced the crystal potential by a homogeneous charge when deriving (4) is not 

important since the average correlation corrections to the force acting on each particle at Zj 

= Rj are zero because of the crystal symnnerry. 

The function (I) can be also wOnen in the form 

m v I ' lzP ]
'I'm.vl z } = e - 2 I flC Zi- Zj)2m 'I'0.V\V){n'1-2mv} , (5)[ I 

1<.] 

where v'(v) = v/(I-2mv) and 

'I'o.v'lz} =det{ exp[- ~lzj-R'kI2 + ~(ZiR'k·- Zi·R'k)]} (6) 

is the MZ function with the density v'!2rr. Thus, 'I'm.v represents fonnally the product of 

a symmetric Laughlin function expanded up to the density v!2rr, and the rescaled MZ 

function. The demonstration of the "melting transition" to the Laughlin function given by 

- lIlzP 
Fml z } = e 4 1 1 fl(Zj_Zj)2m+l (7) 

j<.j 

is now straightforward. Because any anti symmetric function describing the state with the 

density l!2rr must coincide with the function of the completely filled Landau level Fo, so 
does the function (6) at v'= I: 'I'o.t Iz) ;: Folz) . As a result, at v = vm =1/(2m+I) the 

right-hand side of Eq. (5) crosses over to (7): 'I'm.vmlz) ;: F mlz). The electron density at 

this point becomes constant and equal to vml2rr, the funher increase of the density being 

impossible. The same result can be also derived directly from the fonn (l) of 'I'm.v. Note, 

that each exponential eX in the detenninant in (I) can be replaced, with an exponentially 
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high accuracy, by N-I-degree polynomial (truncated Taylor series), where N» I is the 

panicle number, provided the inequality lxl/N < I holds for all x. As easy to check, the last 

condition is equivalent to v> Vm. In this case, the determinant N by N in Eq. (I) can be 

reduced by linear transformations to the Vandermonde form: det(z/) =ni<j (Zj -Zj), and 

we again arrive to the Laughlin function. 
In order to construct the wave function for the "right" phase (v> vm), I use. as a 

heuristic rule, the replacement Zj ~ a/aZj suggested by Laughlin to obtain the liquid state 

with a quasielectron I. Namely, I e)(tract the function Fmfrom the right-hand side of Eq. (I) 

as a factor, and replace all Zj in the remaining part by a/aZi multiplied by some constants. 

The result has a form 

- !I -lzI2 a 
C/>m,vlz} = e 4 I I det [ e)(p(Bt az)] Pm{z}. (8) 

where Pm Iz} is a homogeneous symmetric polynomial determined by the equation 

II(_a - ~) P (z) = n(z -_z-)2m+1 . (9)az- ik m I )
j<j I J i<j 

The comple)( numbers Bi are to be defined from the condition that electrons in the state 

given by Eq. (8) are close to the points Ri of the lattice with the density v(21t. The fact that 

the replacement Zi ~ a/aZi yields a crystal at v >vm is not obvious and will be verified 

below. 

It turns out that Bi should be chosen in order to form a rescaled lattice, as given by 

Bi =aRi = [(2m+2)v-l)Ri. (10) 

To demonstrate this. I neglect with the antisymmetrization as it was done for the "left" 

phase. Using the fact that the e)(ponential of derivative is the shift operator. one gets from 

(8) lC/>m,J2 = e)(p(-H /(2m+2)). where the effective Hamiltonian H is given by 

'" IzJ2 ] (II)Hlz) = (2m+2) ~T+ Hplw} •
[ 

Wi = Zi + Bi. (12) 

Hp{w} = -log 1Pm{w}12 . 

If all Bj were zero (Wi = Zi). Hamiltonian H would describe a plasma with a many-particle 

interaction defined by the form of the polynomial Pm (w \ . The density of the plasma vpl2rr 

is related to the homogeneity degree Mp(N) of Pm{ w} by the general formula4 

Vp- I = Nlim__ [2Mp(N)/N2) 

which yields, with the use of (9). vp = 1/(2m+2). Hence. if Wi have a uniform density 

vw(21f., the interaction term Hplw} in Eq. (II) is equivalent to the one-particle potential of 

the disc with the charge density (2m+2)vwf21t. The Hamiltonian (11) can be then reduced 

to 

'" [z -2 (Zi + Bj)2]V(z) =(2m+2).LJ T - (2m+2)vw 2 . 

which is analogous to one-panicle Hamiltonian (4). The lowest-energy state of this system 

is given by 

(2m+2)vw Bj
Zi (13) 

1-(2m+2)vw 

Thus. if one puts Bi = aRi. the system of points Wi will be a lattice (Eq.(12)). so that the 

assumption we made above about uniformity of the distribution of Wj is justified. 

Unknown a and Vw should satisfy two self-consistency equations: zi = Rj [where Zj are 

given by (13)). and Vw =v/(I+a)2. Solving that system. one arrives to Eq. (10) for a. 

Like in the case of the "left" phase. the anti symmetrization imposed by the 

determinant in (8) causes transition to the liquid state (7) at v =Vm. The propenies of the 

polynomial part of C/>m.v are determined by the ratio ma)( (IBil)!ma)(lzil) = a(v). If a(v) is 

small enough. one can e)(pand the determinant in powers of Bi and keep the sum of lowest­

degree terms which is equal to 

n B' B II(~- ~). ( 1- )) aZi az­
l<j kj J 

and can be obtained by the e)(pansion of each e)(ponential in (8) up to N-I degree of the 

argument. As a result. with the use of Eq. (9). one gets the function (7). Because the latter 

provides the electron density vmf21t, the transition from C/>m.v to Fm should take place at 

http:2m+2).LJ
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v =a(v) = vm· To give some direct evidence of the existence of a critical point in v, I 

calculated numerically at different v the averaged homogeneity degree 

Mr<v) = [a log ITm IA.Z )I] 
a log A. .l. = I 

of the polynomial 

Tml z } = det [exp(Bk a:.)] D(Zj_Zj)2m+! 
1 1<] 

which is the result of application of operator nj<j (a/azj -iJtaZj) to the polynomial pan of 

(8). If the latter coincides with the Jastrow factor in (7), TmIz} will be homogeneous, 

Mr<v) being equal to mN(N-I) . If nOl, parameter Mr has only some averaged sense and 

should depend on v (the crystal function is not a total momentum eigenstate and, hence, is 

not represented by a homogeneous polynomial). The dependence Mr<v) was calculated for 

the number of particles N = 5-8. The corresponding configurations of points Zj, Bj = 

a(v)Zj were chosen to be highly symmetric (regular polygons with a point in the middle) in 

order to diminish lhe size effect. The latter was fined very good by the formula Mr<v,N) = 

A(v)2-N + M r(v,oo) which was used for lhe extrapolation to N = "". The normalized 

dependence Mnorm(v) = Mr<v)[mN(N-I»)-l, as shown in Fig. I for m = I, demonstrates 

well-pronounced critical point v=I/3. 

The fact that each crystal phase suggested above coincides with one of Laughlin 

states at v = Vm means thaI its energy (for Ilr-interaction) must be lower lhan the energy of 

the correlated-crystal phase studied earlier 8.9, at leas I, in the vicinity of VI = 1/3 and v2 = 

liS. It is also interesting to compare both models in the limit of very small v, where the 

wave function of a harmonic crystal obtained by Lam and Girvin in Ref. 8 is asymptotically 

exact. Apan from the antisymmetrization, this function has a fom 

'hG[z} = e -~Lj l ~jI2 + ~tij b(Rj-Rj)~j~j e ~tj{~jR;'-~j'Rj) (14) 

where ~j = Zj - Rj are displacements of electrons from the lanice sites. The coupling 

coefficients b(Ri) which determine zero-point oscillation of the cryslal are related to the 

oscillation spectrum of the classical Wigner crystal Wilh I/r-interaction between electrons, 

as given by 

Ib(q)1 = IbLG(q)1 '" WL(q) - wr<q ) (15) 
wL(q) + wr(q) 

where b(q) = Li b(Rj) exp(-qRj) is the lattice Fourier transform, and Clh.r<q) are the 

frequencies of the longitudinal and transverse oscillati~n mode, respectively8. The wave 

function of the "left" phase (5) has the same asymptotic form (14) in the region v« I, 

Ilv- (2m+I)? I, where the antisyrrunetrization is not important, and typical displacements 

of electrons';; are much smaller than the lallice constant. Expanding the logarithm of 'I'm,v 

up to the second-order tems in ~j , one gets the right-hand side of Eq. (14) with b(Rj) = 
4m1Rj2, Rj 'F O. By analogy with (IS), the Fourier transform b(q) can be related to the 

spectrum n..,r<q) of the classical crystal with kigarilhmic repulsion between electrons: 

_ 2mv DL2(q) - il?(q)
Ib(q)1 Ibm(q)1 

DL2(q) + D?(q) 

Since bm(q), strictly speaking, differs from bLG(q) at any m, neither of functions (5) is an 

exact wave function at small v. The minimum of the mean-squane difference bLG(q)--bm(q) 

is reached at m = O.31v and is as small as 6%. The remaining discrepancy can be 

compensated by a simple interpolative trick, namely, by multiplying (non-symmetrized) 

function 'I'm ,v by a factor of the form ~tjj cm . V<Ri-Rj)~j~j, where cm.v<q) is equal to 

bLG(q)--bm(q) at v« I and vanishes at v = vm. The introducing of a new (in addition to 

m) variational parameter cm.V<q) would enlarge the region of variational search. This 

emphasizes the fact that the wave function (5) is not unique (though probably the simplest) 

model of the crystal which "melts" to the incompressible liquid. 

The "left" and "right" crystal phases with a given m will manifest itself as a 

reentrance melting transition at the point vm, if their correlation energies ane less than the 

energies of corresponding quasipanicle states and of crystal phases with other m. Direct 

calculation of the crystal energy is very difficult at the moment because of a crucial role of 

antisymmetrization. Indeed, the laller is responsible for the "melting" of the crystal at v = 

vm analogous to the melting of any Wigner crystal phase at v = I. All Ic.nown models of the 

crystal6-8 were studied in the interval v < 1(2 where exchange effects playa minor role. TIle 

accurate treatment of the case when the exchange dominates crystal properties is a subject 

of a future work. Now, in principle, two following scenarios of a reentrance transition are 

possible: (i) Absolute slopes of both crystal terms at v = vm (chemical potential) are less 

than that of quasipanicle terms. In this case, the Wigner crystal crosses directly 10 Laughlin 

liquid by the second-order transition in v from either direction. Plateau in Uxy should 

disappear with the disorder decreased. (ii) The quasihole term is lower than the crystalline 



term in the direct vicinity of vm, both tenns intersecting at a small distance from vm. Then a 

first-order transition between the Wigner crystal and the Hall crystal of holes 17 takes place 

in the region of the critical behavior of the fonner. Plateau in the linear Hall conductivity 

remains finite in the limit of small disorder, where the width of plateau in v is determined 

by the width of the Hall crystal region 17. 

In conclusion, I note that the wave functions 'Pm.v and fPm,v can be easily 

generalized for hierarchic points v = p/(2m+ I) using the anti symmetric polynomials 

suggested by Macdonald el al.4 for incompressible liquid at these points. One has only to 

substitute the right-hand side in Eq. (9) with a polynomial from Ref. 4 and the last term in 

(I) with the same polynomial divided by ITi<j (Zj -Zj). 

I am grateful to B.I.Shklovskii, A.H.Macdonald, C.E.Campbell, K.A.Matveev, 

L.I.Glazman, and A.Losev for fruitful discussions. 
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Fig . I. Normalized "average" homogeneity degree Mnorm of the polynomial part of the 

crystal wave function 4>\,v at different values of v . The curve demonstrates a sharp 

transition at v = 1/3 from inhomogeneous polynomial (crystal) to a homogeneous one 

(incompressible liquid) . 


